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The kinetic equation for electrons in a plasma in a stationary electric field is solved. The 
interaction between the electrons and nonequilibrium oscillations of the plasma is taken into 
account. The flux of runaway electrons and the magnitude of the critical field are determined. 

1. We consider a fully ionized plasma situated in a 
uniform electric field. We assume that non­
equilibrium longitudinal oscillations are excited 
in the plasma, and that these oscillations are iso­
tropically distributed. Then the kinetic equation 
for the electron distribution function f( t, v, e) in 
the region of epithermal velocities is written in 
the form [ 1- 4] 

of+ eE (cos 8 of_ sin 8 !.!__) 
at m ov v as 

- _!__~{ v2[( ve(v) _!~_ + D (v)) of 
v2 ov \ m av 

+( Ve(v)v+ F~) )t ]} 

- [.!:_ v(v) + B(v) J-.1-_!_ (sin 8 !! ) = 0. 
2 sm 8 88 88 

(1) 

Here e, m, and v are the charge, mass, and 
velocity of the electrons, Tef= (mv2/3) is the ef­
fective temperature of the electrons, E the inten­
sity of the constant electric field, e the angle be­
tween the directions of E and v, and ve ( v) the 
frequency of collisions between an electron having 
a velocity v and other plasma electrons: 

v.(v) = 4n:e~N. In (mv2RDe-2) / m2v3 = Vo / v3, (2) 

where Rn is the Debye radius and Ne the electron 
concentration. Further, 

{ Teef ~ Nz} v(v)=v.(v) 1---+L.Jzz_-
mv2 z Ne ' 

(3) 

where Nz is the concentration of ions with charge 
Z(Ne= ~zZNz). Finally, D(v), F(v), and B(v) 
are coefficients characterizing the interaction of the 
electron with non-equilibrium plasma oscillations. 

l)For convenience, we divide here the diffusion coefficients 
into parts due to pair collisions and to interaction with waves. 
We can, of course, combine these parts and consider unified 
diffusion coefficients, a contribution to which is made both by 
the long-wave (k < 1/Rn) and the short-wave (k > 1/Rn) parts 
of the spectrum. 

The coefficient F ( v) does not depend in this case 
on the oscillation intensity. It is equal to 

F( ) _ 4n:e'Ne l v 
v ---- n-

mv2 VT' 

where VT is the average electron velocity. 

(4) 

If the velocities of the fast electrons considered 
here are essentially larger than the phase veloci­
ties of the waves, then the coefficients D ( v) and 
B ( v) can be represented in the form 

The constants D0 and B0 are determined here by 
the following integrals over the spectrum of the 
long-wave oscillations: 

Do=2e2h\ N(k)u/'-(k) dk, (6) 
~ k [ oe/ ow ]oo(h) 

B0 =e2h\ kN(k) dk. 
J [ oe/ ow ]w(h) 

(7) 

Here N ( k) is the spectral density of the oscilla­
tions and w ( k) is the frequency of the waves, i.e., 
the root of the dispersion equation E ( w, k) = 0. 
The integration in (6) and (7) is carried out over 
the entire long-wave spectrum of the oscillations 
k :S 1/Rn, where Rn is the Debye radius. If both 
plasma and ion-sound waves are excited, then it is 
necessary to sum in (6) and (7) over both types of 
oscillations. We shall henceforth neglect the vari­
ation of the logarithmic term in (2) and (4), setting 
under the logarithm sign v = vc, where Vc is the 
velocity characteristic of the electrons in question, 
vc ~ VTY-11 2 (see below). 

We now change to new variables: 

u = v ( !'_'!!_ + D~)-''• ( 1' + il) ''•, 
m Vo 

( T f Do )J'• 
11 = oos 8, 't = tvo(1 + il)'" _!:.._ +- , 

m Vo 

(8) 
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Equation (1) is then rewritten in the form 

az + ( of + 1 - !-t2 ~) - ~ ~( ~- f!!_ + t) 
fh 'V 1-t f)u u f)ll, u2 &u u au 

-~ (1-!_)~[ (1-~-t2) ~] = 0. (9) 
u3 u2 f)!l all 

Here y, a, and {3 are dimensionless param­
eters 

y = eE(Ter + mDolvo) lmvo(1 + ~)2, (10) 

( 1 1 ~ 2 Nz Bo) (1 ")-I A _ 1/ a= - - + · LJZ --,- +- + u , .., - 2a. 
'2 2 z Ae Vo. 

( 11) 

The parameter 'Y characterizes the value of the 
electric field intensity. The parameter a charac­
terizes the relative role of the angular scattering 
of the electrons. In particular, in an equilibrium 
singly-ionized plasma we have Do/vo = Te~/m, 

a = 1, and 'Y = E/Eco• where 

Eco = mvo I eTe = 4ne3Ne In A I Te, (12) 

Eco is the critical field ( ln A is the Coulomb 
logarithm). Equation (9) coincides in this case 
with that considered earlier. [ t,l1] If the plasma 
contains an appreciable number of multiply charged 
ions, then 

In a non-equilibrium plasma with T e » Ti, even 
the scattering of the electrons by the ion-sound 
oscillations of the plasma is already significant. 
In this case we have as before 'Y = E/Eco• and 

=~+__!_ ~Z2N + ZI(Te/T;,Z). 
a 2 2Ne ~ z 4lnA ' 

where I is the function considered by Silin and 
Gorbunov, [s] with approximate value 

ZTe 1 
I~-- ----

2T; ln(Z2Te3M/T;3m). 

The parameter a is always larger than unity ( or 
equal to it). The parameter {3, to the contrary, is 
smaller than Y2. Inasmuch as we are considering 
below only the region of high velocities u2 » 1, the 
term {3/u2 can always be neglected. 

It was shown earlierC6•7J that to determine the 
distribution function of the electrons in a plasma 
which is situated in a constant electric field it is 
necessary to find the stationary solution of Eq. (9) 
with a constant total particle flux in velocity space 
( the flux of the runaway electrons) 

t 1 at 
S =- 2n~ (t+---v~-tu2t) d~-t =-So. (13) 

_ 1 u fJu 

The flux of the runaway electrons S0 is then de­
termined by the boundary condition 

(14) 

We shall find below the stationary solution of 
Eq. (9) with boundary conditions (13) and (14) for 
arbitrary values of the parameter a ~ 1. We note 
that solutions of this type are meaningful only when 
the flux of the runaway electrons is small, So « Ne. 
For a ~ 1 this condition, as will be shown below, 
is satisfied if 'Y « a t/ 2• 

2. Proceeding to solution of (9), we consider 
first the case 

( 15) 

In this case the angular scattering of the electrons 
is large, a » 1, so that the direction of the electron 
velocity changes more vigorously as a result of col­
lisions than the magnitude of the velocity. We can 
therefore expect the distribution function to be 
close to spherically symmetrical in an extensive 
region of velocities. The solution of (9) can then 
be naturally sought in the form of a series in 
Legendre polynomials Pi ( J.!): 

00 

f(u,!J.,T)=~fi(u,-r)P;(IJ.). (16) 
i=O 

Substituting the expansion (16) in (9) and using the 
orthogonality and other properties of Legendre 
polynomials, we obtain for the functions fi ( u, T) 

in place of (9) the following chain of coupled equa­
tions: 

f)j; + [ i . 1 f) ( 1 . f + i + 1 . 2 f) ( '+2 f ~ - y -.-- ~t·- - u -• i-d -. -- u-•- -:::- u• i+1 
fJ-r .21. - 1 &u 2t + 3 au 

1 a [ 1 &ft J a . . --- --+h +-t(t+.1)f;=0. 
u2 &u u &u u3 

(17) 

It was already indicated above that in the case 
considered here we can expect the distribution 
function to be close to spherically symmetrical. 
This means that in the chain of Eqs. (17) we can 
con,fine ourselves to the fundamental harmonics 
f0 and ft. Neglecting therefore terms of order f2 

in comparison with fo in the equation for ft, and 
neglecting also small terms of order 1/a, we get 

:~0 + 3d2 a: (u2ft)- : 2 a:{~ :~0 +. fo} = 0, ( 18) 

f)j1 + &fo +2a f = 0 (19) 
fJ-r 'V fJu u3 1 • 

The stationary solution of (18) and (19) is of 
the form 

'V 3 fJfo 
ft = -2~u fJu' 

fo =Co exp{-r 1 + u:s~2/6a}- C1 

{ a''• [1 (w+f)2 = Co exp - --- -In--:-'----:'---,-
(6y)'f, 2 w2 -w+1 
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+ )'3 arc tg 13 ww ]}- c!, 

w = u~ ( 'f I 6a) 'I•. 

(20)* 

The constant C0 is determined here by the nor­
malization conditions 

where Ne is the electron density in the main 
velocity region, i.e., at u2 :S (6a/y2 )11 3• The 
constant C1 is proportional to the flux of the run­
away electrons: Ct = 471Bo. 

Using condition (14), we find 

So= v-2 Neexp{- ~ , udu } 
Jt 0 1 + v2u6/6a 

(21) 

In the case in question, consequently, the flux of 
runaway electrons is proportional to 

exp ( -const a'" IE'"). 

We have neglected above all the harmonics ex­
cept f0 and f 1• Substituting the obtained solution 
( 20) in ( 17), we verify that with condition ( 15) the 
solution (20) is valid in the region of velocities 
u2 « a/y. The flux of runaway electrons (21) is 
formed in the velocity region u2 ~ ( a/y2 )11 3• It is 
seen therefore that the distribution function re­
mains spherically symmetrical in that region of 
velocities where the flux of the runaway electrons 
is formed, provided condition (15) is satisfied. In 
the opposite case, the distribution in this velocity 
region has a directional character and the flux is 
no longer determined by (21); this case will be 
considered in the next section. 

In (18) and (19) we took into account only the 
principal terms. Using now the complete system 
of equations ( 17) for the calculations, we can find 
the correction to the expression (20) for the dis­
tribution function. It takes the form of a factor 

of u a new variable x = u2 y I a. The solution will 
be sought, as before, in the form of a series in 
Legendre polynomials (16). Replacing in (17) the 
variable u by x and omitting small terms we find 

3So 00 

f(x, 1-t) = 4na i~/;(x)P;(f.t), (24) 

where S0 is the flux of the runaway electrons, de­
fined above. Further, 

1 2 3 r fz 1 
fo(x)=Co+ 2x2 --5 fz(x)- 5 j -;dx, /!(x)=-;;;, (25) 

and the remaining functions fi ( x) are determined 
by the chain of equations 

_ i(i -1) xj·:.__ +~~- xz df;-1 + (i + 1) (i + 2)_xj-
2i- 1 ' 1 2i - 1 dx 2i + 3 •+I 

+ 2(i+1l_xz dh-t:~+i(i+1)f;=0. (26) 
2i + 3 dx 

We can seek the solution of the chain of equa­
tions (26) in the form of a series in powers of x: 

00 

(27) 
k=O 

Substituting the series (27) in (26), we arrive at the 
following relation between the coefficients aik= 

i[i+4k-5]a· + (i+1)(3i+4k-4) . 
2i - 1 •-I, " 2i + 3 a,+!, h-I 

+ i(i + 1)a;" = 0. (28) 

From relations ( 28), with account of (25), we can 
readily determine the coefficients aik· In fact, for 
k = 0 we get from (28) 

i-5 
a;o = - (i + 1) (2i- 1) ai-1, o, 

or, taking (25) into account 

1 1 
azo = 3- , a3o = 30 , 

1 
a,.o = 1050 , a5o = aeo = ... = 0. 

We then determine analogously the coefficients aik• 
etc. 

Accurate to terms of order x4, the functions 11 v'u'l6a. w'h dw 

exp{- 30(6a)'"v''' ~ (1 + w)" }. ( 22) fi ( x) take on the form 
0 

The expression for the flux of runaway particles, 
with account of the correction factor (22), is 
written in the form 

,(i { 2'"n ( a )'" [ 11 l} 
So= V;tNeexp -¥ VZ 1+81(6av)'is- .(23) 

Under the conditions ( 15) the correction term is 
always much smaller than the principal term. 

We now proceed to a solution of (9) in the region 
of high velocities u2 ~ a/y. We introduce in place 

*arc tg = tan-•. 

1 1 1 
fz(x) = 3- 70 xz- 11260 x\ 

1 1 
j,.(x) = 1050 xz- -10500 x". (29) 

The constructed solution is valid, of course, 
only for relatively small values of x. When x » 1 
the distribution function has, as in [ 7 ,s], a sharply 
directional character 
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So { x } /=-~~-exp -(~-t-1) . 
2:rta ln x ln x 

(30) 

The dependence of the distribution function on the 
angle e for different values of x is shown in 
Fig. 1. It is seen from the figure that at small 
values of x the distribution function is close to 
spherically symmetrical. When x ~ 1 it is grad­
ually transformed into one which has sharp direc­
tivity along the electric field. The distribution 
function (30) and the functions (24) in (29) were 
joined together at x = 3. The constant C0 in (29) 
was chosen here such that the values of the func­
tions coincided at 8 = 0. The distribution (30) with 
x = 3 is shown in Fig. 1 by the solid line, while the 
distribution ( 29) is shown dashed; we see that for 
other values of e they also agree quite well. 

Thus, the distribution function in the region of 
the values of the velocity u2 « 01./y is close to 
spherically symmetrical, and for u2 » 01./y it is, 

present here only the results of the corresponding 
calculations. 

At not very high values of the velocities 
u < (01./y)l/ 4 the distribution function is close to 
symmetrical. The solution of Eq. (9) in the 
vicinity u :S ( 01./y)l/ 4 is obtained in the form of a 
series in Legendre polynomials (16) and ( 17). The 
functions fi ( u) are determined by expanding them 
in series of powers of y = yu4/ 01.. In this region 
the distribution function is of the form 

00 

(33) 
i. k.=O 

where aok = Ook• and all the succeeding coefficients 
are determined by the relations 

ia{-1, k 

a;,k = (2i-1)[i(i+ 1)+4(i+2k)/a] 

(i + 1) ai+l, k-1 

+ (2i+3)[i(i+ 1)+4(i+2k)/a] 

to the contrary, sharply directional. The condition 1 4 J-1 k-t 
u~ = 01./y denotes the precise equality of the force - ~3 [ i(i + 1) +a (i + 2k) ~ a;pai, k-p-j. 

of friction of the electrons in the plasma, Ffr p=o 

(34) 

= 01.mve ( v) v and the force eE exerted on the The coefficients aik are listed in Table I (for 
electrons by the constant electric field. In other different values of 01.). 
words uc = ,j 01./y is, in an elementary definition,[9-t( We see from Table I that with increasing 
the limit of electron runaway. Near this limit indices the coefficients aik decrease very rapidly, 
there occurs, however, only a transformation of so that the series (33) converge quite well at not 
the distribution function from symmetrical to too large values of y. The function fo is of the 
directional. The flux of the runaway electrons is form 

formed much earlier, at u2 ~ 01.lf3y-213• /o( )=~ex{-'!:+~~~ 2+2"}- So 
3. We now consider the opposite limiting case y (2:rt)'/, p 2 24"-=~ 1 + k y 4:rt · 

(31) 

Since 01. ::>: 1 always, the condition (31) is realized 
only for small values of the parameter 

v< 1. (32) 

This case is close to the case a = 1 considered in 
[ 1•7•8]. Further calculations are perfectly analo­
gous to those carried out in [ 7]. We therefore 

FIG. 1 

(35) 

We see from this that when y « 1 the distribution 
function is symmetrical and is nearly Maxwellian. 
When y ~ 1 the function fo deviates noticeably 
from Maxwellian. At the same time, the distribu­
tion function becomes oriented along the electric 
field. 

When u » (01./y)l/ 4 (i.e., y » 1) the distribu­
tion function becomes sharply directional and ex­
pansion in Legendre polynomials is ineffective. In 
this region we can use expansion in powers of the 
small parameter 01.y in the exponential, i.e., seek 
a solution in the form 

Ne { 1 f = (2:rt)'/, exp V [<:po(z, ~t) + ( av) 'h (jl1 (z, It) 

+ avcpz(z, ~t) + ... ]} , (36) 

where z = yu2• The functions Cfo, Cft• and Cf2 are 
of the form (/Jo = -z/2 + z 2/4 

cp1 = 2:' z(1-z)'I{V 1 tIt -1)- 2'h[1-(1- z)'h], 
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at=! ct=2 1 Cl=4 ct=!O 

410 1.66·10-1 2,50·10-1 
420 8.08·10-3 1:67·10-2 

a8o 1, 98·10-· 5.56·10-· 
440 3.15·10-6 1.13 ·10-5 
au -4.34·10-· -1. 77·10-8 
au -2,97·10-5 -1.67·10-• 
as1 -8.56·10-7 -6.42·10-6 

a12 1.65·10-6 1.90·10-5 
a22 1.19·10-7 1.87 ·10-6 

au -6.62·10-9 -2.15·10-7 

Co 0,13 0.12 

z (5z- 3) 1 1 + 11 
cp2=2a2 (1-z) (l1-1)- 4a ln-2-

a+4-6z 3+11+2''•(1+11)''' 
- 2a2 ln --~-8::---''-----'--'-'-

2'/,z 
+ a2 ( 1 - z) (a+ 4- 6z)[(1 + 11)''• -,2'1•] 

1 z2 1 [ 2 z J 
+ 4aln 1-z +-4 1-z+ln~ 

( 1 1 ) - -s+ 4a ln(av)+Co(a). (37) 

The constant C0 (a) is determined by joining to­
gether the distribution functions ( 36) and ( 33). Its 
values are listed in Table I. The distribution func­
tion (36) deviates strongly from Maxwellian. It has 
a sharp directional character; however, as z - 0 
and z - 1, the directivity of the distribution (36) 
becomes weaker. 

3.33·10-1 4.16·10-5 5.00·10-1 
2.78·10-2 4.10·10-2 5.56·10-• 
1.11·10-3 1.86·10-3 2. 78·10-B 
2,64·10-5 4, 93· :I:0-5 7, 94·10-5 

-5.36·10-8 ~1.30·10-2 3,05·10-2 
-6.19·10-• -1. 79·10-3 -4.74·10-3 

-2.83·10-5 -9,35·10-5 -2. 73·10-5 
1.35·10-• 7 ,23·10-• 4.12·10-3 

1.64·10-5 1.03·10-• 6.63·10-• 
-3.68·10-6 -4.49·10-5 -7 ,30·10-• 

0.085 0.033 -0.012 

'¢{ = _ __ t_ + 2'¢ot 
'¢ot-t a(3'¢ot- t) 

(2'¢ot- t) (3'¢ot + 2t/a- t) 

2(3'¢ot- t)2 

'¢o'(t) = '¢ot('¢ot- t), 

'¢o" = 1 
4('¢ot- t) 

1 
:2a (3'¢ot - t) · 

The integration constants in (39) and (40) are 
chosen from the condition that the distribution 
functions (38) and (36) coincide in the region 
- t » 1, where both expansions are valid. 

The function l/lo ( t) is shown in Fig. 2 of [ 7]. 

(40) 

( It does not depend on a. ) It is seen from that 
figure that the function l/Jo ( t) tends to a constant 
value at large values t » 1. The function l/11 ( t) 
behaves similarly. Consequently in this region 

In the vicinity of the point z = 1 the series ( 36) 
diverges. Here we can find the solution (9) by 
changing over to a new variable t = (z - 1)/( 2ay)113, 

expanding the function in the experiment in powers 

t » 1 ( u2 > 1/y) a flux of runaway electrons is 
formed. From the condition ( 14) we find its value: 

So= V~Ne exp{ -1'Y-V 2'Ya }· (41) 

of the small parameter E = ( 2ay) 113 and in powers 
of (IJ. - 1): 

Ne { 1 [ f = (2n)''• exp -; ('¢o(t) + B'¢1 (t) + ... ) 

+ ('¢o' (t) + B'ljl{ (t) + ... ) (11- 1) 

, (11-1)2 l} So + ( 'ljlo ( t) + .. ·) 2 + .. · J - 4n · (38) 

As a result of the calculation we find that the 
function l/Jo ( t) is given by the equation 

'¢ot('¢ot- t) 2 = -1, '¢ot = d'¢ol dt. (39) 

The remaining functions are expressed in terms of 
l/Jot with the aid of the following relations: 

d'¢1 3'¢ot+(2/a-1)t 
ar=- 2(3'¢ot-t) 2 

The flux of runaway electrons is proportional to 

exp {-const I E - const ·l' --;t I l'.E}. 
When a = 1 it coincides with that calculated in [ 1]. 

The distribution function (38) has a directional 
character. However, with increasing t, its direc­
tivity weakens and when t-oo, i.e., when z » 1, 
the distribution should again become symmetrical. 
It is therefore again natural to use here the expan­
sion (16) in the Legendre polynomials. We then 
get from ( 1 7) 

fo = :; ( exp [ :; J - 1) ; /1 = ::: exp [ :z~ J 
So ( 2a) [ 3a J h = 4na 1 +~ exp 2z2 ' (42) 

where the flux S0 is given by the expression (41). 
We see therefore that in the region z » 1 the dis-
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tribution function is actually symmetrical, i.e., 
f0 » f1 » f2 . • • The ratio f0/f1 increases to values 
z ~ -fa. when f0/f1 ~-/a.; with increasing z it again 
begins to decrease. When z » ..fa distribution (42) 
coincides with (24) and (29) with x"' u2y/01. 
"' z/ 0/. « 1. 

When z ~ 01., i.e., x ~ 1, the distribution func­
tion is again transformed from symmetrical to 
directional. The distribution function is described 
here by expressions (24), (29), and (30) which were 
analyzed in the preceding section. Of course, with 
decreasing 01. the region where the distribution 
function is symmetrical, 01./y > u2 > 1/y becomes 
narrower; when 01. ~ 1 it actually disappears com­
pletely. In this case the distribution function for 
u2 "' 1 + D./y, where D. ~ 1, is of an intermediate 
nature, being neither symmetrical nor sharply 
directional. For the case 01. "' 1 it was investi­
gated earlier[ 7•8J also in this intermediate region. 

Thus, under the conditions (31) considered here, 
the distribution function for u2 < ( 01./y) 11 2 is sym­
metrical; when 1/y > u2 > ( 01./y) 112 it has a sharply 
directional character. When 01./y > u2 > 1/y it is 
again symmetrical, and when u2 > 01./y it is again 
sharply directional. The runaway limit in the ele­
mentary definition, as before, is u~ "' 01./y. At this 
limit there occurs a second transformation of the 
distribution function from symmetrical to direc­
tional. The flux of runaway electrons is formed 
earlier in the region u2 ~ 1/y. 

4. When 01.y ~ 1 it is natural to assume that the 
expansion (16) in Legendre polynomials is valid 
for u2 :S 01./y. In this case, however, unlike the 
case 01.y » 1, considered in Sec. 2, it is necessary 
to use not two but three, four, or more polynomials. 
A numerical calculation of the runaway-electron 
flux made in this manner over a wide range of 
values of 01.y has lead to good agreement with 
formula (21) for 01.y » 1, and to good agreement 
with formula (41) when 01.y « 1. The final expres­
sion for the flux of runaway electrons for arbitrary 
value of 01.y, accurate to a pre-exponential factor, 
can be represented in the form 

dNe v-i { 1 } --=So= --Neexp --F(av) . 
d-e n 4v 

(43) 

The function F ( x) is presented in Fig. 2 and in 
Table II. At large values x » 1 

F( } _ 4:rt·2'h [ '/a _1_1_ -'/a l 
X - 3'1• X + 81·H'ia X + .... (44) 

When x « 1 

F(x) = 1 + (32x) '''· 

The solution of Eq. (9) constructed here is valid 
only for a relatively weak electric field, when the 

-z -I u 
FIG. 2 

log x =log ay 

z 

flux of the runaway electrons is small S0 « Ne. 
It is consequently necessary to have 

F(av) > 4v. (45) 

This condition is equivalent to the condition 
y < 01. 1/ 2, which can naturally be written in the 
form E < Ec, where 

Ec = Ecoa'f, = ~(1 + M 2 a'/,. (46) 
e(Teff+ mDo/vo) ' 

Ec' is the critical field: when E ~ Ec the flux S0 

is proportional to Ne' i.e., all the electrons go 
over into the acceleration mode within a time of 
the order of 1/v0• 2l In a non-equilibrium plasma 
the field Eco is defined by expression (12). With 
increasing scattering parameter 01., the field Ec 
increases like 01.1/2. 

Table II 

X 
F II X I F II X I F II X 

F 

8.33 8.96 2.50 6.07 0.50 3.69 10.0833 2.28 
6.67 8.33 2.00 5.65 0.25 3.025 0.0667 2,16 
5.00 7.59 1.50 5.16 0,167 2.71 0.050 2.03 
4.167 7.15 1.00 4,55 0.133 2.56 0.0333 1.87 
3.00 6.43 0.100 2.38 0.0167 1. 66 

It is important to emphasize that the critical 
field (46) differs qualitatively from that obtained 
in an elementary analysis that takes no account of 
the concrete character of the deformation of the 
electron distribution function in the field. Indeed, 
if we assume, for example, that the electron distri­
bution function is Maxwellian with a directional 
velocity v0 then the electron frictional force in­
creases with increasing v0 when v0 < VT, and de­
creases in proportion to 1/v~ when v0 > VT· When 
v0 ~ VT it has a maximum value of Fmax 
~ 01.mv ( VT) VT. This leads to the customary defi-

2)If the excitation of nonequilibrium oscillations in the 
plasma is the consequence of a distortion of the distribution 
function of the electrons in the electric field, then the param­
eter a itself can depend noticeably on E, thus changing Ec. If 
a increases for large values of E more rapidly than E 2 , then, 
as is clear from ( 43) - ( 45), in this case the critical field can­
not be attained at all. 
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nit ion [ 10 •3 ' tt] of the critical field: eEc = F max• 
leading in turn to the expression 

(47) 

which differs qualitatively from the results of the 
exact calculation (46). For example, in an equili­
brium Z -fold ionized plasma, in accordance with 
(46), the critical field increases like Z 112 (for a 
fixed density of the electrons Ne = ZNz), while 
according to (4 7) Ec ~ Z. The reason for this dif­
ference is as follows: at large values of the param­
eter a and when E ~ Ec, y ~ a11 2 and ay ~ a 312 

» 1. In this case, which was considered in Sec. 2, 
the principal effect on the runaway-electron flux is 
exerted by the distortion of the symmetrical part 
of the distribution function, whereas this process 
is completely ignored in the elementary analysis 
given above. 

Naturally, the estimate of the flux of the run­
away electrons in a weak field E « Ec. based on 
analogous elementary considerations which do not 
take into account the deformation of the distribution 
function ( see, for example, [ 9] ) , leads to an 
expression 

{ a Eco} 
So~ N.exp --2 £ , 

which has little in common with the result of the 
exact calculation (43). 
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