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The mutual friction force associated with the scattering of excitations by vortex filaments is 
calculated. On the basis of general formulas obtained earlier by the author it is shown that 
the phonon part of the mutual friction force contains a large transverse component. It is 
shown that taking additional transverse terms into account improves agreement with experi
ment for the roton part of the mutual friction force. 

A number of papers [t-3] is devoted to the calcu
lation of the mutual friction force in a rotating 
superfluid on the basis of the Onsager-Feynman 
model of vortex filaments. The principal difficulty 
was the appearance in the calculations of a large 
transverse component (not leading to dissipation) 
which is not observed experimentally, and also an 
incorrect temperature dependence. In papers by 
the present author[ 4, 5J it was shown that the mutual 
friction force is not directly expressible in terms 
of the transport cross section for the scattering of 
excitations by a vortex filament in contrast to the 
assumption made by authors of earlier papers. 
Moreover, it is necessary to note that the problem 
of the scattering of excitations is itself a very 
complicated one. 

The most complicated problem is that of the 
scattering of short wavelength excitations (rotons). 
However, certain difficulties exist also in the case 
of the problem of less interest from the experi
mental point of view, that of the scattering of 
phonons, which play a principal role only at very 
low temperatures. In a recently published paper 
by Fetter[6] it is noted that the results obtained 
by Pitaevskil [3] for the problem of phonon scatter
ing are incorrect from a formal point of view since 
they do not take into account the strong distortion 
of the incident wave at small distances from the 
filament. 

Fetter has considered small distances in the 
case of two hydrodynamical models (an empty and 
a uniformly rotating "core" of a vortex filament). 
The result for the transport cross section in refer
ence [6] agrees with Pitaevskil 's result [3], although 
the differential cross sections differ somewhat. 
But the use of the hydrodynamic approximation 
cannot be justified at small distances from the axis 
of the filament, and in this sense the model of a 
weakly nonideal Bose-gas is apparently a more 
realistic one. 

It is necessary to note that expressions for the 
mutual friction force given in references [6,3] do 
not take into account an additional term which is not 
expressible in terms of the transport cross section. 

In the present paper we obtain a more accurate 
general expression for the mutual friction force 
than obtained previously[ 4, sJ, and also investigate 
the scattering of long wavelength excitations 
(phonons) by a vortex filament within the frame
work of the model of a weakly nonideal Bose-gas. 

1. SOME GENERAL RELATIONS FOR THE PROB
LEM OF THE SCATTERING OF EXCITATIONS 

We shall start with the well-known Bogolyubov 
model [ 7] in accordance with which the second quan
tization operators 1/J, 1/J+ are taken to be equal to 

\jJ (x) = cp(x) + 'IJ1 (x), tp+ (x) = cp* (x) + \jl1+(x), 

where cp and cp* are ordinary functions (c-numbers) 
characterizing a Bose-condensate, l/J 1 and 1/Jj are 
Bose-operators corresponding to the annihilation 
and creation of noncondensed particles. 

For a weakly nonideal Bose-gas when the Born 
parameter ~ for the two-body interaction .P (x) 
between particles is given by 

where r 0 is the characteristic range of the poten
tial .P, the number of noncondensed particles is 
s~all. Therefore, we can assume that the equation 
for cp does not depend in the first approximation on 
l/J 1 and 1/Jj: 

acp nz I 
-iii at= - 2m ~cp- A.cp + J cD(x- x') I cp(x') 1z cp(x) d3x', 

(1.1) 
where the constant A. is the chemical potential. 

Equation (1.1) has been investigated by Pitaev
skil[SJ and by Gross[ 9J. It admits the stationary 
solution 

160 
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(jJ = a(r) ew, 'A = a02 .\' <!> (x) d3x, (1.2) 

which describes an isolated vortex filament. Here 
J is the polar angle, r is the distance from the 
axis of the vortex filament. The function a(r) re
mains approximately constant and equal to its 
value a0 at infinity right down to distances of order 
r 0 (for a%r~ ~.;- 1 ), and then begins to fall off and 
tends to zero like r for r - 0. 

It can be shown that the operators 1/! 1 and if!~ can 
be written in the form [ 5] 

'IJ1= ~ ei~[ca'IJaEa(x)+ca+'lld;a(x)], 
a, Ea>O 

'!J1+ = ·~ e-i~ [co:\jldE a (x) + ca+'IJ;E a (x)], (1.3) 
a, Ea>O 

where cO! and c; are the usual Bose annihilation 
and creation operators. The functions 1/!a Ea and 
if!; E satisfy the equation 

0! 

(1.4) 

where the vector notation ~aE = (if!aE , lf!;E ) 
0! 0! AO! 

has been utilized, while the matrix operator H0 is 
the "Hamiltonian" for free excitations: 

, 1i2 A (' ' A f 3 f (l ) 
Ho4=- 2mg~4+ao2 ~<D(x-x)b4(x)dx, .5 

where the matrix operator V is the "interaction 
Hamiltonian" between the excitations and the fila
ment; 
, i1i2 1i2 ~a A \ , 

V 4 = - m ( V' {} • Y) 4 + Zm a W~ + J <D (X - X ) (a (X) 

(1.6) 

with 

A ( 1 1) 
6 = -1 -1 , 

' (1 0) 
g = 0 -1 . 

We are interested in the eigenfunctions ~k be
longing to the continuous spectrum and correspond
ing to the scattering of excitations by the filament, 
since only the latter give a contribution to the mu
tual friction force. 

We shall make one remark about the model 
utilized. In the case when the Born parameter .; is 
small the Bogolyubov model will be valid also for 
densities a%d ~ I/.; as shown in the paper by 
Tserkovnikov [to], with the character of the spec
trum being qualitatively similar to that for helium. 
In future we shall simply formally assume that the 
quantities 4> and a 0 are related in such a way that 
the equation 

Ek = 1ik(<Dkao2 I m + 1i2k2 I 4mrf, = E 

can have several real roots ks > 0 (4>k is the 

Fourier transform of 4> (x), Ek is the Bogolyubov 
excitation energy at infinity). 

In view of certain differences between (1.4) and 
the usual Schrodinger equation we must for the 
following discussion obtain the relation between 
the asymptotic expression for ~k and quantities 
corresponding to the scattering amplitude. In the 
case of a scattering problem the functions ~k are 
determined by the equation 

1 A 

4k = fk+ A v~h; 
E\, + ie -H0 

u(k) = (u(k), v(k)), 

(k) <Dkao2 

u = (2Ek<Dkao2- Ek2- fi4k414rn2)'f,' 

v (k) = Ek-1i2~2~-<Dkao2 u(k). 
kao 

(1. 7) 

The expression for the matrix Green's function 
can be written in the form 

(1.8) 

where the summation over E is extended over all 
possible eigenvalues of H0 for a given K, i.e., to 
I EKI and -I EKI, and 

u (x, Ex)= gu (x, Ex), u (x, Ex)= (u (x), v (x)), 

u (x, -Ex)=(- v (x), u (x)), u (x,- Ex)= (v (x), u (x)). 

(1.9) 

In order to obtain the asymptotic representation 
of G(x- ~) for large values of I x- ~I, it is conven
ient to deform the contour of integration over K in 
(1.8) into the upper half plane, and in this case the 
asymptotic behavior will be determined by the 
residues at the closest singularities, i.e., at points 
which are roots of the equation Ek + iE = EK' such 
that 

aE I 6, = e sign 8k " > 0. 
s 

(1.10) 

Moreover, picking out separately the dependence 
on the z coordinate along the vortex filament and 
utilizing the asymptotic representation for the 
Hankel functions we obtain from (1. 7) the asymp
totic representation 

i ik z "1;1 u (xs, Ek) (-2-)'/, i (Xsr-n/4) (-f I VA I '·> 
•h=fk-2e z 718EjiJxlxs n'Xsr e x. tpJ,' 

'f'x = e -ixx U (x, Ex), 

(1.11) 
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where Ksz = kz, x; = K;- ki, Xs is directed along 
the polar radius. 

We see that in accordance with formula (1.11) 
excitations can be elastically reflected with a 
different absolute value of the momentum (in the 
quasiclassical approximation this was noted by 
Pitaevskil [ 11 J), with the stipulation that it is the 
group velocity and not the radial momentum that 
must be positive. It is clear that this result does 
not depend on the model utilized, but is determined 
exclusively by the excitation spectrum. 

Formula (1.11) gives us the desired relation be
tween the scattering amplitude (fKIVII/Ik) and the 
coefficients in the asymptotic representation for 
1/lk. For subsequent discussion it is convenient to 
carry out a complete separation of variables in 
cylindrical coordinates (the form of the potential 
V admits such a separation). We introduce the 
quantities 

2c 

R ( ) _ __!___ (' in& ,-ikzz W ( {} ·) d{j 
nk r - Zn J e t • " z, , 1 . , 

1 r inll ik ,~ 
~,k(r) = 2-\ e e z fk(z, {}, r)df:L 

Jt • 
0 

(1.12) 

From this we obtain for the scattering amplitude 

< ~f \ ri' I•'• --- ') Jl. (/· ) "'-' in&< I r} In ;c,t "f'•:)·--.o.~:rlu t-z-'Xz .LJe Pn:.-:i~nk2 .Hnk)· 
n 

A 

where Ynkz is the corresponding Fourier compon-
ent of V. 

The asymptotic representation for the functions 
(1.12) has in accordance with (1.11) the form 

Rnk (r) = u (k) ei I nl ~- 2 

(1.13) 

The equations for Rnk = (Rnk, R~) have in accord
ance with (1.4), (1.5), and (1.6) the form 

n2 n fi2 1 ( d da \ + ------;,-Rnk -j- -,-- -r--- JRnl< 
m r- 2m ar \ dr dr J 

00 

+ \ Glnk_(r, r')a(r)a(r') (Rni<(r') + Rnk +(r') )r'dr', . . 
0 

/i2 n 
+--·-:.:;-Rnk-1-

m r-

tz.z 1 ( d da \ t' 
- ~----- --r-- 1 R,~;.+- _\ <Dnh _(r, r')a(r)a(r') (Rn~;.(r') 

2m ar \ dr dr, · · 
0 

-f-Rnk +(r') )r'rlr'. (1.14) 

We must find a solution of (1.14) satisfying condi
tions (1.13) at infinity and bounded at r - 0. Of 
real interest is the case of small Ek ("phonons"), 
and the case when Ek lies near the minimum of the 
energy curve ("rotons "). The latter case is ex
tremely complicated, since it requires a knowledge 
of the exact behaviour of a(r) for r ;S r 0• We shall 
consider in detail only the case of small Ek· 

2. PHONON SCATTERING 

It follows from an investigation of (1.1), that 
a(r) begins to vary significantly at distances 
r ;(, r 0• For phonons we have 

Ek ~ nk(ao2<Po/m)'" = nck~n2 /mr02 , 

and corresponding to this we shall distinguish two 
regions: 

I. r ~ ro~ ( ~ ~ 1) , 

lJ. r ~ x-t, 

having a common part x-1 » r » r 0 which we shall 
denote as region III. 

We shall construct solutions of the system (1.14) 
in each of these regions requiring that they should 
coincide in the common portion, in just the same 
way as is done in the case of an investigation of 
the behavior of phases in the limit of small mo
menta. [ 12 ] We first consider the region I where 
we can set a= a 0, and, moreover, in view of the 
smallness of k we can assume that Rn and R~ are 
slowly varying functions of r, and this enables us 
to take Rn and R~ outside the integral sign (in fu
ture we shall omit the subscript k from Rnk>· In 
this region the fundamental equations (1.14) take 
on the form 

I nn2 \ n2 [ 1 d d 
I--2 +Ekj(Rn+Rn+)=--2- --d r-d (Rn-Rn+) 
\ mr 1 m r r r 

( nfi2 ) fi2 [ 1 d d 
---2 +Ek (Rn-Rn+)=--- --r-(Rn+Rn+) 

mr . 2m r dr dr 

+2ao2<Do(Rn+Rn+). (2.1) 

From the last equation it follows that 

1-nn2/mr2 + E ) 
R + R + ~ -~- k (R - R +) Rn- Rn+, 

n n 2aoZ<Do n n 

(2.2) 
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since one can neglect terms involving derivatives. 
From this one can easily obtain the equation for 
the quantity Pn = Rn - R~: 

Pn" + -1 Pn' + ( X2 - v2 ~,nJ) Pn = 0, 
r r- 1 

with the solutions 

Pn = Ct(n)lv(xr) + cz(n) Yv(xr), (2.4) 

where Jl-, Yv are respectively the Bessel and the 
Neumann functions. 

Comparing the asymptotic expansion (2.6) with 
the asymptotic representation (1.12) one can easily 
obtain the relations (for small k there exists only 
the one root ks = k): 

c1 (n)=[u(k)-v(k)J[eiinlrr/Zcos( (lnl-v) ~-) 

. k 
-~- fJE/fJk eivrr/2Ankl' 

cz( n) = [u ( k)- v ( k)] [ ei In I rr/Z sin ( ( In 1- v) ~ ) 

+ i ~'!.__ ivn/2A l 
2 fJE/fJk e nk J' 

Ank ~ (pnkiVnl'ziRnk). (2.5) 

In order to determine the quantity Auk of inter
est to us it is necessary to construct the solutions 
in region II. In region II we can neglect the quanti
ties k~ and Ek and construct the solution of (1.14) 
satisfying the conditions of being bounded at r = 0. 
In order to avoid complications associated with the 
integral terms of (1.14) we shall in determining the 
order of the ratio c2(n)/c 1(n) for lnl ~ 2 assume 
that <P(x) = <P 0o(x), although the result is indepen
dent of this assumption. Then Eqs. (1.14) are con
verted into a system of two equations of the second 
order and the corresponding solution in region II 
has the form 

Rn = At(n)Rtn(r) + Az(n)R~n(r), (2.6) 

where Rm and R2n are independent of k. 
The asymptotic representation (2.6) for r » r 0 

(i.e., in region III) must coincide with the asymp
totic representation (2.4) for r « x-1• Among the 
four fundamental solutions of (1.14) with k = 0 two 
have the nature of powers, one is exponentially 
increasing and one is exponentially damped in 
region III. Conditions of smooth joining require 
the absence of the exponentially increasing solution 
in (2.6), and this gives a linear relationship be
tween A1 (n) and A2(n) with a coefficient independent 
of k. Equating terms of power form in (2.6) with 

the corresponding power terms in (2.4) one can 
easily conclude that 

(2. 7) 

(the exponentially damped terms can be neglected). 
Thus, for I nl » 2 small distances from the fila

ment axis do not play any important role and one 
can simply set c2(n) = 0 so that in accordance with 
(2.5) we have 

2 fJE [ :n: l Ank :=:::: -k fJk sin (lnl-v) 2 (In I~ 2). (2.8) 

But the cases of n = 0 and n = ± 1 are special cases 
and do not obey the general formulas (2. 7), so that 
we must discuss them separately. 

In order to find the corresponding solutions of 
the fundamental equations (1.14) in region II we 
shall utilize certain properties of Eqs. (1.1). It can 
be easily seen that the linearization of this equa
tion near the stationary solution leads to none other 
than Eq. (1.5) for the quantities 

'¢o = <'lt:pe-itl, '¢o+ = cSqJ*eitl., 

We make use of the fact that (1.1) admits of 
gauge transformations, i.e., the quantity cp 0 = cp(x)eia 
is a solution of (1.1) for arbitrary constant a ; 
from this, carrying out a variation with respect to 
a, we obtain the solutions in region II for n = 0: 

Ro = Aoa(r), Ro+ = -Aoa(r). (2.9) 

Joining in region II the solution (2.9) with the solu
tion (2.4) we obtain 

Cz(O) = 0. (2.10) 

We see that the partial wave with n = 0 in general 
makes no contribution to the scattering amplitude 
(up to terms of order k), since v(O) = 0, and accord
ing to (2.5) A.ok = 0. 

Thus, in spite of the fact that in accordance with 
the general results contained in (2. 7) n = 0 should, 
seemingly, give the principal contribution to 
scattering, nevertheless due to the form of the 
solution (2.9) in the domain of small r, this con
tribution turns out to be smaller than that from 
n ~ 2. This circumstance is not related to the 
s,pecific form of the equations for ifik, but is a 
consequence of gauge invariance. 

Similarly, considering the invariance of (1.1) 
under translations in x space, and also the Galilean 
invariance, one can obtain the solution of (1.14) in 
region II up to terms of the first order in Ek (cf., 
reference [ BJ ): 

A±t ( _ a da \ mEk. 
R±1 = - 9 - + +-d )-A±1 2,_2 ra, 

~ ' r r; n 

(2.11) 
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~ ' 2 1i,2 [ 2k2 J [ p.x] k 
(fx I vI th) = - 2n m 6 (kz- Xz) I k- X i2 -1 ~ . Joining this to the solution (2.4) we obtain 

nli2y} 
c2 (+1) = + 4mEk c1(+i). (2.12) (2.15) 

It is of interest to note that no characteristics 
at all of the behavior of a(r) at short distances ap
pear in this formula. From this, utilizing (2.5), we 
obtain for the scattering amplitude 

i\+1 k =- _2, aE_[ sin( (1- v(±1)) n_\ ± nfi2x2l. 
- ' k 8k 2 J 4mEk _, 

(2.13) 

From formula (2.13) it can be seen that n = ± 1 
give a contribution to the scattering amplitude of 
the same order as do the remaining I nl :::: 2. 
Formula (2.13) is also in fact not connected with 
the specific form of (1.14). 

Thus, we have constructed the approximate solu
tions Rn and R~ and we have obtained expressions 
for the partial amplitudes on the assumption that 
the propagation vector of the incident excitations 
is small. 

We note that for all values of n, with the excep
tion of n = ± 1, the result for the scattering ampli
tude can be obtained by perturbation theory, since 
v is close to lnl, and sin ((Jnl - v)7r/2) can be ex
panded in terms of k, and we can restrict ourselves 
to the first term. This leads to the same result as 
the theory which considers the term with nn2/mr2 

in (1.14) as a perturbation and neglects all the 
other quantities describing the interaction between 
the excitations and the vortex filament. Therefore, 
the total scattering amplitude can be written in the 
form 

- -~ [ inx2 aE . J (fx I J; I t}k) = 2n6 (kz- Xz) i\ (tt)- mkEk ak Sill tt 

(2.14) 

The quantity i\(J.) is determined by the Born ap
proximation:* 

i1i 2 [ !J.l( l k 
=-m (2n)2 6 (kz- Xz) I k- l( 12 (u (x) u (k) 

- v (x) v (k)), 

where J.L is the matrix vector for the circulation of 
\i'J. about the filament. Writing the second term of 
(2.14) also in vector form, we obtain finally (taking 
into account the fact that K = k and, consequently, 
u(k)u(K) - v(K)v(k) = 1) 

*(/l K] :co /l X K. 

It is of interest to note that this formula corre
sponds exactly to the hydrodynamic formula for 
the scattering of sound by a vortex filament ob
tained by perturbation theory[ 3] without taking into 
account the distortion of the incident wave at small 
distances, although within the framework of the 
model of a weakly nonideal Bose-gas we had to 
take such distortion into account (for n = ± 1). 

3. CALCULATION OF THE MUTUAL FRICTION 
FORCE 

In accordance with the work of the present au
thor[4•5J the mutual friction force for a weakly 
nonideal Bose-gas is expressed by the formula 

where rlpE is a circle of radius p with a deleted 
circle of radius E, T is the unit vector along the 
tangent to the contour_:, ~k = gi/Jk is the vector func

tion conjugate to 1/Jk, Vis the operator Hermitian 

conjugate to V, nk = ( ckck) are the average occu
pation numbers of the excitations incident on the 
filament, and the contour integrals are taken along 
the boundaries of the region rlpE• N is the vector 
along the external normal. 

The further transition to the formula containing 
the transport cross section is not accurate in 
references [ 4, 5J, since the first term in the figure 
brackets of formula (3.1) reduces to the transport 
cross section only in case when the operator V has 
no singularities. In order to take these singulari
ties into account we shall transform the first two 
terms of formula (3.1) utilizing equations for 1/Jk 
and ~k: 

~ [ ~!; (Vth) + <v4k> ~~: J d2x =- ~ ~ r4k (Vth) 

+ (V;h) 4kl rdTi + 2fi2 ~ (a4k g 84k 
m J 8N axi 

a4k , a4k) n2 ~ 82 - ,, +- g -- rdtt + _ _ (4kg9k) rdT;. 
axj aJV !lm dxz2 . 

(3.2) 

Thus, we have reduced all the two-dimensional 
integrals to contour integrals. In the evaluation of 



MUTUAL FRICTION FORCE IN A ROTATING BOSE GAS 165 

the integrals along the small circles one must take 
into account the fact that in accordance with the 
investigation of the singularities of equations (1.4) 
1/ik, ~k have unbounded derivatives at r- 0 and 
only the quantities 

8 = (e-i&:q;k, ew\j)k+), 8 = (e·i&'ljlk, e-i&'ljlk+) 

have bounded derivatives. In accordance with (1.4), 
the quantities 

' 11,2 ' 
Vrh- 2m g.1h 

and their complex conjugates are bounded. From 
this we can easily find that the integrals over the 
small circumferences appearing in (3.1) mutually 
cancel in the limit E- 0, and the expression for 
Fj can be written in the form 

(3.3) 

In order to express Fjn in terms of the trans

port cross section we introduce the quantity 

V = {V, r < p 
P 0, r >P 

and we consider F~1l as the corresponding limit 
J ~ 

for p - oo, where for 1/ik, 1/ik we can take the corre-
sponding solutions of (1.4) and the equation conju
gate to it with V = ~VP. In this case the second 
derivatives of 1/ik, 1/ik will have a discontinuity at 
r = p. However, it can be easily seen that in vir
tue of (1.4) the integrands in formula (3.4) are 
continuous, and we can in replacing v by vp as
sume that the integrals in (3.4) will be evaluated 
over a circumference at infinity. 

From physical considerations it is clear that 
this quantity can be expressed directly in terms of 
the transport cross section for scattering by a 
potential Vp. In order to obtain the corresponding 
formula it is convenient to use the Fourier trans
forms of formulas (1. 7) and to consider the corre
sponding volume integral. For lack of space we 
shall not dwell on this in detail and shall give the 

final result: 

In the evaluation of the limit which determines 
the quantity F?l we encounter a difficulty associa-

ted with the slow falling off of the interaction po
tential V and the corresponding nonintegrable 
singularity of the scattering amplitude at small 
angles. If this singularity were absent, then it can 
be easily seen that only the incident wave would 
give a contribution to F~ 2 l since the limit of the 
remaining terms would 1be equal to zero due to the 
more rapid decrease for p - oo, and correspond
ingly we would have 

2nli2 ~ d3k 
p.(2)=-- n(k)[ku] ------ (3.7) 

J m r 3 (2np · 

A rigorous investigation of the limit in (3.5) 
can be carried out in the following manner. After 
the separation of variables and the carrying out of 
integration over the angles, Eq. (3.5) reduces to 
certain sums containing R n ( p). Since Rn ( p) tends 
to zero for p - 00 and fixed n, then in these sums 
only large n ~ p are significant. For large n for 
the solution of (1.14) the quasiclassic approxima
tion is valid in accordance with which R n can be 
written in the form 

Rn::::::; u(k)ln (xp)ei16n(k)lsign n eilnln/2, 

kfJk li2n 
On= ----sign n 

fJE 2m · 

2 
ltn = In I + -- On, 

:n: 

If we set on = 0, we shall obtain simply an ex
pansion of the incident plane wave and the result 
(3. 7) for F~ 2 l. Thus, the difference between Eqs. 

J 
(3. 7) and (3.5) can be written in the form of a sum 
over n terms with On = 0 and On "' 0. This sum can 
be conveniently transformed into a contour integral 
over n surrounding the real semiaxis, if we intro
duce in the integrand a discontinuous factor cot mr 

The contour can be deformed into a straight line 
parallel to the imaginary axis. Introducing a change 
of variables, it is possible to reduce the desired 
difference to a sum of integrals of the form* 

~ [ctgn:n:- ctg(n- o):n:]lnln+adn, 
c 

which tend to zero for p - oo, because the expres
sion in square brackets tends to zero rapidly with 
increasing I nl along the path of integration. For 
lack of space we omit a more detailed proof which 
requires the use of estimates for Bessel functions 
with complex values of the subscript. 

*ctg =cot. 
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Finally, the mutual friction force has the form 
in accordance with (3.6), (3. 7) and (3.3), 

which reduces to the final formula given earlier[ 4• 5J 
if in it we set 

Thus, the expression for the retarding force 
differs from the value obtained on the basis of the 
transport cross section [ 1- 3] by an additional purely 
transverse component. For small values of the 
average velocity of the incident excitations u we 
can write 

(3.9) 

where Pn is the density of the normal component. 
In the case of phonon scattering the quantity F~ 11 

J can be evaluated by means of formula (2.15) 

~ an ~ rrNt~ 
F}il=- -n(ku) (ki-xi)6(Ek-Ex)--

8Ek m2 

{( 2k2 \ [!l?<] k l2 
X (2:rt) 2 6(kz- 'Kz) lk _ xj2 -1) ~ f 

d3x d3k 76 8 5 

X (2:rt)3 (2:rt)3 ::::::: 7 m2c7fi2 Uj, 
(3.10) 

where c is the velocity of light, e is the tempera
ture in energy units, m is the mass of the atoms. 
The coefficient in (3.10) differs somewhat from 
that calculated in reference[3J, since in that arti
cle phonons incident in a direction which is not 
perpendicular to the axis of the vortex filament 
are discussed incorrectly. Moreover, we have here 
utilized the fact that for a symmetric cut-off of the 
potential V the lifting force (which, generally speak 
ing, diverges logarithmically) in the expression for 
Ft (i.e., the component perpendicular to u) is 

equal to zero. 
Finally for the phonon part of the mutual friction 

force we obtain in accordance with (3.9) 

8 5 s 24 8" 
F= 10.8~2u+-' -~[u!l]. m. c n :rt "me 

(3.11) 

We see that the transverse component falls off 
with temperature more slowly than does the longi
tudinal one. Formula (3.11) can be utilized directly 
for Hell, since no quantities characteristic of the 

model appear in it. It would be of interest to carry 
out the corresponding experiments in Hell, since 
due to the large value of the phonon transverse 
force it could, apparently, be noticed at higher 
temperatures than the longitudinal phonon compon
ent. 

Since the correction to the mutual friction force 
does not depend on the model utilized, formula (3. 9) 
enables us also to recalculate the old results on the 
evaluation of the retarding force for Hell carried 
out by E. Lifshitz and Pitaevskil in the quasiclassi
cal approximation [ 2]. In doing this one must take 
into account, as has been done first by Hall and 
Vinen [ 1], different hydrodynamic corrections as
suming that the expression (3.9) gives the force f 
per unit length of the filament in the case of the 
scattering of rotons moving near the filament with 
the velocity u = VR- VL· Utilizing for the first 
term in (3.10) the expression obtained in refer
ence [ 2] we have 

2,4:rt1i ( 2!18 )''' f=D(vR-vL), D=~-pn - 2- , 
m ·. Po 

D' = 0, (3.12) 

where J.L is the effective mass of the roton, Po is 
the roton momentum. The expression (3.12) differs 
from that obtained in reference[2J by the absence 
of the transverse component which exceeded the 
longitudinal one by a factor of approximately 10. 

The coefficients B and B ': dotted curve - without taking 
into account the additional cross section of the filament in ac
cordance with reference[2]; dashed culve - taking into account 
the additional cross section a0 ~ 10 A in accordance with ref
erence[2]; dash-dotted curve - taking into account corrections 
for the transverse component in accordance with the present 
paper, but without the additional cross section of the filament; 
the solid curve - according to the pr~sent work for a dimen
sionless coefficient a = 5 (or a0 ~ 4 A). The points denote the 
results of the experiments of Hall and Vinen[' ]. 

The calculation, in accordance with Hall and 
Vinen, [ 1] of the coefficients B and B' utilizing 
formula (3.12) for f, leads to a value of B which is 
approximately by a factor four smaller than the 
experimental value, and gives an extremely small 
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value of B' (smaller than B by a factor of approxi
mately 100), which is in accord with the experi
mental facts. However, it is necessary to note that 
the use of the quasiclassical approximation in this 
case is not quite rigorous, since for harmonics of 
not very large order n small distances from the 
axis of the filament of the order of the roton wave
length (~4 A) play a role, for which neither quasi
classical considerations, nor the expressions 
utilized in reference [2] for the description of the 
interaction between the excitations and the filament 
are valid. In this sense the disagreement between 
the results of the calculations of reference[2J and 
experiment must be seen rather in the large value 
of B' and the incorrect temperature dependence, 
than in the difference between the value of B and 
the experimental one. 

Formula (3.12) partially removes these defects. 
And if we assume that an additional absorption of 
the momentum of excitations takes place, we can 
achieve a satisfactory qualitative agreement with 
experiment assuming that the corresponding cross 
section is symmetric with respect to the filament 
axis and equal to 4 A instead of 10 A in reference[2J. 
This agrees with the concept of a possible inac
curacy of the quasiclassical approximation. More
over, there exist inaccuracies in the evaluation of 
the coefficients B and B' in accordance with refer
ence[!], and in particular the quantity f enters into 
the calculations with an undetermined coefficient 
a ~ 1; if we take a = 5, and not a = 1, as we have 
done above, then we can also obtain good quantita
tive agreement with the experimental data for B. 
The results of the calculations are shown on the 
graph. 

In conclusion the author wishes to express his 
gratitude toN. N. Bogolyubov for discussions and 
for interest in this work, and also to L. P. Pitaev
skil for useful discussions. 
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