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An exact solution is given to the problem of finding the bound state of a charged particle in a 
zero-range force field in a uniform magnetic field. It is shown that if no bound state exists in 
the potential well in the absence of the magnetic field, turning on the field always leads to the 
appearance of such bound states. The possibility of detecting this effect in semiconductors is 
discussed. 

1. INTRODUCTION 

IN an earlier paper [l] we considered a particle in 
a potential well of small radius (a negative ion) 
placed in a strong electric field. Here we treat the 
same system, but now placed in a uniform magnetic 
field. 

First we consider, qualitatively the case of a 
shallow potential well, where in the absence of the 
field there is no bound state. If we switch on a 
magnetic field, the motion of the particle trans­
verse to the field will be hindered, and conse­
quently the problem becomes similar to the one­
dimensional problem. We know that for the one­
dimensional problem there is a bound state in any 
well. We may therefore assume (and will prove 
later) that for an arbitrarily shallow three-dimen­
sional well, when we switch on an arbitrarily weak 
field a bound state always appears. In first approx­
imation the binding energy is proportional to the 
square of the field, so that the phenomenon is remi­
niscent of diamagnetism, but acts in the opposite 
direction, so that we might call it antidiamagne­
tism. 

The magnetic field thus appears to exert a sta­
bilizing influence on the particle. Real magnetic 
fields are too weak for such an effect to be observ­
able with free atoms or electrons. But in semi­
conductors at liquid helium temperatures and for 
low values of the effective mass of electrons or 
holes, we shall see that the binding energy may be 
comparable to kT, so that the bound states that 
are formed may be observed experimentally. 

In addition to an antidiamagnetic downward 
shift of the energy, proportional to the square of 
the field, there is also an upward shift, linear in 
the field, of the limit of the continuous spectrum, 
the shift being ~E ~ hwL ( WL = eh/2mc is the 

Larmor frequency). This is related to the fact 
that, unlike a classical particle, a quantum par­
ticle with zero spin and sufficiently low energy 
cannot penetrate into a region of strong magnetic 
field, moving along a force line; the quantity ~E 
is a sort of potential barrier, related to the pres­
ence of an ambiguity of the coordinate and mo­
mentum transverse to the field, and equal to the 
zero point energy of a two-dimensional oscillator 
of frequency WL. The term ~E increases the 
total energy and is analogous to a paramagnetic 
shift, but it also acts in the opposite direction 
( antiparamagnetism) and causes the system to be 
repelled from a region of strong magnetic field. 
But if the particle has a spin and is oriented along 
the field then, for example, for an electron, be­
cause of the anomalous gyromagnetic ratio, the 
antiparamagnetic and paramagnetic terms com­
pensate completely, and there remains only the 
quadratic antidiamagnetic term, which will lead 
to an attraction of the system into the field. 

If the potential well is sufficiently deep, so that 
there is a bound state in the absence of the mag­
netic field, there is the usual diamagnetic effect, 
which increases the total energy by an amount 
proportional to the square of the field and leads 
to expulsion of the system from the field. The 
linear shift of the edge of the continuous spectrum 
also appears, but it has no effect on the total en­
ergy, and only has the consequence that, despite 
the upward diamagnetic energy shift, the binding 
energy of the particle increases with field, so that 
the magnetic field exerts a stabilizing influence on 
the particle in both the cases considered. 

2. THE WAVE FUNCTION 

Consider a charged particle of mass m and 
charge e, in the field of a potential well of small 
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radius and a uniform magnetic field JC, where we 
assume that the projection of the angular momen­
tum along the field direction is zero. We shall not 
consider the spin of the particle. 

Assuming that the main part of the wave func­
tion is outside the potential well, we use the famil­
iar approximation ( cf., for example, [ 1 J), in which 
the actual potential well is replaced by a well of 
zero radius that has the same scattering length a. 
Then the wave function 1/J at small r can be writ­
ten as 

\jl = (4:n)-1(,.-1- a-1) + O(r) (1) 

and has a 1/ r singularity when r - 0. The nor­
malization factor ( 47r) - 1 simplifies the later for­
mulas. If a > 0, then in the absence of the mag­
netic field there is a bound state of energy E 
= -h2/2ma2 and wave function 1/J = (4n)-1e-r/a. 
But if a < 0, then without the field there is no 
bound state. 

We introduce the notation 

e = 2mE I h2, f... = e.r:JC I 2hc. 

Then, considering the singularity for r- 0, we 
obtain the equation for the wave function in the 
cylindrical polar coordinates p, z: 

82\jl 82\jl 1 8\jl 
-+-+--+(e- f...2p2)\jl = -b(r). 
8z2 8p2 p 8p 

(2) 

Thus 1/J is the Green's function for a particle in a 
uniform magnetic field. Formula (1) enables us to 
express the energy of the bound state in terms of 
the parameters a and A.. 

The time-dependent Green's function for a par­
ticle in a uniform magnetic field has been treated 
by several authors; [2, 3] the required function 1/J 

can be obtained from it by a simple integration. 
We shall construct the 1/J function directly, using 
the formula 

\jl(p,z) = ~ <jln(p)qJn(O)gn(z). (3) 
n 

Here <Pn is the regular normalized solution of the 
equation 

i.e., eigenfunctions of the two-dimensional iso­
tropic oscillator, having cylindrical symmetry: 

(4) 

(jln = (f.../:nrhe-AP'I2Ln(J.p2), (5) 

where the Ln are Laguerre polynomials. The 
eigenvalues f3n are 

~n = 4f.(n + 1/z). (6) 

The functions gn are one -dimensional Green's 
functions satisfying the equations 

d2gn 
dz2-- an2gn =- 6(z), Un2 = ~n- E, (7) 

and vanishing for I z I - oo (since we are consider­
ing only bound states). 

The functions gn have the form 

1 g = -- e-C<n lzl 
n 2an ' 

(8) 

and consequently the required wave function can be 
represented as a sum: 

For what follows we need only consider the be­
havior of 1/J for p = 0 on the z axis. We have 

co 

(10) 

an=' (f.(4n + s))'", s = 2- eft.... (11) 

In this case the series can be summed, using the 
formula 

I exp ( -bt2 - ~)at=~ v~ exp(-2}'bc) 
0 

(12) 

and setting c = A.z 2, b = n +~I 4. Then, inter­
changing the order of summation and integration 
and summing the geometrical progression under 
the integral, we get 

')...'/, r exp(-£t2/4- J.z2jt2) 
\jl (0, z) = 2:n'h j 1- e-t' dt. 

0 

(13) 

When z - 0 the integral diverges at its lower 
limit. Separating off the divergent part, we have 

1 --
\jl(O,z) = ~exp(-l'P.slzl) 

')...'/, 
00 

( 1 t2 1 1 \ + - I -- coth - + ---- } 
2:n'h ~ \ 2 2 2 t2 ' 

( £t2 f...z2) 
X exp \-T- [2' dt. (14) 

For large z the factor multiplying the exponential 
in the integrand can be replaced by unity, and con­
sequently 

1 ,; 'A -
\jl(O, z)"" 4:n V 1 exp(-l't...slzl )[1 + 0( lzl-1)], (15) 

i.e., at infinity the behavior of 1/J is determined by 
the first term of the sum (10) and is the same as 



184 Yu. N. DEMKOV and G. F. DRUKAREV 

in the one-dimensional case. It follows that the get 
edge of the continuous spectrum is reached for 
~ = 0, which coincides with the condition E = hwL. 

3. ENERGY OF THE BOUND STATE 

We now use condition (1) and go to the limit 
r - 0 along the z axis. Then, after taking out the 
divergent part ( 47TI z I) - 1, the remaining part of the 
function zp must be equal to - (47Ta)-1• We get an 
equation for determining the energy: 

1 _ 2 r ( 1 t2 1 1, r ~t2 , 
--=l'~--= J -coth-+---'exp -- ldt. (16) 
a l'!.. yrr. 0 2 2 2 t2J \ 4 J 

The right side can be expressed in terms of the 
generalized Riemann !; -function (cf. the Appendix): 

1 I a{i = -'Wiz, ~I 4) = F(~) (17) 

and can be represented to high accuracy by the ex­
pression 1> 

F(~) ~ (~ + 4) '/•- 2~-·t.- (~ + 4)-'l•- 1la(~ + 4)-'"· (18) 

Finally, when ~ « 1 and ~ » 1 we get 

1la~=-2~-'"-6(112) +O(~), ~~1; (19) 

1 I a "}'A = ~·t, - ~-·t.- 1la~-'l• + 0 (~-!'•), ~ ~ 1, (20) 

where /;( s) is the usual Riemann /;-function. 
As we see from these expressions, the case 

~ » 1 occurs when a > 0, where there is a bound 
state in the well even in the absence of the mag­
netic field. The case ~ « 1 occurs for a < 0, 
when there are no bound states in the absence of 
the field. In both cases the right side of the equa­
tion is a large number and consequently a...fr « 1, 
i.e., the radius of the first Larmor orbit is much 
greater than the dimensions of the electron cloud 
in the absence of the field. We shall regard such 
a field as weak, whereas a field for which the op­
posite criterion aJX » 1 is satisfied will be con­
sidered strong. 

Now let us consider the different limiting cases. 
1. a > 0, weak field. Using formula (20), we 

l)lf we replace the sum (10) by an integral, after separating 
off the first term, we easily get the cruder approximate ex-
pression 

F m ~ (2 + sl .,, - 26-''·· 

which gives fair results for cases 2 and 3 (where the numerical 
constants in formulas (28) and (29) are changed by only a few 
percent). We thank 0. B. Firsov for pointing this out. But in 
case 1 this formula is not applicable (it gives no diamagnetic 
shift). 

or, changing to the usual units, 

Using the equation 

which comes from the expression for the wave 
function in the absence of the field, 

(21) 

¢ = ( 4rr.r) - 1e-rla, (24) 

we get 

e23f2 
E-Eo=---<r2> 

12mc2 

the familiar result for the diamagnetic energy 
shift. 

(25) 

Arguments similar to those in [1] for the elec­
tric field permit the conclusion that for a given 
binding energy E0, in the absence of potential bar­
riers, the diamagnetic susceptibility 

(26) 

for our case will be minimal relative to all other 
potential wells with zero range of the forces. For 
example, for the long range Coulomb field, ( r 2) 

and consequently also the diamagnetic susceptibil­
ity is six times greater. It is interesting that in 
this same case the polarizability in an electric 
field changes by a factor of 18, [i] so that the dia­
magnetic susceptibility is less sensitive to the 
shape of the potential well than the electric polar­
izability. 

2. a< 0, weak field. Using (19), we get 

2 - - 4f..2a2 0 '" 7 
A. E- [1+at..'i•6(1/2)]2 + (A. a). (27) 

From our earlier remarks, the value e: = 211. is the 
edge of the continuous spectrum, so that the differ­
ence 2A.- e: gives us the binding energy E0• In or­
dinary units this quantity is equal to 

_ e23f2a2 [ ( e:Jf )''']_2 
Eo- - 2--2 1 + 1.46lal \-

me 2hc · 
(28) 

As we remarked in the Introduction this downward 
energy shift from the edge of the continuous spec­
trum may be called antidiamagnetism. The first 
term of (28), which is quadratic in the field, coin­
cides with the result of Bychkov C4J who treated the 
scattering of electrons by a force center in a mag-
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netic field. But the second term is significant­
even when A.a2 = 0.01, the correction is 30%. 

3. I a I = oo, arbitrary field. This is the limit­
ing case where in zero field there is no bound 
state, but such a state appears for an arbitrarily 
small increase in the well depth. In this case the 
left side of (17) is zero and we must find the value 
of ~ 0 for which the right side vanishes. Using the 
approximate formula (18) we easily find ~ 0 = 1.21. 
Thus in this limiting case the binding energy E0 

increases linearly with the field: 

2/v- 8 = 6oA.; Eo= 0.30eMJC /me. (29) 

4. a arbitrary, strong field. In this case we 
must expand the function F ( ~ ) in series in the 
neighborhood of the point ~ 0 : 

F(6) = F' (6o) (6- 6o) + tf.;F" (6o) (6- 6o) 2 + · · • (30) 

Using the approximate formula (18) we easily find 

F' (6o) = 1.02, F" (6o) = -0.95. 

For the total energy of the bound state in the mag­
netic field we then get the formula 

2 (2 6 )A. 2 ay"f.: I F"(6o) o( 1 ) 
ea = - 0 a - F'(6o) 1 2[F'(6o)]3 + atA 

= 0,79A.a2 - 0.98a y"f.:- 0,45 + O[(A.a2)-'h]. (31) 

The figure shows the dependence of the energy 
e:a2 on the field A.a2 in dimensionless units for the 
different cases. In addition it shows the edge of 
the continuous spectrum and the line e: = ( 2 - ~ 0 )A., 
corresponding to the case of I a 1- oo, which de­
termines the slopes of the other two curves when 
A. - oo • The curves for a > 0 and a < 0 are the 
two branches of a curve which is similar to a pa­
rabola; the extension of the curve a < 0 into the 
nonphysical region of negative A.a2 is shown as a 
dashed line. Within the accuracy of the computa-

tion the two branches are symmetric around the 
axis shown in the figure as a dot-dash line. 

4. DISCUSSION 

The present approximate treatment is applica­
ble if the following two conditions are satisfied. 

A. The dimensions of the electron cloud should 
be much greater than the radius r 0 of the poten­
tial well. It follows that if a > 0, for a bound state 
in the absence of the field the inequality a » r 0 

must be satisfied. This condition does not contain 
the magnetic field JC and is a general condition for 
all cases in which one uses the zero range approx­
imation. If a < 0 it is not necessary to require 
that I a I » r 0• In this case the wave function of 
the bound state will fall off very slowly in reason­
ably strong fields. If E0 ( JC ) is the binding energy, 
our condition can be written as 

(2mEo(Je)) 'l•ro I h < 1, 

or, replacing E0(JC ) by the first term in (28), we 
get 

eJearo I he~ 1. 

This condition is practically always satisfied: for 
example, if a= 10-7 em, r 0 = 10-8 em, we get 
JC « 108 Oe. A bound state near the edge of the 
continuous spectrum will always appear in a mag­
netic field if the scattering length a is negative, 
even if the well is deep and contains other bound 
states with large binding energies. 

B. The radius of the first Larmor orbit should 
be much greater than the size of the well r 0, i.e., 

(eJe I 2he) 'l•r0 < 1. 

This condition is surely satisfied for actual fields 
and not too large r 0• Even assuming r 0 = 10-7 em, 
we get JC « 107 Oe. 

Let us estimate the energy of the bound state in 
a semiconductor under favorable conditions. Set­
ting meff = 0.01 mel. a= 10-7 em, JC = 105 Oe, we 
get E = 10-3 eV. Thus at a temperature of a few 
degrees Kelvin these levels may have an effect on 
the concentration of electrons or holes in the con­
duction band of the semiconductor, resulting, for 
example, in a decrease in the electrical conductiv­
ity along the magnetic field. 

For an anisotropic uniaxial crystal with the 
magnetic field along the axis, so that there are 
two effective masses m11 and m1, all the argu­
ments of Sees. 2 and 3 remain valid except for 
changes in some of the factors; in the final ex­
pressions for the energy we must replace m by 
m 1 and multiply the whole expression by 
(mil /ml )1/2. 



186 PARTICLE OF LOW BINDING ENERGY IN A MAGNETIC FIELD 

In conclusion we thank A. G. Zhilich and 
A. V. Tulub for valuable discussions of the prob­
lems treated in this paper. 

APPENDIX 

The generalized Riemann ?; -function [5] can be 
represented as an integral: 

1 oo x•-1e-qx "" 1 
~(s,q)= r(s) ~ 1-e-xdX= n~O (n+q)•; 

Res>1; Req>O. 

In order to extend this definition to the required 
region 0 < Re s < 1, we take out the factor 

(1) 

( 1 -e-x) - 1 which is divergent at the lower limit. 
We get 

q1-s 

~(s, q)= -1-s 

1 00 1 1) + __ \ ( -- x•-1 e-qx dx. 
r ( S) ~ 1 ~ e-X X , 

(2) 

We have thus separated out the pole of the ?;-func­
tion at s = 1, and the formula is applicable over the 
entire right halfplane of the variable s. Setting x 
= t 2, s = Y2, q = ~I 4, we get precisely the integral 
in formula (16) and arrive at formula (17). 

Expanding the expression in parentheses in the 
integrand and calculating the integrals term by 
term, we get an asymptotic expansion for large q: 

'"(s )- 1 +~r(2n+s-1)B 1-s-2n 

"' ,q - 2q8 n=Or(2n+ 1)r(s) 2nq 

=- q1-s +-1-+_s __ s(s+1)(s+2) 
1 - S 2q• 12q•+1 72Qqs+3 

(3) 

where B2n are the Bernoulli numbers. If we sub­
stitute the first three terms of the series in (17), 
we get formula (20). The error is given by the 
fourth term, which for s = Y2, q = 1 ( ~ = 4) is 
equal to 0.0026. 

We then use the recursion relation 

~(s, q) =1/q•+~(s, q+1), (4) 

which follows from the definition (1). Substituting 
the first three terms of the asymptotic expansion 
on the right side, we get an approximate expres­
sion for the ?;-function in the interval 0 < q < oo, 

which leads to formula (18). 
Finally, expanding the right side of (4) in series 

for small q and using the formula ?;( s, 1) = ?;( s ), 
we get 

1 ·~ n r(s+n)\;(s+n) n 
~(s,q)=q.+n~0(-1) r(s)r(n+1) q 0 

(5) 

Only two terms of this expansion are used in for­
mulas (19), (27), and (28). 

Another important development is the asymptotic 
expansion in inverse powers of q - Y2, which can be 
gotten by using the formula 

1 00 

,. (s q) = --- I e-(q-~/,)x x•-1 cosech ::_ dx Res > 1. (6) 
"' ' · 2r ( s) ~ 2 ' 

Expanding the cosecant in series and evaluating the 
integrals, we get the expansion 

00 r ( s + 2k - 1) 
\;(s, q) = ~0 r(s) 

( 1 )1-2k-s 
X (21- 2k -1)B2k q- 2" , (7) 

which is easily shown to be valid also in the region 
0 < Re s < 1. Thus the function ( q - Y2 ) s - 1 t ( s, q ) 
is expanded in an asymptotic series involving only 
even powers of ( q-%) - 1• In our case, q- Y2 

= - d 411., and using formula (7) and Eq. (17) we 
find that for a > 0 and small A., the function E (A.) 
is expanded in a series containing only even powers 
of A., a fact that is not directly evident from (17). 
We should, however, remark that this is an asym­
ptotic series and diverges for arbitrarily small A., 
which is related to the unboundedness of the per­
turbation operator. 
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