
SOVIET PHYSICS JETP VOLUME 22, NUMBER 1 JANUARY, 1966 

EXACT INTEGRATION OF THE EQUATIONS OF MOTION OF RELATIVISTIC CHARGED 

PARTICLES FOR A CERTAIN CLASS OF VARIABLE ELECTROMAGNETIC FIELDS 

L. G. GLIKMAN, V. M. KEL'MAN, and E. M. YAKUSHEV 

Nuclear Physics Institute, Academy of Sciences, Kazakh SSR 

Submitted to JETP editor January 11, 1965 

J. Exptl. Theoret. Phys. (U.S.S.R.) 49, 210-213 (July, 1965) 

The exact solution is found for the equations of motion of relativistic charged particles in the 
median plane of an electromagnetic field having cylindrical symmetry. The magnetic poten
tial of the field, expressed in cylindrical coordinates p, cp, z, has only one nonzero compo
nent in this plane-Acp = p-1w ( t/ p), where w is an arbitrary function and t is the time. The 
electrostatic potential of the field is equal to zero. 

EXAcT solutions of the equations of motion of 
charged particles in variable electromagnetic 
fields, taking account of the relativistic change of 
mass, have been obtained only in a very limited 
number of cases. [ 1•2] Aside from their intrinsic 
interest, such solutions are badly needed for 
treating various astrophysical problems and may 
find applications in the physics of high tempera
ture plasma. In the present paper we look for a 
solution of the equations of motion of charged par
ticles in a variable electromagnetic field having 
rotational symmetry, in which there is a median 
plane, perpendicular to the symmetry axis, which 
is a plane of antisymmetry for the magnetic field 
and a plane of symmetry for the electric field. We 
treat the motion in this plane. In addition it is 
assumed that the electric field of the charges is 
absent and that the electrostatic potential is zero. 

In the cylindrical coordinate system p. cp, z, 
where the z axis is the symmetry axis of the 
field, we have (in the median plane) 

Ap =A,= 0, A'~'=A(p, t). 

Here AP' Acp, and Az are the components of the 
vector potential A, while t is the time. Under 
these conditions the relativistic Hamilton-Jacobi 
equation takes the following form: 

__ 1 ( ~s )2+ (as )2+( _!_as __ _:_A )2 + m2c2 = 0 
c2 at \ ap p acp c ' 

where S is the action function, m and e are the 
rest mass and charge of the particle, and c is the 
velocity of light. 

Introducing the notation 

S p e 
s=mc2' r=--, f(r,t)=-A, 

c nlc2 

we get 
( 1) 

Here p = os/ at is the negative of the energy of the 
particle in units of the rest energy mc2; q = os/or 
is the generalized momentum corresponding to the 
coordinate r, in units of me, while 

a1 =as I &cp = -pr2~ + rf = const (2) 

is the generalized momentum conjugate to the co
ordinate cp, taken in units of mc2• 

Equation (1) is a nonlinear first order partial 
differential equation. It can be integrated by the 
Lagrange-Charpit method. [ 3] For the special 
case when f( r, t) = if!/r, where if!= if! (t/r) is an 
arbitrary function of the argument t/r, 

(pt + qr)2 + r2- t2 = az (3) 

is an integral of the motion ( a2 is an arbitrary 
constant). Because if! is indeterminate at the 
point r = 0, t = 0, this point is excluded from con
sideration. 

From Eqs. (1) and (3) we find 

q = - __ r_ 01 (a..! + t2 - r2) '" t2- r2 . 

150 

t [ ( t2) ]''' + t2 _ r2 02 a2 + 1- r2 (a1- <1>) 2 ; 

pt+ qr 
01 = -;-------,----,--~ 

!Pt+ qrl' 
pr+ qt 

ipr+ qtl' 

(4) 

(5) 
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Using (4) and (5), we bring the expression for s 
r. t 

s = at<p + ~ (pdt + qdr) 
To, to 

to the following form: 

s = a1<p + Ot(a2-r2(1- x2) )''' 

(6) 

where x = t/r, and the subscript 0 denotes the 

Here 

r(1 + x)\jl 
It= ,1 + [ 2( 1 ]'/ = oonst. a2 ' Ot0'2 a2- r - x2) • 

(10) 

Equations (7), (9), and (10) enable us to rewrite 
the expressions (4) and (5) for the energy and 
momentum of the particle in the following form: 

= ~{(1:)"'""'1 (a2 +(1- x2) (at-:- <1>)2]'1• + lxla2''' 
P Za2'l• 'I' .1 + I xI 

+[( ~ )"''t"'t £a2 + (1- x2) (at- «D)2J''· +lx I a2''' J-t 
'¢; 1+ lxl 

q = _ 2::/, ~=~ {( * r'[xi 
az'1• +I X l£a2 + (1- x2) (at- Cll)2]'i• 

X 1+lxl 

_ [( ~t_fllxl a2''' + lxl[a2 +(1-x2) (at- <1>)2]'"]-t 
\ '¢1 1'+1xl 

(12) 

In making calculations using ( 7) -(12) one must 
take account of the variation of a 2 along the path 
of integration. The value of a 2 always changes 
when the particle passes through the symmetry 
axis since, because of the peculiarities of the cy
lindrical coordinates, the sign of r then changes. 
In addition the value of a2 changes when we pass 
through a root of the expression pr + qt, if the 
order of the first nonzero derivative of pr + qt 
with respect to the time is odd. 

initial value of the corresponding quantity. In 
deriving (6) it was assumed that along the path of 
integration the value of a2 remains constant and 
that there are no singularities of q, leading to 
divergences of the integral. 

The equations of motion, which are obtained by 
differentiating s with respect to the arbitrary con
stants a 1 and a2, have the form 

2a2'" 
r = ---~----=:__----t---..,..-

'¢(1 + x)/J.t + J.t(1'- x)/'¢' 
(7) 

(8) 

( 9) 

In case of a change of sign of pr + qt, we can 
proceed as follows: choose the point at which the 
sign changes as the initial point for the further 
motion and, having determined the initial values 
of t, r, cp, p, and q there and having computed the 
constant J1. for the changed a2, continue the inte
gration. Since 

dx 1 t 1 
-=----r=- (pr+ qt) (13) 
dt r r2 pr-2 ' 

when pr + qt changes sign, so does dx/dt, i.e., x 
now varies in the opposite direction. 

In obtaining the equations of motion, Leibnitz' 
formula for differentiating an integral with re
spect to a parameter was used. This formula is 
applicable if all the integrals appearing in the 
equation are convergent. For this condition to be 
satisfied, along the path of integration there must 
be no roots a of the equation 

in whose neighborhood the left side becomes an 
infinitesimal quantity equivalent to ( x- a)Y, 
where y ~ 2. 

(14) 

We consider the case where equation (14) has 
such a root. According to (13), 

dx P(x) 
-=--(x-a) 
dt pr-2 ' 

where 

P(x) (x- a) = pr + qt = a2[a2 + (1- x2) (at- Cll)2J"'; 

we note that the function P ( x) is bounded at 
x = a. Integrating the equation over an interval 
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not containing x = a and r = 0, we get 

X- a= (xi- a)·exp[ s P(x) at]. 
t, pr2 

Here t1 is the time corresponding to x = x1. From 
the finiteness of the integral in this case we see 
that for x1 "' a the value of x does not reach the 
value a, so that the equations of motion derived 
earlier are valid. If, however, x1 = a, the correct 
equation of motion is 

r = f 0t. (15) 

The expressions for cp and p are found from 
(1) -(3) and (15) as functions of the time: 

<p = <po + ( 1 - fo2) •;, In_!__ a1 - Ill + [f02t02 + ( a1 _ Ill) 2]';, 

fo to a1 -Ill+ [f02t2 + (a1 -IP)2]'h 
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