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It is shown that in a completely ionized plasma with an electron temperature T e which con
siderably exceeds the ion temperature Ti, the effective collision frequency of the particles is 
proportional to Te1/ 2T{"1• The effect of Coulomb interaction between the particles on the time 
they spend in the region of action of the forces is taken into account. Weak nonlinear effects 
of removal of the particles from the interaction region as a result of electric drift are de
tected. 

INTRODUCTION 

THE theory of diffusion and conductivity of a fully 
ionized laminar plasma in a strong magnetic field 
was developed in several papers. In the present 
article we shall deal with a fully ionized non-iso
thermal plasma situated in such a magnetic field 
that the Larmor radii of the particles become com
parable with or even smaller than the Debye
screening radius. The difference between the 
results obtained below for the transverse diffusion 
coefficient and the corresponding results of other 
papers [t-s] lies in the fact that along with the usual 
double-logarithmic additions to the Coulomb logar
ithm there arise in our analysis also additive 
terms, proportional to the ratio of the difference 
between the electron and ion temperatures to the 
ion temperature. Therefore, under the conditions 
when the electron temperature (Te) is one order of 
magnitude larger than the ion temperature (Ti), 
the transverse frequency of collisions, which de
termines the coefficient of transverse diffusion 
and the transverse conductivity, can turn out to be, 
as shown below, proportional to T8112Tf1• 

Comparing this dependence with the Te3/ 2 law, 
which follows from the theory of plasma transport 
phenomena in a weak magnetic field, [S] we can 
state that under the conditions of interest to us an 
appreciable increase in the coefficient of trans
verse diffusion takes place. Moreover, whereas in 
the isothermal case the order of magnitude of the 
coefficient of transverse diffusion remained in fact 
unchanged, owing to the increase in the time of 
interaction between the magnetized particles, in 
the non-isothermal case which we are considering 

(Te » Ti), we must speak of both the occurrence 
of a new qualitative dependence on the ion tempera
ture and of a change in the order of magnitude. 
The result obtained by us for diffusion and for the 
static transverse conductivity is in partial agree
ment with one of the results of Lovetskil [ 7] for 
the high-frequency dielectric constant of a non
isothermal plasma in a range of frequencies ex
ceeding the Langmuir frequency of the electrons. 
We present below also the results for the frequency 
dependent dielectric constant of a plasma. Com
pared with [ 7], first, we have greatly broadened 
the frequency range and, second, we took into ac
count the influence of the Coulomb interaction of 
the particles on the time during which the colliding 
plasma particles interact, and third, we considered 
weakly nonlinear effects of the outward electric 
drift of the particles from the interaction region. 

1. INITIAL EQUATIONS AND THE GENERALIZED 
OHM'S LAW 

To construct the theory of conductivity and 
diffusion of plasma, we make use of a kinetic equa
tion that takes into account the influence of strong 
fields on the motion of particles during the time of 
the collision. Such a kinetic equation is of the 
form [B, 9] 

{}fa+ Va aja + ea (E + -~ [vaB] )·a fa 
at ara ma c at 

-"" a (' d d auab(ira-rbi) 
- LJ a-----,- J Pb rb a . 

b Pa' ra' 
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[B[Bp ]] t+~ (BE(t')) 
- COS Qa't B2 a + ea 5 dt' { B B 2 

t 

[BE(t')] , 
- ---e-sin Qa(t + 't- t) 

_ [B[BE ( t') ]] n (t + _ t') } 
B2 COS ~'a 't , 

(Bva) 
Ra = Ra(t + -r, t, Pa, ra) = ra + B ---g;:--r 

1 -cos Qa-r [Bva] sin Qa-r [B[Bva]] 
------ ---==---

Qa B Qa B2 

(1.1)* 

(1.2) 

such an assumption corresponds to the assumption 
customarily used in the theory that obtains the re
sults in the form of an expansion in powers of the 
collision frequency. 

We shall be principally interested in the conduc
tivity transverse to a strong magnetic field, for 
which, as is well known, the theory is analogous in 
many respects to the high-frequency limit. There
fore formula (1.4) will yield exact results if we can 
assume that the inequality lg~- wi » v 2 is satis
fied. Here w is the frequency of the alternating 
electric field and v is the collision frequency, an 
explicit expression for which will be obtained below. 

Let the electric field depend on the time like 

E(t) = ~ E,. cos(wt + clr). 
r 

Then, substituting in the right side of (1.1) functions 
+ !!..._ rdt' f dt" {B (BE ( t") ) 

"ma t t B2 
[BE (t")] --=---s· Q (t' _ t") of the form (1.4), we obtain the generalized Ohm's 

B m a law (see[ 11J) 

_[B[BE(t")]]c sQ (t'-t")l 
fl2 0 a }' 

(1.3) 

where ea, rna, ra, Va, and Pa are respectively the 
charge, mass, coordinate, velocity, and momentum 
of a particle of species a; ga = eaB/mac-gyro
scopic frequency. The distribution function fa is 
normalized to Na, which is the number of particles 
per unit volume. Finally, Dab is the energy of the 
Coulomb interaction of a pair of particles. At 
large distances, the Coulomb interaction is as
sumed to be screened. At small distances, when 
perturbation theory breaks down or it becomes 
necessary to use a quantum-mechanical analysis, 
the Coulomb interaction, as is well known, [ 1oJ is 
effectively weakened. We shall therefore assume 
that at small values of the argument Uab(r) van
ishes. 

In order to obtain from (1.1) the generalized 
Ohm's law for spatially homogeneous distributions, 
we shall assume that the particle distribution func
tions entering into the collision integral of (1.1) 
are of the form [ 11 ] 

t 

/a(Pa, t)=fao(Pa-ea ~ dt'{~2 B(BE(t')) 
' -00 

+ [E(t')B] sin Qa(t- t') 
B 

+ [B[E~:)B]] cos Qa(t- t')}), (1.4) 

where fa0(Pa) is the Maxwellian distribution. In the 
high-frequency limit for relatively rare collisions, 

*[vaBl= Va X B. 

dja +£Qaja]- e2NaE(t)=Ja=~~ NaNb(eaeb) 2 ea 
dt ma :rt b xma 

X ~ dk :~ ~ d-r sin { (k, Pa- pb) 2 sin ~'t} 

(1.5) 

where 

x-va2{(kB)22+4[kB)2 "2Qa't} (1.6) 
a - 2 B2 't B2Qa2 sm 2 ' 

ea ( B (BE,) [B[E,BTI ) . ( W't ) ) 
-- -B2 2 + B2( 2_Q 2) sm wt+o,.--2 f·· ma (!) (0 a . . .. 

(1. 7) 

va = (KTa/ma) 1/ 2 is the thermal velocity of parti
cles of species a, K is Boltzmann's constant, and 
Ta is the temperature. 

Finally, 

'tmax(k) = k-'"ieaebl 1''(mamb / ma + mbP'. 

This quantity results from allowance for the fact 
that the Coulomb interaction causes the particles 
to be displaced from their trajectories. [ 4• 5] Un
like the paper by one of the authors [ U], in which 
the influence of a strong field was considered, we 
are interested here in the case of weak fields. 
Namely, we shall assume below that the velocity 
of the relative motion of the charged particles, 
resulting from the action of the electric field, is 
small compared with the thermal velocity of the 
electrons. 
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It is easy to see that 

a f Xa Xb ]{ B(kB) . ( . CO't') 
X a-r: LTa + Tb -B2k sm 2kpucos8sm2 

( . . CO't ) [B[QB]] ( CO't ) Xlo 2kp.Lsm8sm-2 +---cos 2kp11 cos8sin-
B2p.L \ 2 

(1.8) 

where Bp 11 = B ·p, B1 = !Bxpi, p =pa -pb, and() 
is the angle between the direction of the magnetic 
field and the vector k. 

In the approximation linear in the electric field, 
formula (1. 8) takes the form 

a r X a Xb J _ { B ( QB) 
X 8't L T a + T b exp (-X a - xb) 2 cos2 e --w-

+ sin2 e [B[:~]] } . (1.9) 

The presence in (1.9) of the factor sin(wT /2) 
makes it necessary to carry out the integration 
with respect to T for the dissipative part of the ex
pression for Ja, which is the only one in which we 
shall be interested below, to values which do not 
exceed 1/w. Then 

X eijl ~ ~ Erj cos (cot+ br) }. (1.10) 
T 

Here 

X exp - _a_ -r:2 cos2 8 + -- sin2 8 sin2 _a -{ v 2k2 ( 4 Q 't \ 
2 Q"2 2 } 

Vb2k2 ( 2 2 fl + 4 sin2 fl . 2 Qb't' )} --- 't' COS --Sill --
2 Qb2 2 . (1.11) 

In the case of weak fields, in which we are inter
ested, there is still another reason for cutting off 
the integration with respect to T on the high side. [t2] 

Namely, the colliding particles can leave the inter
action region under the influence of the electric 
field. Therefore the particle drift in the electric 
field imposes an upper limit on the time T during 
which the colliding charged plasma particles inter
act. The drift along the magnetic field corresponds 
to the maximum possible interaction time: 

't'ii = [wkpu(O) cosfl]-1. 

Similarly, the drift transverse to the magnetic 
field leads to a maximum time 

't.L = [wkp.L(O) sinS)-1. 

The corresponding cutoff in (1.8) arises automati
cally because of oscillations of the integrand. 

It must be noted that, strictly speaking, the con
cept of the dielectric tensor which is customarily 
used in the linear theory can be employed here 
only if the electric drift is negligible, for only then 
does the current depend linearly on the field. The 
dissipative (antihermitian) part of the dielectric 
tensor of a plasma consisting of electrons and a 
single species of ions is of the form 

{ B1B· ( co' b1iB2 - BzBi 
be1;<a> (co)= i B2' Ve;ll (co)+ Vei.L(w) g 82 B2 

X [ ( w2 ~e Q.2- w2 ~i Q;2) 2 

+ co2( co2 ~ Q.2 w2 ~ Q;JJ 

(1.12) 

Here w Le = (47rNee2 /m) 1/ 2 is the electron Langmuir 
frequency. 

II( ) 2 2 2 "max n 2 jfn1~max<">· 11"'l 2. DIFFUSION TRANSVERSE TO THE MAGNETIC 
{ vab w }=~Nb~ dkk2Sdesine{c~s2 } ~an FIELDANDTRANSVERSESTATICCONDUC-

vab-L(w) ma kmin 0 Sill e 0 TIVITY 

The formula for the transverse static conduc
tivity of the plasma, as follows from (1.12), can be 
written in the following form: 

e2 Ne 
0".1. = ~Vei.l.(O); (2.1) 

m •• e 
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where 

X !_ [X.+ X;] . 
ih T. Ti 

(2.2) 

According to Einstein's relation, [sJ we have for 
the coefficient of transverse diffusion 

(2.3) 

Therefore it is sufficient to consider in what follows 
the expression for the transverse collision fre
quency. In the limit of weak magnetic fields, when 
the Larmor radii of the particles greatly exceed 
the Debye screening radius rn, formula (2.2) gives 
the well-known expression for the effective colli
sion frequency: 

(2.4) 

We assume here that MTi » mTe. We shall as
sume this inequality to be satisfied throughout. 

In a strong magnetic field, when the Debye rad
ius greatly exceeds the Larmor radius of the elec
trons Pe• formula (2.2) can be approximately repre
sented by 

Here 

p~aj r~:in r.•Ja 

X ~ dxx<D ( x~) e-x"!> (~). 

P0/'D 

Here 2 X 

<D (x) =-=- ~ e-1' dt 
f'it 0 

is the probability integral and 

\jl (~) = sin2 6 + Pi: sin2 ~6 . 
Pe ••e 

(2.5) 

(2.6) 

(2. 7) 

(2.8) 

In view of the appearance of large logarithms, 
we can write, accurate to the principal terms, the 
following asymptotic expressions for the trans
verse collision frequency: 

[ Pe 3 Ve rD 3 Te- T; In rD] , 
'Ve;.L='Vo ln--+-In-ln-+- ---

rmin 2 V; Pe 2 T; Pe 

vi· 
p;~rD > Pe > rm;n--2 ; 

V; 
(2.9) 

[ Pe 3 rD "frDPi 3 Te- Til Pi 
'Vei.L = 'Vo ln--+-In-ln--+- n-

rmin 4 Pi rmin 2 T; Pe 

3 Ve Pi] Ve2 
+-ln-ln-, rD>p;>p.>rm;n-2-; (2.10) 

2 Vi Pe Vi 

[ 
Pe 3 Ve rDv;2 

'Vei.L = 'Vo ln -- + -ln -In---
rmin 2 Vi rminVe2 

v.2 
p; > rD > rmin - 2- > Pe; 

Vi 

Ve2 
rd > Pi > rmin - 2- > Pe; 

Vi 

[ Pe 3 rD fP&D] 
'Vei.L (0) = Vo In---+ --In -In-- , 

rmin 4 Pe rmin 

v.2 
rmin - 2- > p;, rD > p •. 

Vi 

Here Pi= vifQi is the ion Larmor radius. 

(2.11) 

(2.12) 

(2 .13) 

In the limit of equal temperatures, formulas 
(2.9)-(2.13) correspond to formulas (3.5)-(3.10) 
of the paper by Aliev and one of the authors. L5J 
What is essentially new in our formulas is the oc
currence of a term containing (Te- Ti)/Ti. This 
term can become the largest if Te/Ti > 5-10. 
Therefore in a strong magnetic field and for a 
sharply non-isothermal plasma with an electron 
temperature much larger than the ion temperature, 
the transverse effective collision frequency is in
versely proportional to the ion temperature and to 
the square root of the electron temperature, and 
not to the temperature of the electrons raised to 
the 3/2 power, as in the case of a relatively weak 
magnetic field [formula (2.4)] or when the electron 
temperature does not exceed the ion temperature 
greatly. It must be emphasized that the ratio of the 
electron and ion temperatures must still not be 
larger than the ratio of the ion and electron masses, 
for otherwise the assumption which we made, 
namely that the Larmor radius of the electrons is 
smaller than that of the ions, will no longer be 
valid. 
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3. DEPENDENCE OF THE TRANSVERSE COLLI
SION FREQUENCY ON THE ALTERNATING 
FIELD 

As seen from (1.11), the transverse collision 
frequency of the electrons and ~he ions depends 
both on the frequency and on the magnitude of the 
alternating electric field. In the region of frequen
cies larger than the Langmuir frequencies of the 
electrons, it is well known that the effective colli
sion frequency has a logarithmic dependence on 
w. [ 13] In a strong magnetic field, the correspond
ing dependence on w was considered earlier.[7,sJ 
The results presented below greatly extend the 
values of the alternating-field frequencies for 
which the dependence of v~i on w turns out to be 
appreciable. In addition, more accurate criteria 
are obtained for the applicability of the previously 
known formulas, and new expressions are obtained 
for the transverse collision frequency if these 
criteria are violated. Because of a consistent ac
count of the relative drift of the charged particles 
of the plasma in the magnetic and alternating elec
tric fields, we obtain below a weakly nonlinear 
(logarithmic and double logarithmic) dependence 
of the collision frequency on the electric field in
tensity. Compared with [12], in this respect the 
difference consists, first, in the disclosure of a 
qualitative increase in the transverse collision 
frequency due to the non-isothermal nature of the 
plasma, and, second, in the fact that the formulas 
obtained below for the weakly-nonlinear dependence 
on the field contain information on the dependence 
of the effective collision frequency on the time, 
which in fact determines the occurrence of new 
field harmonics in the plasma. 

An appreciable dependence of the collision fre
quency on the magnetic field arises under condi
tions when the radius of gyroscopic rotation of the 
electrons is small compared with the radius of the 
Debye screening and compared with the ratio of the 
thermal velocity of the electron to the frequency of 
the alternating field. Being interested precisely in 
this case and bearing in mind the appearance of 
large logarithms, we can write an expression for 
the transverse collision frequency in the form (2.5), 
the only difference being that L1 and L2 are func
tions of the alternating-field frequency 

X sin( 2 ~: 6) e-><'¢<sl<D(x6). 

Here ci> (x) is the probability integral, and the func
tion l/!(0 is determined by expression (2.8). 

In (3.1) and (3.2) we introduce the following 
dimensionless variables: 

X= Pek, 

Pe 
Xmin=-, 

rD 

6 _ Oe't 

- 2 ' 

_ Pe . 
Xmax---, 

. rmin 

~ max(K) is defined as follows: 

6max(x) =min[ x'/, x-'1', ~, ~]. (3.3) 
max XVEII XVEJ.. 

Here the relative electric drift velocity is vEl, II 
= WPl,II(O). The values of Pl,II(O) are determined 
in accordance with (1. 9) for T = 0. 

We first analyze the case when the nonlinear 
effects of the electric particle drift are insignifi
cant, that is, the values of L1 and L2 do not depend 
on VE· Here, as already stated in the first section, 
the usual concept of the dielectric tensor is mean
ingful. Therefore, bearing in mind formula (1.2) 
and giving below asymptotic formulas for the func
tions L1 and L2, which are connected with the trans
verse collision frequency by formula (2.5), we de
termine by the same token the w -dependent trans
verse conductivity of the plasma. 

As in Sec. 2, we shall determine L1 with doubly 
logarithmic accuracy. The integration ranges with 
respect to K and ~ are limited by the conditions 

Xmin < X < 1, 1 < 6 < 6max, x6 > 1, 

x2.¢ < 1, 6 <Ref ffi. (3.4) 

The entire region of possible impact parameters 
is subdivided into several intervals, the number of 
which coincides with the number of different mech
anisms which limit the interaction of the particles 
in time. Let us list these mechanisms. First, 
limitation by the period of the external field w-1 [t3]; 

second, departure from the interaction region due 
to the electric drift; third, the displacement of the 
particles from their trajectories because of Cou
lomb interaction, and, finally, fourth, the departure 
of the free ion from the interaction region. The 
latter takes place for impact parameters smaller 
than the Larmor radius of the ion. The number of 
the doubly logarithmic terms in L1 coincides with 
the number of the indicated intervals. In this con
nection, L1 can be represented in the form 

L1 =~~In r"+1 In 61<+1 s~< . (3.5) 
2 " r,. rl<+i r,. 

Here the argument of the first logarithm repre-
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sents the ratio of the final and initial values of the 
impact parameters, which limit one of the intervals 
into which the entire region of impact parameters 
is subdivided. In each such interval there appears 
one of the possible causes which limit the interac
tion of the particles in time. In the numerator of 
the argument of the second logarith there appears 
the product of the minimum and maximum interac
tion time for a given impact-parameter interval. 
The product of the impact parameters which limit 
the considered interval enters in the denominator 
of the argument of the second logarithm. 

We present first the values of L1 which do not 
depend on w . This occurs when the period of the 
oscillations of the external field is much larger 
than the time during which the interaction of the 
particles will be limited either by the Coulomb 
acceleration mechanism, or by the aforementioned 
free emergence of the unmagnetized ion. In this 
case we have 

fD De 
L1 =ln-ln-, 

vl v; 
Tmin------:- < Pe < rD < p;,-, 

v;", w Pe V; 

(3.6) 

L - l De ( Trnin )';,1 De ( Pe )'j, rD V;2 De 
1- n- -- n- -- +In----ln-

v; Pe . V; Tmin Tmin Ve2 V; ' 

(3. 7) 

Ve2 V; 
Pe < Tmin_2_ < fD < -, p;, VE < v;; 

V; (!) 

Pi De 1 rD "f p;rD 
L1 = ln-ln-+-ln-ln--, (3.8) 

Pe Vi 2 Pi Tmin 

Ve2 
1 ( De )'/a Ve2 

rm;n-2- < Pe <Pi< fD < r;:,.n - ' Tmin--2; 
V; ' (!) VE 

L1 =In!!.!_( Tmin )'/, ln!!.!__( ___£:____ )'f, 
V; Pe Vi Tmin 

+ I p;V;2 l· Ve + 1 I rD I "frDp; n . 2 n- -- n- n--, 
TminVe V; 2 Pi Tmin 

(3.9) 

vi ( De )'Ia Ve2 
Pe < Tmin -2- < Pi < fD < r'la . - ' Tmin --2 ; 

Vi mtn W VE 

L1 = !_In rD In l'PefD ' 
2 Pe Tmin 

vi 2 rmin 
Pe<rD<rmin-2 , De--, 

Vi VE2 

( )

2/a 
r'la. !!!_ . 
mtn. w (3.10) 

In formulas (3.6)-(3.10) the speed of the electric 
drift is defined as follows: vE = max{vEl• vEil}. 

With the aid of (3.5) we shall analyze the fore
going formulas. In (3.6) the interaction of the par
ticles at arbitrary impact parameters in the region 
from Pe to rn is limited by the free emergence 

from the interaction sphere. In (3. 7), at distances 
from Pe to rminv~/vi the interaction is limited by 
the effect of the Coulomb acceleration, and from 
r min v~/vi to rD it is limited by the free emergence 
of the ion. Formulas (3.8)-(3.10) pertain to the 
case when both species of particles are magnetized. 
The first term in (3.8) corresponds to the region of 
impact parameters from the electronic to the ionic 
Larmor radii. In this region the interaction is 
limited by the free emergence of the ion. The 
second term of formula (3.8) and the third formu
las of (3.9) constitute the contribution made to L1 

by the interaction of the particles at impact dis
tances larger than the Larmor radius of the ion 
and smaller than the Debye radius. In this region 
the time of interaction is limited by the effect of 
the Coulomb acceleration. In Eq. (3.9) the first 
term corresponds to the region of impact parame
ters from p to r . v2 /v~, in which the interaction e mm e 1 

time is limited by the Coulomb acceleration effect, 

and the second corresponds to the region rmin v~/vi 
to Pi• where free emergence of the ion takes place. 

The presence in formula (3.10) of only one term 
is connected with the fact that here, in the entire 
region of impact parameters from the electronic 
Larmor radius to the Debye-screening radius, the 
interaction of the particles is limited by the mech
anism of Coulomb acceleration. It must be pointed 
out that in the case of a non-isothermal plasma 
formulas (3.6)-(3.9) go over into formulas 
(3.5)-(3.9) from [ 5], and are also a generalization 
of the results obtained by Golant[ 4J to the case of 
a non-isothermal plasma. 

We present below formulas which are close in 
their structure to formulas (3.6)-(3.10), but in this 
case L1 depends explicitly on the oscillation fre
quency of the external field. We have: 

V; Ve 1 fDW Ve2 
L1 = ln--ln-+-In--ln--

wpe Vi 2 V; ViWrn' 
(3.11) 

Ve2 V; 
Tmin--2 < Pe <- < rD < p;, VE <Vi; 

V; W 

L -1 Ve(fmin)'''I Ve( Pe \'/,+I Vel Vi3 
1- n- -- n- --1 n- n----.,--

v; Pe Vi Tmin• Vi Ve2WTmin 

1 rDw v.Z 
+-In-ln--

2 Vi ViWTD' 
(3.12) 

Ve2 Vi 
Pe < Tmin-2 <-< rD, Pi, VE <Vi, 

Vi W 

Ve 
rD<-; 

(!) 

'I '1, 
Pi Ve 1 Ver:nin VePi 

L1 = In -In-+·· -In --,-In---.,-,--
Pe Vi 9 wp 1' wr'j:.in 

1 'I 'I, 
+ - In rnw ' -ln Ve 

2 Tmin'lav'/, w'!arDr'/, ' 
e mtn 

(3.13) 
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V 2 ( Ve )'Is Ve2 
rmin ___::_2 < Pe < Pi < r 1h . - < rv, rmin - 2-_-

Vi mtn (i) VE 

rv < v;/w; 

1 
+-ln 

9 

'I 
VePi, + _!ln rvw'h ln ve'l• 

wr'f,. .2 r 11s . v'ls w'i•rvr11'. 
m-zn mtn e ·mzn 

(3.14) 

2 '/, 
Ve 1 Ve Ve2 V; Pe < rmin-- <Pi< rf•. --,1 < rv, rmin--2 , rv < -; 
Vi2 mtn (i) s VE (i) 

L _ 1 l Qe ( rmin ) 1
/ 2 l VePe'f, 1 l rvw'!s 

1 --- n- -- n---+ . n---,--~ 
9 w ' Pe wr'lz. 2 r'is. v'ls 

m1.n mtn e 

1 ( Ve )"' ( Ve ) 2 p•<ris. - <rv<rmin - , 
mln W 1 Vi 

( Ve )2 
rmin ;;;; ' 

Ve 
rv<-. 

(!) 
(3.15) 

The transition from formulas (3.6)-(3.10) to 
the expressions (3.11)-(3.15) can be explained in 
the following manner. If the maximum time of in
teraction becomes smaller than the period of the 
oscillations as the frequency of the oscillations of 
the external field increases, then the last term in 
(3.6)-(3.10), corresponding to the impact-parame
ter region bounded by the Debye radius, goes over 
into the two last terms of formulas (3.11)-(3.15). 
Thus, the last term in (3.11) and (3.12) corresponds 
to the region of impact parameters between the 
Debye radius and the average distance traversed 
by the ion during the period of field oscillation. In 
formulas (3.13)-(3.15) the last term is due to the 
interaction of the particles in the interval of values 
of the impact parameters from rriiln (ve /w )213 to the 
radius of the Debye sphere. The last term of 
formulas (3.11)-(3.15) corresponds to the region 
of those values of the impact parameters, in which 
the time of interaction does not exceed the period 
of oscillation of the external field. 

With further increase in frequency, we obtain in 
place of (3.13) 

Pi Ve rv Ve 
L1 = ln -In-+ In -In-=, 

Pe Vi Pi w'}"pirv 

( Ve ) 2 Ve 
rmin - <pe<Pi<rv<-, 

Vi W 

Vi VE 1 ( Ve )"' ->p·>- rl•. - . 
W 1 (!) ' mzn (I) ' 

(3.16) 

Pi Ve 1 2 Ve 
L1 =In-In-+- ·In--, 

Pe Vi 2 wp; 

Ve2 V; Ve 
rmin --2 < Pe < Pi < - <- < rv, 

Vi (i) (i) 

. ~ r'f, .!!!._ · ( )
'Is 

p, > (i)' min (i) ' 
(3.1 7) 

p; Ve 1 
L1 = In-ln-+ ·In 

Pe Vi 9 

if 

Vermin 

wp'~' 

'I 
1 VePi ' + 1 l 2 Ve n--- - n ---

wr'i•. 18 wrmin ' 
mtn 

Ve2 
1 ( Ve )'" Vi Ve 

rmin - 2- < Pe < p; < r 1•. -! < - < - < rv, 
V; mtn (i) (!) (!) 

( Ve )2 VE 
rmin ·- >_-. 

VE (!) 

(3.18) 

The first term in formulas (3.16)-(3.18), as in 
(3.13), corresponds to the region of impact param
eters between the electronic and ionic Larmor 
radii. In this region the time of interaction is limi
ted by the free emergence of the ion. The second 
term in (3.16) is due to the interaction of the parti
cles at distances larger than the Larmor radius of 
the ion and smaller than the radius of the Debye 
sphere; the time of interaction does not exceed 
here the period of oscillation of the external field. 
The second term in (3.1 7) corresponds to the region 
between the ionic Larmor radius and the average 
distance which the electron traverses during one 
period of the external field. It is precisely this 
distance which plays here the role of the maximum 
impact parameter. The third term in (3.18) corre
sponds to the region of impact parameters from 
r~3in(ve/w) 2 13 to ve/w, and the second to the region 
from the ionic Larmor radius to r~3in(ve/w)213 • 

In analogy with the transition from (3.13) to 
formulas (3.16)-(3.18), there occurs also a transi
tion from (3.14) to the following formulas: 

Ve ( r min )'/, l!e ( Pe )'/, PiV;2 Ve L1 =ln- -- In- --- +In---ln-
v; Pe • V; rmin r minVe2 V; 

Ve2 Ve 
Pe < rmin - 2 < p; < rD < 

V; (i) 

V; VE -> p; > -
w (J) 

I(Ve\'/s 
Tminl:: -I ; 

WI 

L _ I Ve. ( rmin )'/,I Ve ( Pe )'/, +I PiV;2 I Ve 
~1 - n -- n -- n --- n 

V; Pe V; rm·in rminVl V; 

1 2 Ve 
+--In-, 

2 wp; 

(3.19) 

Ve2 l'; Ve 
Pe < rmin-2 <Pi<--<-< rv, 

Vi (!) (i) 

VE ( Ve )'is Pi> wrmin 11' w ; 
(3.20) 
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Ve2 ( Ve )IJo V; Ve 
Pe < Tmin- < Pi < r''·· - < - < - < rD, 

Vi2 mw .co w w 

( Ve )'Ia VE 
r'''· - >-. mtn (J) (J) 

(3.21) 

In the case when at all impact parameters the 
time of interaction is bounded by the period of os
cillation of the external field, we have 

L1 = _!__ ln2 Qe 
2 (J)' 

Ve Ve Ve 'I 'I Pe <- < rD, Pe-, Pe-, Pe •r- ~in 
(J) Vi VE 

(3.22) 

A contribution is made to (3.22) by the region of 
impact parameters between the Larmor radius of 
the electron and a distance on the order of the 
average path of the electron over the period of the 
external field. If this path exceeds the radius of 
the Debye screening, and the time of interaction 
for all values of r is limited by the quantity w -i as 
before [in (3.22)], we have 

rD Ve 
L1 =In--In---=, 

Ve Ve Ve Pe'lo 
Pe<rD<--<-pe, -pi,--. 

Pe W l'rDPe (J) Vi VE r'lo_ 
mtn 

(3.23) 

In the case when the average path of the electrons 
over the period of the external field is smaller 
than the Debye radius, and the average path trav
ersed during the same time by the ion is larger 
than Pe• L1 can be represented in the form of one 
term [formula (3.24)], in which account is taken of 
both the contribution from the region Pe to vj/w 
(where free emergence of the ion takes place), and 
the contribution from the interaction in the region 
from v/w to ve/w: 

L _ I Ve I fVeVi 
1- n- n--, 

Vi WPe 

V 8 2 Vi Ve 
Tmin -2 < Pe < - < - < rD, 

Vi (J) (J) 
(3.24) 

If the path covered by the electron during the 
period of field oscillation is smaller than the 
radius of the Debye sphere, the following values of 
L1 are also possible: 

. '1 l Qe ( Tmin )'lo VePe''' 1 Ve Lt=- n- -- ln---+-ln2 __ _ 
9 (J) Pe (J) r'f:.in 18 (J) Tmin ' 

( V 
)

'Is 2 2 
. 'I e Ve Ve Pe < rmtn '\- < rD, Tmin-2' Tmin-z. 

(J) Vi VE 

Ve 
rD>-; 

(J) 

(3.25) 

Ve( Tmin )'lo Ve( Pe )'1, Ve Vi3 
L1 = ln- -- ln- -- +In-In-~-

Vi \ Pe Vi Tminl Vi WVe2 Tmin 

+.!In2~ 
2 vi' 

V82 Vi Ve 
Pe < Tmin- < -· <- < rD, VE > V;. 

vi2 w w 
(3.26) 

The second term in (3.25) differs from the second 
term of (3.15) in the fact that the region of the im
pact parameters is limited not to the value of the 
Debye radius, but to the average distance which is 
traversed by the electron during one period of the 
external field. Analogously, formula (3.26) differs 
from formula (3.12) in that in the last term rn is 
replaced by the quantity v elw. The first term in 
(3.25) coincides with the first term in (3.15). 

It must be noted that in the case of an isothermal 
plasma formulas (3.6)-(3.26) go over into the re
sults of the work of one of the authors.C 14J The 
values of L1 in (3.17), (3.22), and (3.24) coincide, 
respectively, with the values of the doubly-logar
ithmic terms in (lOb), (10), and (lOa) of[7], where 
the case w > w Le is considered. However, the 
limits of applicability of these formulas differ, 
since, in particular, it was assumed in [ 7] that the 
radius of the Debye screening of the non-isothermal 
plasma coincides with the Debye radius of the iso
thermal plasma. 

Carrying out, with logarithmic accuracy, the 
integration in formula (3.8), we can readily verify 
that a nonvanishing result is obtained only when 
VE < Vi· We ultimately obtain 

TD 
Lz=ln--, 

Pe 

Pi Lz =In--, 
Pe 

o·v·2 
L2 = ln-· -' -'--, 

Tmin vi 
T_ -I L'i 
-'--2- n--, 

WPe 

V82 V; 
Tmin-2 < Pe < rD < p;-, 

Vi (J) 

(3.27) 

V82 Vi 
Pe < rmin-2 < rD <Pi,-, 

Vi (J) 
(3.28) 

Ve2 Vi 
Tmin-2 < Pe <Pi<-, rD, 

Vi (J) 
(3.29) 

Ve2 V; 
Pe < Tmin-2 <Pi<-, rD, 

Vi (J) 
(3.30) 

Ve2 Vi 
Tmin -2 < Pe < -- < p;, rD, 

V; (J) 
(3.31) 

Via 
L2 = ln ----2 , 

(J) Tmin Ve 

Ve2 Vi 
Pe < Tmin -2 <- < p;, rD. (3.32) 

Vi (J) 

We note that L2 does not contain logarithmic ex
pressions if 

max{ Pe, Tmin~~ }>min{ rD, pi,~}. 

We point out that formula (lOa) in [7] contains a 
logarithmic term proportional to Te/Ti, but the 
argument of the logarithm, unlike in formula (3.34), 
contains velwPe· The difference from[ 7J is due 
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also to the limits of applicability. This is connec
ted both with the established new effects in our 
work, and with the use of the correct expression 
for the Debye screening radius. 

Let us turn to consider those values of L1, for 
the determination of which it is essential to take 
into account the electric drift of the particles. In 
the case when in the entire interaction region, 
from the electron Larmor radius to the radius of 
the Debye sphere, the time of interaction of the 
particles does not exceed the period of oscillations 
of the external field, we have 

rn De 
L1 = ln--In-, 

Pe VE 

Pi De rn De 
L1 = In--In-+In-In-, 

Pe Vi Pi VE 

(3.33) 

Ve2 vi VE 
rmin-2 <rm;n-2 , Pe<Pi<rn<-; (3.35) 

Vi VE (J) 

L -I Pi ln Vi+ I Ve ( rmin )'/,I v. ( Pi )'/• 
1- n -- - n- -- n- --

P• Vi VE Pi VE rmin 

+I rnvE2 I v. 
n---2 n-, 

rminVe VE 

v.2 vi VE 
rm;n-2 < Pe <Pi< rmin----z < rn <-; (3.36) 

Vi VE (J) 

L _ I Ve ( rmin )'t.I De ( Pe )'/,+I PiVi2 I Ve 
1- n-- -- n- -- n--- n-

Vi Pe I V; rmin' rminVe2 v; 

rn Ve 
+In-In-, 

Pi VE 

Ve2 Ve2 VE 
Pe < rmin2 < rmin-2 <Pi< ro <-; 

Vi VE W 

(3.37) 

L _ 1 v."( rmin )'1•1 Ve( Pe )'/, +I PiDi2 I De 
1- n-- -- n- -- n--- n --

Vi\ Pe Vi rmin r min Ve2 Vi 

Ve ( rmin )"1• Ve ( Pi )''' rnvE2 De +In---- - In-- - +ln--ln-, 
VE Pi VE rmin rmin Ve2 VE 

Ve2 Ve2 VE 
Pe < rmin2 <Pi< rmin2 < rn < --. (3.38) 

Vi VE W 

Formula (3.33) differs from (3.6) in that Vi is 
replaced by vE, for at any value of the impact 
parameter the drift terminates the interaction of 
the particles earlier than the mechanism of free 
emergence of the ion. The difference between 
(3.34) and (3. 7) is connected with the replacement 
of vi by VE· The time of particle interaction at 
distances Pe to lffiin v~/vk is limited by the 
Coulomb acceleration effect, and at distances 
r . v2 /v2E to rD it is limited by the particle drift mm e 

in the electrical field. Formulas (3.35)-(3.38) 
correspond to the case when the particles of both 
species are magnetized. The first terms of (3.35) 
and (3.36) coincide with the first term of formula 
(3. 8), while the first and second terms in the right 
side of (3.37) and (3.38) coincide with the first and 
second terms of (3.9). The corresponding discus
sion was presented above. The second term in 
(3.35) and the third term in the right side of (3.37) 
correspond to the interaction of the particles at 
impact parameters from the Larmor radius of the 
ion to the radius of the Debye sphere. The time of 
interaction for these values of the parameters is 
limited because of the particle drift. The second 
term of (3.36) and the third term of (3.38) corre
spond to the region from Pi to rminv~/v};, where 
the time of interaction is limited by the effect of 
the Coulomb acceleration. Finally, the third term 
in (3.36) and the fourth in (3.38) pertain to the 
region r . v2 /v2E to rD' where the interaction is mm e 
limited by the particle drift in the electric field. 

In analogy with the transition from (3.6)-(3.10) 
to the formulas (3.11)-(3.15), a transition is also 
effected from (3.33)-(3.38) to formulas (3.39). In 
this transition the last term in (3.33)-(3.38) is 
replaced by two terms. The first of these terms 
corresponds to the region of impact parameters 
smaller than vE/w, in which the time of interaction 
is limited by the same mechanism as in formulas 
(3.33)-(3.38). The second term corresponds to the 
region of impact parameters extending from a dis
tance through which the particles separate with 
drift velocity during one period of the external 
field to the radius of the Debye screening. At these 
impact parameters, the time of interaction of the 
particles is limited by the period of the external 
field. 

As a result we have: 

vi DE 
rmin-2 < Pe <- < rn, VE >vi; 

DE W 

L _ I e rmn I e e +I E l e v ( r · )'/, v ( p )'/, v 3 v 
1- n -- n-- -- n n-

vE\ Pe VE rmin W Ve2 rmin VE 

Ve2 ~VE ...-
Pe<rmin-2<-...._rD, vE>vi; 

DE W 

p; Ve VE Ve 1 rnw vi 
L1 = In -ln -- + In --ln- + 2-ln -ln --, 

P• Vi WPi VE vE vErnw 

rmin vi rmin Ve2 VE 
---<--- p.<pi<-<rn; 

Vi2 VE2 ' (J) 
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p; De De ( rmin )'/, De ( Pi )'" L1 = ln --ln - + ln -- -- ln- --. 
Pe D; Db\ p; DE rm,1n 

DE3 De 1 ro w De2 
+ ln 2 ln -- +- ln-_:_-ln-- --, 

WDe rmin DE 2 DE DErDW 

DE De 1 rDW De2 
+In --ln-+-ln --ln--, 

Wpi DE 2 DE DErDW 

De2 De2 DR 
Pe < rmin -- < rmin ---.- < Pi < -- < rD; 

D;2 DE" (!) 

L _ 1 De ( rmin )'/,1 De ( Pe \ '/, + 1 p;D;2 I De 
1- n- -- n-- -- n--- n-

D;' Pe D; rmin rminDe2 D; 

+ 1n De ( rm~~~ )'\n ~~( ~)'12 
DE Pi DE rmin 

DE3 De .1 rDW De2 
+In-2---1n-+-In--1n---, 

WDe rmin DE 2 DE DErDW 

(3.41) 

As can be seen from (3.33)-(3.41), L1, and 
therefore also v 1• depends explicitly on the ex
ternal field. Therefore, if the conditions defined 
by the inequalities in (3.33)-(3.41) are satisfied, 
we are actually dealing with a nonlinear dependence 
of the current on the electric field. Therefore, 

(3.39) generally speaking, the frequency of the collisions 
turns out to be a function of the time. We note that 

If the average distance traversed by the elec
trons during the period of the oscillations of the 
external field is smaller than the radius of the 
Debye screening, we have 

De fDEDe 
L1=ln-1n--

DE Wpe ' 

D82 D.Z DE De 
rm;n--2 < rmin2 < Pe < -"<- "< rD; 

DE D; (!) (!) 

L _ l De ( rmin )'1'1 De ( Pe )'/, + l DE3 l De 
·1- n- -- n- -- n n-

DE Pe DE rmin WDe2rmin DE 

(3.40) 

In the case when the Larmor radii of the parti
cles of both species are smaller than the Debye 
radius, the following formulas also hold true: 

when a wave of circular polarization propagates in 
a plasma along the magnetic field, the velocity of 
the electric drift, that is also the transverse fre
quency of the collisions, does not depend on the 
time. 
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