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The spectrum of coupled oscillations of electronic and nuclear spins (the coupling is due to 
hyperfine interaction) is calculated and studied in an antiferromagnet in which the axis of 
antiferromagnetism lies in a plane with small magnetic anisotropy. A relaxation mechanism 
is considered for the oscillations of the nuclear-like branch which appears because of the 
hyperfine coupling when account is taken of damping in the electronic spin system. The 
microwave magnetic susceptibility of the whole spin system is calculated, and the ampli­
fication coefficient for nuclear magnetic resonance is found. The spatial dispersion of 
nuclear-like spin waves is studied, and it is pointed out that such waves can be excited by 
a uniform microwave field ("nuclear spin-wave resonance"). 

J-. In a number of experimental and theoretical 
papers [1- 9] it has been shown that hyperfine inter­
action (hfi) causes a mixing of the oscillations of 
electronic and nuclear spins in ferromagnets and 
antiferromagnets. The mixing leads, in particular, 
to a shift of the frequencies of electronic and nu­
clear magnetic resonance ( EMR and NMR), as 
compared with the case in which the hfi is taken 
into account only as the source of a constant local 
magnetic field Hn = AM0, acting on the nuclei 
(A = hfi constant, M0 = magnetization of the elec­
trons of that magnetic sublattice on whose sites 
are located the nuclear spins of interest to us). 

This shift is particularly large in antiferromag­
nets ( CsMnF 3 and RbMnF 3 ) and weak ferro mag­
nets (MnC03 and KMnF3 ) in which the antiferro­
magnetism vector L = M1 - M2 lies in the plane 
with small magnetic anisotropy (the "basal plane"). 
In this case the mixed EMR and NMR frequencies 
are determined approximately by the formulas [4•5] 

W12 = We2 = Weo2 (1 + WEN2 I Weo2), (1) 

W22 == Wn2 = Wno2(1- WEN2 I We2). (2) 

Here Weo and wn0 are the unmixed EMR and NMR 
frequencies, and 

where HE is the exchange field, describing the 
interaction between the magnetic sublattices of 

(3) 

the antiferromagnet; m 0 = xnAM0/2 is the nuclear 
magnetization in one of the sublattices; and Xn is 
the nuclear magnetic susceptibility, which changes 

with temperature T as far down as T ~ 0.01 oK 

according to Curie's law ( Xn = const/T ). 
The unmixed NMR frequency is 

Wno = 'VnHn, (4) 

the unmixed EMR frequency of the low-frequency 
resonance branch, in the case of antiferromagnets 
with weak ferromagnetism, of the MnC03 type or 
of the KMnF3 type, can be expressed in the form 

or 

respectively . 0 In these expressions, HD is the 
Dzyaloshinskil field, which is responsible for weak 
ferromagnetism; H6 is a certain effective field, 
determining an additional energy gap, and con­
nected either with a small magnetic anisotropy in 
the basal plane G10 • 11] or with magnetostrictive de­
formationsC 12 • 13 ]; H0 is the external constant mag­
netic field, which lies in the indicated plane and is 
large enough so that L may be supposed perpen­
dicular to H0• 

Formulas (1) and (2) determine the frequencies 
of those coupled oscillations of electronic and nu­
clear spins that are excited by a magnetic micro-

1)1£ we set Hn = 0, then these formulas are also applicable 
to antiferromagnets without weak ferromagnetism, for example 
CsMnF ,. We remark that because of anisotropy in the basal 
plane, the term containing !-I ~ (and also, in general, that con­
taining Hn) can depend on direction in this plane. 
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wave field h, perpendicular to the constant field 
H0• In an antiferromagnet, however, there is also 
a second pair of EMR and NMR frequencies, excited 
when h II H0 [ 4•5•8]. For this pair of frequencies, 
formulas (1) and (2) are again correct with this dif­
ference only, that for Weo it is necessary to choose 
the frequency on the second EMR branch. In the 
case of uniaxial antiferromagnets (of the type 
MnC03 and CsMnF3 ), for this second branch 
w~e ~ y~ • 2HEHA, where HA is the anisotropy 

· field that prevents the vector L from leavi.ng the 
basal plane. Since HA » Am0, for the second pair 
of frequencies the mixed and unmixed frequencies 
will differ little from each other. Below, we shall 
be interested only in the first pair of frequencies, 
for which Weo has the form (5) or (6). 

It is known [l-9] that, for example, for the Mn55 

nucleus the effective magnetic field Am0, acting 
on the electrons and due to the nuclei, is deter­
mined in order of magnitude by the expression 
Am0 "' 10/T. It is easy to see from (3), on sup­
posing that 2HE "' 106 Oe, that at temperatures 
T ~ 1 °K the characteristic frequency WEN• which 
determines the coupling of the oscillations of elec­
tronic and nuclear spins, can be comparable in 
magnitude with the frequency Weo of (5) or (6) and 
may even exceed it. In this case the coupling of 
the oscillations of electronic and nuclear spins 
becomes so strong that in order to find the fre­
quency spectrum, it is necessary to carry out a 
consistent simultaneous solution of the equations 
of motion for the electronic and nuclear magneti­
zations, without the simplifying assumptions that 
were adopted in the cited papers [4•5J. Further­
more, under these conditions there appears a 
spatial dispersion of the nuclear-like branch of 
the oscillations. The strong spatial correlation 
in the motions of nuclear spins (over a distance 
of the order of 102 to 103 interatomic distances) 
leads to the existence of long-wavelength "nuclear 
spin waves," which evidently can be excited by a 
uniform microwave field in thin foils, in analogy 
to the resonance of spin waves in ferromagnetic 
films[14 J. The present paper, also, is basically 
devoted to this problem. 

We have incidentally calculated the microwave 
suscE:ptibility of an electronic -nuclear spin sys­
tern and have at the same time found the NMR am­
plification coefficient. By taking into account the 
dissipative term in the equation of motion for the 
electronic magnetization, we have also calculated 
the NMR relaxation time T1 for spin-lattice re­
laxation through the intermediacy of the electron 
system, and also the nonsecular contribution to 
the NMR line-width connected with this relaxation 

mechanism. 
2. To find the spectrum of coupled oscillations 

of electronic and nuclear spins, it is necessary to 
add to the electronic spin Hamiltonian of an anti­
ferromagnet (which we do not write out; we refer 
the reader, for example, to [to,u,4•5J) the hfi en­
ergy density, of the form 

(7) 

where m1 and m 2 are the nuclear-spin magnetiza­
tions on the sites of the first and the second mag­
netic sublattices, respectively. We write, in the 
usual way, the equations of motion for the four 
magnetizations Mj .and ffij ( j = 1, 2) in effective 
fields defined as the functional derivatives, with 
sign reversed, of the total energy of the system. 
We can then linearize the system of equations ob­
tained, with respect to small oscillations of these 
vectors in the neighborhood of the equilibrium 
state. The corresponding determinant of eighth 
order, 2 > whose vanishing is the condition that the 
system of linear equations be solvable, separates 
into two determinants of fourth order. Each of the 
biquadratic equations obtained gives one "elec­
tronic-like" oscillation frequency (which reduces 
to a pure electronic frequency when A = 0) and 
one "nuclear-like" frequency. 

One of these equations, which mixes oscilla­
tions of the nuclear spin system with the low­
frequency branch of the spin waves of the antifer­
romagnet, can be written, to a very good approxi­
mation, in the form 

w•- W2 (Wek2 +WE~+ Ctlno2) + We~t2Wno2 = 0, (8) 

where 
(9) 

is the unperturbed spin -wave frequency; the quan­
tities weo• WEN• and Wno are determined respec­
tively by formulas (5) [or (6)], (3), and (4); the con­
stant w E• of the dimensions of a frequency, is still 
another exchange-interaction parameter, connected 
with the nonuniform part of the exchange energy of 
the antiferromagnet; k and a are, respectively, 
the wave vector and a constant of the order of the 
interatomic distance. The second equation has the 
same form (8), but with this difference, that for 
Wek it is necessary to choose the frequency on the 
second spin -wave branch. 

First, before going on to a discussion of the so­
lutions of Eq. (8), we mention that between these 

2>-rhere are in all, of course, twelve equations; but only 
eight of them are independent (by virtue of the usual conditions 
Mj = const and mJ = const). 
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solutions w1k2 and w2k2 there exists the following 
simple relation: 

(10) 

A peculiar "conservation law" is obeyed: the cou­
pling between oscillations of the electronic and ~u­
clear spins changes the characteristic frequencies 
of these oscillations, but in first approximation 
their product remains unchanged. 

3. We pause first to analyze the frequencies of 
uniform resonance. For k = 0 we have from (8) 

(11) 

The plus sign refers to the electronic-like fre­
quency, the minus to the nuclear-like. On expand­
ing the root in (11) with respect to the quantity 

Wno2 / ( Weo2 + WEN2), 

we get in first approximation 

- 2 ) 2 2 2 Wno 
We = Wea + WEN ( 1 + 2 + 2 ' 

\ Weo WEN 
(12) 

(13) 

which agrees, to within small terms, with formu­
las (1) and (2). The latter formulas, however, are 
sometimes applied to the discussion of experimen­
tal data in the range of EMR frequencies We "' Wno 
(at sufficiently small fields H0 ) [ 8], where the ex­
pansion in question is not valid. 

The general yase is easier to analyze if we 
solve Eq. (8) (w'ith k = 0) for we0 = Weo<Ho) = WH: 

(14) 

This formula actually expresses the dependence of 
the resonance field H0 on the frequency of the mi­
crowave field, w, and on the temperature of the 
nuclear spin system (through WEN) for both 
branches of the spectrum (NMR for w 2 ::os w~0 
and EMR for w2 ~ wi;N + w~0 ). The dependence 
of wiJ on w2 is shown schematically in the figure. 

Still another useful formula can be obtained 
from the relation (10) (with k = 0) by rewriting 
it in the form 

(15) 

It expresses the general relation between the res­
onance field H0 for EMR (at fixed frequency We ) 
and the NMR frequency Wn· This relation is ob­
served in experiments on double electronic­
nuclear resonance [8]. 

i' 

/ , , 

Schematic curves determining the frequency dependence of 
the resonance field H0 for the electronic (we) and nuclear (wn) 
branches of the resonance, excited by a microwave field 
h 1 H0 (formula 14)). The field H0 enters through the unmixed 
NMR frequency wH = WeO• so that, for example, in the case of 
MnC03 the conversion from WH to H0 can be carried out accord­
ing to formula (5). 

We emphasize that the quantity wkN is deter­
mined by the temperature T n of the nuclear spin 
system; this is in general not equal to the lattice 
temperature T because of the presence of a satu­
ration effect in NMR. The latter leads to a possi­
bility of observing a number of nonlinear effects: 
for example, the double EMR-NMR resonance al­
ready mentioned. These effects depend signifi­
cantly on the characteristic times of longitudinal 
and transverse nuclear relaxation (Tt and T2) 
and on the size of the NMR amplification coeffi­
cient 71 in the antiferromagnet [5]. 

4. One of the possible mechanisms of spin-lattice 
relaxation (and, at the same time, of nonsecular 
broadening of the NMR line -width ~wn = 1/ 2T 1) is 
connected with damping in the electronic system; 
this, because of hfi, leads to damping of oscilla­
tions for the nuclear-like branch also. If we solve 
the equations of motion for Mj and mj with inclu­
sion of a dissipative term in the equations for Mj 
(for example, in accordance with Landau and Lif­
shitz), it is not difficult to obtain the following 
value of the indicated NMR relaxation parameter: 

1 Wno2 - Wn2 
-- = ~Wn ~ 2 ~w.. (16) 
2T1 We 

Here ~we f':j A.yeHE is the EMR line-width (A. is 
the dimensionless parameter in the dissipative 
term in the equations of motion of Mj [10•11]). 

With (13) and (15) we get instead of (16) 

1 Wno2WEN2 
-- = ~Wn ~ ~w.. (17) 
2T1 (WEN2 + Wea2)2 

On assuming, for example, ~we! we"' 10-2, Weo 
"' 27!" x 1010, wno"' 27!" x 6 x 108, HE "' 106 Oe, and 
Am0 "' 10/T, we get at temperature T"' 1 oK 

Awn ~ 1()5 --'- 1()6 sec - 1• 



C 0 UP LED 0 SCILLA T I 0 N S 0 F ELECT R 0 N I C AND N U C LEAR SPINS 179 

This is generally comparable in order of magni­
tude with the NMR line-width in KMnF3 and RbMnF3. 

It is characteristic that this relaxation mecha­
nism should give a maximum for 6.wn in its de­
pendence on temperature. If we suppose that 6.we 
varies only slightly with temperature, then this 
maximum should occur at a temperature deter­
mined by the condition wkN = w~0 • It is interest­
ing that in KMnF 3 there is observed an increase 
of NMR line-width with decrease of temperature 
(in the interval4.2 to 2.1°K), the increase slowing 
down at a temperature of about 2.5°K. It would be 
very desirable to extend the measurements into 
the region of lower temperatures. 

Formula (17) also predicts a very rapid de­
crease of 6.wn with increase of field H0 (when 
WEN < Weo ). A decrease of 6.wn in its depend­
ence on H0 has been observed in RbMnF 3 [7] ( 6.wn 
decreased from 500 to 60 kcps on change of field 
from 6 to 13 kOe ). Furthermore, in this compound 
6wn also increased with lowering of temperature 
at low fields and became independent of tempera­
ture at high fields. Such a behavior of 6.wn can 
be explained in principle by supposing that in 
RbMnF3 two broadening mechanisms occur to­
gether: the one described above and the Suhl­
Nakamura mechanism (interaction of nuclear 
spins through spin waves ) . 

5. Now about the amplification coefficient 1). 

It can be found by calculating, from the equations 
of motion, the whole microwave susceptibility of 
the electronic-nuclear spin system. Such a calcu­
lation (made by us for the case of MnC03) gives 
the following approximate expressions for the 
susceptibility in two mutually perpendicular di­
rections, Xyy (h II L II Y) and Xzz (h perpendicu­
lar to the ( L, H0 ) plane ) : 

~ ( Weo2 - W~2 ) ( Wno2 - w2) 

'XYY ~ 'XO_!_ ( We2- w2) ( Wn2 - wz}, (18) 

. We2Wn 2 - W2 ( Weo2 + WEN2) 

'Xzz ~ 'Xoz ( We2- w2) ( Wn2- w2) , (19) 

2 2 
where w6. = Ye2HEH6., and Xol and Xoz are the 
static transverse electronic susceptibilities of the 
antiferromagnet in directions perpendicular and 
parallel, respectively, to the z axis (they are de­
fined as quotients of the static magnetization in the 
given directions divided by the field that excites it). 
For a weak ferromagnet, 

Near the NMR frequency, w ~ wn, we get from 
these formulas 

(20) 

(21) 

The quantities 1) are by definition the NMR ampli­
fication coefficients.3> 

As was to be expected, 1Jy » 1Jz; and as in the 
case of ferromagnets, 1Jy ~ Hn /H0 (for w~N .< w~0 ). 

The latter fact is also clear from simple physical 
considerations: the effective microwave field that 
acts on the nuclear spins through hfi is defined in 
the given case (small anisotropy in the basal plane) 
as 

hy • ~ AMoS ~ AMohy / Ho = 'l']yhy (24) 

( e is the angle through which the vector L ro­
tates under the influence of the field hy ). We re­
mark that for the low-temperature limiting case 
( wkN » w~0 ), the square of the amplification co­
efficient is simply equal to the ratio of the elec­
tronic and nuclear static susceptibilities (for 
w~0 » w,h ): 

It should be noticed that for the second NMR 
branch, excited when h II H0 II x, amplification is 
absent. (This is clear from the chain of relations 
of the form (24), in which, in the given case, the 
angle e ~ hx/HE, and consequently 1Jx ~ Hn/HE ). 
Therefore observation of the second N MR branch 
is very difficult. We must bear in mind also that 
in the absence of strict parallelism of h and H0, 

the first NMR branch can be excited; it possesses 
a large amplification coefficient, and this can 
cause additional difficulties in the observation 
of the second NMR. 

It is interesting that formula (18), along with 
N MR amplification, leads also to the inference that 
there is some weakening of the EMR intensity. In 
fact, near the frequency w ~ we we have 

~ Weo2 _ 2 We2 

'XYY ~ 'XU 2 2- ~'XU 2 2 (25) 
We -w We -w 

3 )It is easy to understand (by introducing the substitution 
w --> w- iL'.wn/2 in (20) or (21) and separating out the imagi­
nary part of the susceptibility x'' = TJ 2 X;) that the multiplier 
7J 2 is also preserved in the absorption curve. Since the ab­
sorptive power p - x"h 2 = x;<TJh) 2 , TJ can actually be re­
garded as the amplification coefficient of the microwave field 
that acts on the nuclear spins. 
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(for simplicity we have again assumed w~0 » w~0 , 
wh_), where the quantity 

(26) 

can be called the EMR weakening coefficient. It is 
easy to see that it can give a decrease of intensity 
of EMR at low temperatures at given frequency we. 
In fact, by the substitution w - w - i.0.we I 2 we find 
from formula (25) at w = we 

(27) 

Thus in the known relation for the relative height 
of the resonance peak [ 10• 14 J, 

'Xmax" I 'Xo = Wres I ~(f) 

(where Xo is the static susceptibility), in the given 
case there appears on the right side a multiplier 
t 2 < 1. It is possible that the decrease of intensity 
of the EMR line with lowering of the temperature, 
observed down to very low temperatures in 
CsMnF 3 [ 4 ] and MnC03 [ 8], is related to this effect. 

6. We return now to the general formula (8) for 
the spectrum of coupled oscillations, and we con­
sider the "nuclear-like" branch of the oscillations 
for k "" 0. Its frequency, determined by the relation 

- 1l2 [ ( ffiek2 + ffiEN2 + Wno2) 2 - 4Wno2Wek21'1' 
Weo2 + WE2 (ak)2 

~ (f) 2------------~~~ 
~ nO Weo2 + ffiEN2 + WE2 (ak) 2 ' (28) 

represents the frequency of collective oscillations 
of the nuclear spins, whose motion becomes cor­
related because of their indirect interaction through 
electronic spin waves. With increase of the wave 
vector k, the dispersion of these "nuclear spin 
waves'' very rapidly becomes inconsequential, and 
their frequency w2k approaches the unmixed value 
of the N MR frequency. 

As a critical value k0 of the wave vector k, 
above which the dispersion disappears, we may 
conditionally take its value in the center of the dis­
persion band; this is determined by the following 
equation: 

(29) 

From this, with use of (28), we find approximately 

(ako) 2 = ( Weo ) 2 (we/Weo + 1) 2,- 4 

WE 4- (weo/We + 1) 2 

In the limiting cases of high and low tempera­
tures we have 

Consequently, at arbitrary temperatures, in order 
of magnitude, 

(32) 

where we is the electronic resonance frequency. 
The inverse quantity 

(33) 

as also in the case of a ferromagnet, gives the ef­
fective linear dimensions of a region within which 
there is correlation in the motion of the nuclear 
spins. We remark that the correlation radius b 
in our case greatly exceeds the analogous quantity 
in ferromagnets (for which the formula of the form 
(33) contains, instead of the ratio wEI we, the 
square root of this quantity) and amounts to hun­
dreds or thousands of interatomic distances. 

Finally, to speak of a "nuclear spin wave," as 
of any elementary excitation with a definite wave 
vector k, makes sense only in the case in which 
the width of the level corresponding to such a state, 
.0.wnk, is small in comparison with the total width 
of the whole dispersion band own= wno- wn.4> In 
the case of antiferromagnets of the type consid­
ered, this condition is already well satisfied in 
the range of helium temperatures; for the width 
of the band own here becomes comparable in order 
of magnitude with the unmixed frequency Wno• and 
for the width .0.wnk of the nuclear spin -wave level 
it is possible, for crude estimates, to take the NMR 
line-width. Consequently 

~Wnk I 6wn ~ 10-3-10-• < 1. 

It is possible to estimate the speed v = 8w2k/8k 
and the length of the free path l = vI .0.wnk of a nu­
clear spin wave. According to (28), we have 

(34) 

In particular, for k ~ k0 in the region of high tern­
peratures, where, according to (30), ak0 ~ we01 wE, 
we get from (34) with the aid of (29) 

(35) 

On taking for an estimate a~ 3 x 10-8 em, wE 
10 13 , Weo ~ 3 x 10 10 , Wno ~ 3 x 109, wEN~ 1010 , 

4 )In analogy to the case of ferromagnets[s], fulfillment of 
this requirement is also, exactly, a necessary condition for 
justification of the procedure, carried out above, of lineariza­
tion of the equations of motion for Mi and mi. 
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and .6.wnk ~ 10 , we find 

v ~ 103 em/ sec, l ~ 10-3 em. 

Similarly we get for the region of low tempera­
tures (with ak0 ~ WEN I WE and WEN ~ 1011 ) 

v ~ awEWno I WEN "" 104 em/ sec, l ~ 10-2 em. 

It is possible that in thin antiferromagnetic plates 
at low temperatures one could observe resonance 
of nuclear spin waves (excitation of standing nu­
clear spin waves by a uniform microwave field ) , 
similar to the resonance of electronic spin waves 
observed in ferromagnets. If we assume that the 
thickness d of the plate contains an integral num­
ber of half-waves (for example, in case the bound­
ary conditions are such that on the surface of the 
plate the nuclear spins are pinned), we have 

k = kz = :rrp I d, (36) 

where p is an integer; under the indicated bound­
ary conditions, only harmonics with odd p can be 
excited (we are not counting the uniform reso­
nance, which corresponds to p = 0 ). Thus accord­
ing to (28) and (36), there should be observed a 
discrete set of resonance peaks, separated from 
the frequency of uniform resonance wn by the 
relative amount (for small numbers p) 

/'Jp = Wnp - Wn ~ .! WE2WEN2 ( npa ) 2 

Wn 2 Weo2 ( Weo2 + WEN2) d • (3 7) 

In the region of low temperatures, a fully re­
solvable value of Op is obtained. For example, 
with wEiweo ~ 103, p = 3, a= 3 x 10-8 em, and 
d = 3 x 10-3 em, we have Op ~ 10-2, whereas the 
relative NMR line-width amounts to .6.wnl wn ~ 10-3 

to 10-4• At higher temperatures, where the dif­
ferent peaks will be superposed on one another, 
this effect may lead to an apparent broadening 
of the NMR line. 
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