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The theory [1] is compared with experiment. The values of the parameters of the theory are 
determined with the aid of an electronic computer from data on cyclotron resonance, [3] magnetic 
susceptibility,[2J and conductivity [4•7] measurements. The calculated and experimentally 
measured values are presented in Tables I and II. 

THE energy spectrum of electrons and holes in 
metals with a bismuth-type space lattice was ob
tained earlier. [1] The investigation in [1] was 
based on regarding the virtual deformation, 
through which the simple cubic lattice can be 
transformed into the lattice of the actual metal, 
as a small perturbation. The atomic displace
ments necessary for this purpose constitute ap
proximately 1/ 20 of the interatomic distances in 
the case of bismuth and 1/ 10 in the case of arsenic. 
Near the points at which the degeneracy is lifted, 
small groups of carriers appear. The holes are 
located at the intersection of the trigonal axis of 
the crystal (the C3 axis) with the boundaries of 
the Brillouin zone (the points k0 and -k0 in the 
notation of [1] ) , and their equal-energy surface 
has D3d symmetry. The electrons are located 
near the points in which the "former" three -fold 
symmetry axes cross the boundaries of the zone 
(the points k 1, k2, k3, -k1, -k2, -k3 ) . The proper 
symmetry of these points is C2h, and rotations 
about the c3 axis transform them into one another 
(Fig. 1). 

We note that the theory enables us to change 
the places of the electrons and the holes; the ar
rangement indicated above corresponds to experi
ment in the sense of the symmetry of the equal-

FIG. 1. Brillouin zone of a bismuth-type lattice. 

energy surfaces. In all, one hole and three elec
tron sections of the Fermi surface are obtained 
per zone. The purpose of this paper is a quanti
tative comparison of the theory of [1] with the 
experimental data on bismuth, a metal which has 
been investigated in greatest detail. 

HOLES 

The spectrum of the holes is described by the 
equation 

where D. and y are constants characterizing re
spectively the spin-orbit coupling and the defor
mation, referred to above, fl is the energy vari
able, and a and b are constants with the dimen
sion of velocity. The origin is located at the point 
k0, the z axis is directed along the trigonal axis 
of the crystal, the x axis along the two-fold sym
me try axis ( C2 axis ) , and the y axis is per pen
dicular C2 and C3 • Equation (1) has axial sym
metry (that is, a symmetry higher than D3d ), 
owing to the neglect of the terms of next higher 
order in q. 

In the derivation of (1) we took into account 
four closely lying bands. Therefore Eq. (1) is of 
fourth degree in fl. When p == q == 0 (the point at 
which in the case g of Fig. 5 of [1] the extrema of 
fl (k) are realized), we have 

Q1,2,3,. = + (y + ~). 
The condition for p and q to vary within finite 
limits (as follows from experiment, the Fermi 
surface of the holes in bismuth is closed), is 
written in the form 1) 

(2) 

l)The value of 0 corresponding to the Fermi level will be 
denoted by the same letter n. 
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Table I. Holes 

Experiment I Tohrye-11 I Experi-1, The-
ment ory 

m (0)/mo 0.062±0.003 [3 ] * 0.0535 n-10-17, cm-3 2.75 [•] 3.15 
dn 

m(~)/mo 0.195±0.004 [3 ] 0.196 dQ'10-19,cm-3 ·ev-• 3.75 

S (0)·1042, cgs esu { 6, 75±0,25 [2 ] 

6.8±0.1 [7] 

S ( ~ ) -1042, cgs esu { 20,5±1.5 [2 ] 

21,2±1.0 ['] 

*We used the preliminary data of[3]. 

(3) 

Our problem is to determine the parameters 
'Y, ~. S1, a, and b. The most convenient for this 
purpose are the data obtained from measurements 
of oscillations of the magnetic susceptibility [2] 

and cyclotron resonance I 3J. The period of the 
former, as is well known, is determined by the 
magnitude of the extremal area (in the direction 
n along the magnetic field) of the section of the 
Fermi surface; the plane of the section is perpen
dicular to the vector n. We shall denote this 
quantity by S ( n) since it depends on the direction 
of n of the magnetic field relative to the crystal
lographic axes. The period of the cyclotron oscil
lations is determined by the cyclotron mass 
m (n) = ( 27r )- 1 as/ast (its extremal value, or the 
value on the limit points). 

It is easy to see that the area of the section and 
the mass reach their extrema in the central sec
tion of the surface (1). For a definite relation be
tween st, '}', and ~ (case h of Fig. 5 in [1] ), and 
in certain directions of n, the area can be ex
tremal not only on the central section, whereas 
the mass has only one extremum. 

When n is directed along a three-fold axis, we 
have for the central section ( p = 0 ) 

S(O) =rck.L2 =·rcb-2 [!:.l2- (lvl-1~1) 2], (4) 

m(O) = Q I b2. (5) 

When n is directed along a two-fold axis on the 
central section ( kx = 0) we obtain 

S ( i- J = ~ dkydkz =a~ ~~ 1 : x2 { (1 + x2)[2~Z(y2 + Q2) 

_ (y2 _ Q2)2 (1 + x2)J- Mfi', 

where x1 denotes the positive value of the vari
able x 1, at which the expression in the curly 
brackets in the integral vanishes [under condition 
(3) there is one such value]. Simple transforma
tions lead to the expression 

6 .. 971 
22.7 

8 <1>• eV 
Eo, eV 
E1, eV 
E2, eV 
E3, eV 

0.011 [4 ] 0,013 
0.124 
0.732 
0.981 
0.248 

h lvl-l!:.ll m= lvl-l!:.ll x2=(1-m2)ch21j.•. 
s '¢ = 2lv!:.l!'1' ' 1~1 ' (6 )* 

The corresponding value of the mass is 

m(~)= -1~1 [K(x2)+(cth'¢-1)E(x2)], (7)t 
2 nab ch '¢ 

where K ( K2 ) and E ( K2 ) are the total elliptic in
tegrals of the first and second kind: 

n/2 

K(x2)= ~ da/(1-x2 sin2a)'h, 
0 

rr/2 

E(x2)= ~ da(1-x2sin2 a)'l'. 
0 

Since bismuth has two atoms per unit cell, the 
volume occupied by the holes should equal the 
volume of the electrons. The volume bounded by 
surface (1) is 

\ 2rc~zyz ( yz- Q2 -I Q~ I 
v = J aak = abZ(y2 _ Qz) ,1, arc cos lv~ I 

vz- Q2 + I Q~ I+ 2~2 
3~2y2 

X{(y2- Q2)[(1!:.ll+l~l)2-y2]}'1, ). (8) 

The experimentally obtained values of the 
masses and the cross sections are listed in 
Table I. It remains to determine from (4)-(7) the 
values of the parameters entering in the hole 
spectrum (1). This, however, must be done with 
allowance for the equations pertaining to the elec
trons, since, first, the constants a, b, y, and ~ 
are the same for both, and, second, it is neces-

*sh = sinh; ch = cosh. 

tcth = coth. 
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sary to make the volumes equal. The result of 
the calculations is listed in Table III. We shall 
discuss these in greater detail later. We note 
that the signs of the quantities a, b, y, and 6 
cannot be determined from (4)-(7), since (1) 
contains their squares. 

Using the data of Table III we can calculate by 
means of (4)-(7) the theoretical value of the 
experimentally observed quantities. They are 
listed in the column marked "theory" of Table I. 
The same Table indicates the distances to the 
Fermi level EF = Q - (-I)' I + 161 ), to the near
est filled band E 3 = 2161, to the nearest free 
band E1 = 2 ( I 'Y I - 161 ), to the following free band 
E2 = 2h,l, to the "open area" E0 = 161, all dis
tances being measured from the top of the conduc
tion band (Fig. 2). The fact that all these gaps 
turn out to be considerably larger than EF justi
fies the use for the holes of the "ellipsoidal" 
approximation 

-eo%> = kz2 I 2mz + k.1.. 2 I 2m.J..., 

which is obtained when one retains in (1) only the 
terms quadratic in p and q. 

FIG. 2. Diagram of carrier bands in bismuth. 

Table I lists also the concentration of the holes 
in Bi, n = 2V/(27rti)3 and the density of states 
dn/dQ. 

ELECTRONS 

The spectrum of one of the three groups of 
electrons is given by the equation 

kt~ + 2kt2 (k2ka +D) +(A+ ka2) (B + k22) 

+ 2A2k2ka- C = 0; 

B = Y+2- Q_2, 

D = Y+Y-- Q+~L + 112, 

C = 2A2(Y+Y- + Q+Q-) -11~. (9) 

The parameters 'Y +• '}' _, Q +• and Q _ are connected 
with the quantities y<O, o<O, and (3<1l introduced 
in [1] and with the energy variable Q <1) I Q <1) 

= w - f(1)) by the relations 

Y± = yCtJ + l)CtJ, g± = gctJ ± ~CtJ. 

It is important that y<O = -y/3. 
Equation (9) is written in terms of the following 

reference frame: the x axis is chosen along that 
two-fold axis of the crystal which is the symmetry 
axis of the surface (9), the z axis makes an angle 
equal to cos- 1 (%)with the trigonal axis of the 
crystal, and they axis is perpendicular to the x 
and z axes (see Fig. 3). The symmetry of the 
surface (9) is actually C2h-it includes the reflec
tion kx - -kx and inversion. 

The conditions under which the electron Fermi 
surface is closed are written in the following 
fashion 

A > 0, B > 0, D - 112 > 0. (10) 

Further, the surface (9), depending on the rela
tions between the parameters which determine it, 
can either break up into two unconnected parts, 
or else be connected. The experiment apparently 
offers evidence in favor of the latter possibility. 
The requirement for connectivity leads to the 
condition 

C-AB> 0. (11) 

In this case the extrema of Q (1) ( k ) are realized 
at k = 0. When k = 0, equation (9) has four roots: 

Q~~J = -y(i) ± [112 + ( ~(!) - l)(iJ) 2]'1·, 

Q~~l = y(1) ± [112 + (~(1) + l)(1J)2]''·· (12) 

The distance from the origin to the surface (9) in 
the direction of a two-fold axis is 
k(t) == kx(kz = ka = 0) = [ -D + (D2 + C- AB)'I•J'f' /b. 

(13) 
It is known from experiment that the surface 

(9) is very strongly elongated in a direction lying 
in the plane kx = 0 and making an angle e0 = 6o 20' 
± 15' with the basal plane (the plane perpendicular 
to the c3 axis of the crystal). The intersection of 
the surface (9) with the plane kx = 0, given by 
Eq. (9), in which one must put k1 = 0, has a rather 
complicated form: 

(14) 

The smallest distance p from the origin to the 
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curve (14) can be obtained by solving (14) simul
taneously with the equation 

aky + k 3 (B + k22) + k2(A + ka2) + 112(k2 + ka) = O. (15) 
bkz ka(B + kz2)- k2(A + ka2)- 112(ka- k2) 

The coordinates of the point closest to the origin 
are connected with p and e0 by the obvious rela
tions ky == p cos x0, and kz == -p sin x0 , where 
we introduce for brevity the symbol 

Xo =· arccos 1 Is + 8o 

(see Fig. 3). The ambiguity in the last definition 
is due to the fact that the angle between the axis 
and the direction of the elongation can be either 
cos-t ( 1/ 3 ) - e0 or cos-t ( t;3 ) + 00, depending on 
whether we look at the electron surface along the 
direction of the two-fold axis or in the opposite 
direction. 

The area of the central section, for n lying in 
the yz plane, is given by the expression 

t,± 

]±= ~dt[-1+st2+(f-nt2)'hJ'I', (16) 
0 

where t~ are the values of the variable for which 
the integrand vanishes. In the case when t 1 is 
complex, the corresponding integral need not be 
written out (the electronic parameters are such 
that tj is complex for all directions n; the Fermi 
surface of the electrons has no noticeable dents). 
If we denote 

nz, s = any + bnz = a sin X ± b cos x, 

then the expressions for s, n, and f2 are of the 
form 

s = nzna, n = [Ana2 + Bn22 + 2n2na(D- N)]. I D, 

f2 = 1 + (C-AB) I D2• 

The integral J± can be expressed in terms of 
elliptic integrals, but the resultant representation 
is too cumbersome. The corresponding expres
sion for the mass is 

1 1' (Q+ + ~L)D -yp- nt2 + P + Qt2 
rn<1>(n z) =- I dt , 

Y nbD ~ [ (f2- nt2) ( -1 + st2 + 1/2- ntZ) ]'I• 

p = (112- D) (Q+ + Q_) + AQ_ + BQ+, 

(17) 

In the case when f2 - 1, expressions (16) and 
(17) are simpler. Accurate to n ( f - 1 )/ ( n - 2s ), 
we obtain the following expansions: 

(18) 

(19) 

for which we see that in this region of angles the 
quantities sCt) and m (1 l have the same angular 
dependence. Namely, their angular dependence is 
determined by the function 

<D = n - 2s = (Ani + Bnz2 - 2~2n2na) I D, 

and the condition that gCt l ( n) be minimal for a 
direction n making an angle 00 with the basal 
plane is written in the form ( d<I>/dx )x=xo = 0, or 

2ab(B -A) 

tg 2Xo = b2(A + B + 2112)- a2(A + B- 2112) 
(20) * 

In this approximation, the minimum value of 
gCt) ( ny ,z) is connected with p and kC0 : 

s~~n = rtpk<1>. 

For small values of the function <I>, expressions 
(18) and (19) are incorrect and we must use the 
correct expressions (16) and (17). 

We now consider the case n II C2• We make 
first a remark concerning the signs of the elec
tronic parameters. From the inequalities (10) it 
follows that 'Y + and } _ have the same sign. Inas
much as Eq. (9) contains only bilinear combinations 
of 'Y+ and )'_, the cross sections gCtl and the 
masses m (1) likewise contain these quantities in 
bilinear fashion. Therefore knowledge of only the 
masses and the cross section does not allow us to 
conclude whether 'Y + and } _ are both positive or 
negative. Bearing this in mind, we shall assume, 
for brevity in notation, that 'Y + and 'Y _ are posi
tive. 

We present an expression for the area and the 
mass of the central ( kx = 0 ) section: 

y ,_<1>~{ ~( 1_+~l ):_sh_2__.cp_K_~(_k2~) _:_+--;.[_1 ----:-l..;.-( 2 __ c_h_2 cp~_1__:_)_:__] E~( k2) } mx<1> =-
nabr sh cp ch2 cp 

r2 = (Y+ -Q -) (Y-- Q+) z = Q++Q-, 
112 'Y+ + 'Y-

h2 (Y-- Q+) (Y+- Q_) 
s qJ = 2 (y+Q+ + y_Q_) ' kZ = ( 1 - r2) ch2 cp. (22 ) 

*tg =tan. 
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Expressions (21) and (22) are valid when '}'+Q+ 

+ '}'_Q_ > 0. The corresponding formulas in the 
case when 'Y +Q + + '}' _Q _ < 0 are obtained from 
(21) and (22) by making the substitutions m*1 l 
- -mil) and Q± - -Q±. The condition for the 
numbers of the electrons and holes to be equal is 

conduction band of the electrons to the top of the 
filled band. According to [4], this distance amounts 
to 0.0153 eV. Unfortunately, this quantity was not 
observed directly in [4], but was obtained by com
puter reduction of experimental data, wherein 
Smith et al. [4] started from an ellipsoidal model 

(23) 
of the electron spectrum 

Here v<ll is a volume bounded by the surface (9): 

V<1J =) rFk 

=-1- r dxdy {(1+x2)[C+i\4-2y2(fl-i\2) 
ab2 J 1 + x2 

= __!_ r' dx [Yt2(x) + Y22(x) ]'/, 
3ab2 ~ 1 + x2 

X [y22(x)K(q2)- (Yt2- Y22)E(q2)]; 

y~,2(x) = + [(D- i\2) (1 + x2) + i\2] 

+ {[(D- i\2) (1 + x2) + i\2]2 

+ (1 + x2)[C + N- AB(1 + x2)]- i\4}'1,, 

E(1 + E I Et<1l) = a;kkikk, 

which differs noticeably from the spectrum (9). 
However, after calculating the electronic 

parameters it turned out that only two of the four 
branches of the spectrum (9) are quite close. We 
can therefore hope that the value of the gap EfO 
as determined in [4] is close to the real value. On 
the other hand [see (12)], the value of Eftl is de
termined by the sought parameters: 

Et(1) = 121 y(1) I - [i\2 + (~(!) + c5(1J)2J'f' 

- [i\2+ (~(1)_c5(1J)2].'1,1. (25) 

Our task is greatly facilitated by the possibility 
of using expansions (18) and (19) in calculating the 
cross section and the mass for those directions of 
n for which S ( n) and m ( n) are relatively small. 

q2 = Yt2/ (Yt2 + Yz2), (24) Thus, the system of equations for the unknown 
parameters a, b, ~. y, {3(1), o<tl, Q, and Q(1) 

consists of (4)-(7), (13), and (18)-(25). Of course, 
none of the equations can be given preference, 
even if for no other reason than that errors are 
possible in the interpretation of the experimental 
data. Among the more weighty reasons are: 

where x~ satisfies the equation y~ ( x~) = 0. 
The masses and the cross sections calculated 

above are known from experiment with sufficient 
accuracy (see Table II). It has turned out, how
ever, that equations (12)-(17), (21), and (22), to
gether with the information (4)-(7) on the hole 
surface and the condition for neutrality (23) are 
still insufficient for an unambiguous determina
tion of the parameters2 l. It became necessary to 
make use of one more experimentally measured 
quantity-the distance Ef1) from the bottom of the 

1) the accuracy of the approximation in the theory 
considered amounts to 1/ 20 [t]; 2) the bismuth 
samples with which the experimental data given 
above were obtained, must have contained impuri
ties. The presence of impurities is particularly 
important in view of the small amount ( ~ 10- 5 

Table II. Electrons 

mmin/Tno 
mxfmo 

Smin·1042, cgs esu· 
Sx·1Qt2, cgs esu 

6o 
k'l' .fQ21 cgs esu 
k'2' .to•< cgs esu 
k'3' ·1021, cgs esu 

n·1Q-17, em·~ 

Experiment 

0.0080±0.0001 (31 
0.119±0.003 [31 

{ 1.30±0.02 1'1 
1.34±0.05 (21 
19.5±1.5 [21 
6°20' ±15' [31 
0.54±0.02 (81 

0.92 (41 

I ~~~-11 
0.006'3 
0,113 

1.2 * 
16.1 
6°45' 
0.64 
0.6 
8.4 
1.15 

*Calculated with the approximate formula (18). 

2>we are indebted to I. N. Silin, who established this fact 
with the aid of the JINR computer. 

I Experi-1 The-
ment ory 

dn 
ag·1Q-19,cm·3. ev·l 1.17 

elj,l, eV 0,0385 (41 0.031 

Ebl)• eV 0.048 

Ejll, eV 0.015 [41 0.013 

E~IJ, eV 0.271 

E(IJ eV 
3 ' 

0.370 
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Table III. Values of the Parameters 

lbi·!O-•, !L'>I, eV I n, eV I /y(l)l. eV lrs(l)r. eV I j3(1),eV I n(l), eV la1·10-•, 
em/sec em/sec 

0,390 1.068 * 0.12421 -0.379410.1635* I 0.08531 o.o516 I 0.00981 

*The symbols b and [jl) are identical with the symbols a and Y(l)' respectively. 

per atom) of electrons and holes in bismuth. 
Consequently, we sought such a combination of 
parameters, which would satisfy in the best 
manner the entire set of equations. Even the con
dition of neutrality, which should be satisfied ex
actly for ideally pure bismuth, was on par with 
the remaining equations. 

The computer solution is shown in Table III. 
We note that it corresponds to a minus sign in the 
definition of Xo· Using these data, we readily ob
tain the theoretical values of the observed quanti
ties (see Table II). In Table II there are indicated, 
besides EP l, the distances to the next filled band 
E~1l, to the next free band E~tl, to the "open 
area" Ea1l [that is, to the value of w closest to 
the Fermi level, at which one of the inequalities 
(10) is violated], and to the Fermi level (see Fig. 
2). All these distances are measured from the 
bottom of the conduction band. The same table 
gives the concentration and the state density of 
the electrons. It is seen from Tables I and II that 
the total density of the carrier states in bismuth 
is insufficient to explain the large value of the 

k [5] specific heat measured by several wor ers. 
The value of e0 calls for an explanation. We 

calculated it by the same expansion that led to 
formulas (18) and (19). An error of 1o is quite 
possible in this calculation. In addition, the figure 
of (9) is not an ellipsoid. The direction of the 
elongation, determined from the sections of the 
surface closest to the origin, does not coincide 
with the direction of the most remote point. This 
circumstance was observed by several authors.[2] 
Figure 3 gives the time of the intersection of the 
surface (9) and of the plane kx = 0. The curve can 
be constructed by using the parametric representa
tion of (14): 

ky = (yBu + y.Av) I 2b, kz = (VBu -1Av) I 2a. 

FIG. 3 

The quantity u is expressed in terms of v by 

u= 
-av±[a2v2- (1+v2)(1+y2-~)]'lo 

1 + v2 

where a = !::,_2/J AB, and {3 = C/ AB. 
It is curious that the point of the curve closest 

to the origin is a saddle point. The distance P to 
it amounts to 0.57 x 10-21 cgs esu, which differs 

1o-21 appreciably from the value ( 0.76 ± 0.03) x 
determined by A. P. Korolyuk in experiments on 
the absorption of ultrasound. V. F. Gantmakher 

10 -21 indicates for this quantity a range 0.68 x -
o .84 x 10-21 (this is the width of the size-effect 
line observed in the study of the surface imped
ance). To be sure, all that is known about the 
value obtained in the experiment is that it is half 
the extremal dimension of the curve. The dimen
sion is measured along a perpendicular to a direc
tion inclined approximately 6° to the basal plane. 
This quantity, as can be seen from Fig. 3, can 
correspond to 0.57 x 10-21 as well as to 0.60 
x 10-21 . The distance 8.4 x 10- 21 to the most re
mote point agrees best with the value (7 .6 ± 0.3) 
x 10-21 obtained by Korolyuk. 

The most noticeable is the discrepancy between 
the experimentally measured values of the cyclo
tron mass and those calculated from (17), although 
the angular dependence agrees with experiment 
in general outline. The minimum value of the 
mass, determined from the values of the para
meters of Table II, is 0.0068 m 0, while the experi
mental value [3] is 0 .0081m0 . The maximum value 
is 0.086 m 0 but that calculated from (17) is 
0.18 m 0. In [sJ a value 0.11 m 0 is given for this 
quantity, which apparently pertains to the limit 
point.L3] It is possible that the discrepancy is due 
to the fact that the maximum of (1 7) is very sharp, 
such that a 2° inclination of the magnetic field re
duces the mass by one half. It must also be borne 
in mind that in the determination of the pp.rame
ters the value of mmax was not taken into ac
count, and this value is determined by a small 
combination of the parameters. This constitutes 
the main difficulty, since it follows from experi
ment that the Fermi surface of the electrons is 
quite anisotropic, while for equation (9) none of the 
directions is preferred, provided only one does 
not require, for example, that the coefficient A 
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be accidently small compared with B. Analogously, 
the requirement that the Fermi surface be close 
to an ellipsoid leads to smallness of the quantity 
( C - AB )/D2• Thus, small combinations of the 
parameters }'+, )'_, 11+, 11_, and t1 become im
portant, whereas the approximation in question, 
strictly speaking, makes it possible to determine 
the parameters themselves with accuracy %0• 

For this reason, the agreement between theory 
and experiment, reflected in Tables I and II, is 
satisfactory. 

The authors are grateful to E. G. Shustin for 
help in the calculations, V. F. Gantmakher, V. S. 
Edel'man, and A. P. Korolyuk for reporting the 
experimental results prior to publication, and 
A. A. Abrikosov for a discussion of the work. 
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