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It is shown that in a completely ionized plasma with an electron temperature T which con-
siderably exceeds the ion temperature T;, the effective collision frequency of the particles is

proportional to Tg'/2T{!. The effect of Coulomb interaction between the particles on the time
they spend in the region of action of the forces is taken into account. Weak nonlinear effects

of removal of the particles from the interaction region as a result of electric drift are de-

tected.

INTRODUCTION

THE theory of diffusion and conductivity of a fully
ionized laminar plasma in a strong magnetic field
was developed in several papers. In the present
article we shall deal with a fully ionized non-iso-
thermal plasma situated in such a magnetic field
that the Larmor radii of the particles become com-
parable with or even smaller than the Debye-
screening radius. The difference between the
results obtained below for the transverse diffusion
coefficient and the corresponding results of other
papers[l'sj lies in the fact that along with the usual
double-logarithmic additions to the Coulomb logar-
ithm there arise in our analysis also additive
terms, proportional to the ratio of the difference
between the electron and ion temperatures to the
ion temperature. Therefore, under the conditions
when the electron temperature (Tg) is one order of
magnitude larger than the ion temperature (Tj),
the transverse frequency of collisions, which de-
termines the coefficient of transverse diffusion
and the transverse conductivity, can turn out to be,
as shown helow, proportional to Tgl/2T;".
Comparing this dependence with the Tg3/2 law,
which follows from the theory of plasma transport
phenomena in a weak magnetic field,[‘;] we can
state that under the conditions of interest to us an
appreciable increase in the coefficient of trans-
verse diffusion takes place. Moreover, whereas in
the isothermal case the order of magnitude of the
coefficient of transverse diffusion remained in fact
unchanged, owing to the increase in the time of
interaction between the magnetized particles, in
the non-isothermal case which we are considering

(Te > Tj), we must speak of both the occurrence

of a new qualitative dependence on the ion tempera-
ture and of a change in the order of magnitude.

The result obtained by us for diffusion and for the
static transverse conductivity is in partial agree-
ment with one of the results of Lovetskiil™ for

the high-frequency dielectric constant of a non-
isothermal plasma in a range of frequencies ex-
ceeding the Langmuir frequency of the electrons.
We present below also the results for the frequency
dependent dielectric constant of a plasma. Com-
pared with[™, first, we have greatly broadened

the frequency range and, second, we took into ac-
count the influence of the Coulomb interaction of
the particles on the time during which the colliding
plasma particles interact, and third, we considered
weakly nonlinear effects of the outward electric
drift of the particles from the interaction region.

1. INITIAL EQUATIONS AND THE GENERALIZED
OHM’S LAW

To construct the theory of conductivity and
diffusion of plasma, we make use of a kinetic equa-
tion that takes into account the influence of strong
fields on the motion of particles during the time of
the collision. Such a kinetic equation is of the
form s,9]
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where ey, m,, Ty, Vy, and P, are respectively the
charge, mass, coordinate, velocity, and momentum
of a particle of species a; Q4 = egB/myc—gyro-
scopic frequency. The distribution function f, is
normalized to Ny, which is the number of particles
per unit volume. Finally, Uy, is the energy of the
Coulomb interaction of a pair of particles. At
large distances, the Coulomb interaction is as-
sumed to be screened. At small distances, when
perturbation theory breaks down or it becomes
necessary to use a quantum-mechanical analysis,
the Coulomb interaction, as is well known, 1 is
effectively weakened. We shall therefore assume
that at small values of the argument Ugy(r) van-
ishes.

In order to obtain from (1.1) the generalized
Ohm’s law for spatially homogeneous distributions,
we shall assume that the particle distribution func-
tions entering into the collision integral of (1.1)
are of the form?t1!
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where f,,(Py) is the Maxwellian distribution. In the
high-frequency limit for relatively rare collisions,

*[vaBl= v, xB.
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such an assumption corresponds to the assumption
customarily used in the theory that obtains the re-
sults in the form of an expansion in powers of the
collision frequency.

We shall be principally interested in the conduc-
tivity transverse to a strong magnetic field, for
which, as is well known, the theory is analogous in
many respects to the high-frequency limit. There-
fore formula (1.4) will yield exact results if we can
assume that the inequality |Q2% — w| > v? is satis-
fied. Here w is the frequency of the alternating
electric field and v is the collision frequency, an
explicit expression for which will be obtained below.

Let the electric field depend on the time like

E(t) = D\ E, cos(ot + 8,).

Then, substituting in the right side of (1.1) functions
of the form (1.4), we obtain the generalized Ohm’s
law (see[“])
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Vg = (kT4/my)!2 is the thermal velocity of parti-
cles of species a, k is Boltzmann’s constant, and
T, is the temperature.

Finally,

Tmax (k) = k=" eaty | "2 (mamy [ ma + my) ',

This quantity results from allowance for the fact
that the Coulomb interaction causes the particles
to be displaced from their trajectories.[4’5] Un-
like the paper by one of the authors'!J, in which
the influence of a strong field was considered, we
are interested here in the case of weak fields.
Namely, we shall assume below that the velocity
of the relative motion of the charged particles,
resulting from the action of the electric field, is
small compared with the thermal velocity of the
electrons.
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It is easy to see that
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where Bp; =B p, B| =[Bxp|, p=p, —pp, and 6
is the angle between the direction of the magnetic
field and the vector k.

In the approximation linear in the electric field,
formula (1.8) takes the form
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The presence in (1.9) of the factor sin(wT/2)
makes it necessary to carry out the integration
with respect to 7 for the dissipative part of the ex-
pression for J,, which is the only one in which we
shall be interested below, to values which do not
exceed 1/w. Then
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In the case of weak fields, in which we are inter-
ested, there is still another reason for cutting off
the integration with respect to 7 on the high side.[12]
Namely, the colliding particles can leave the inter-
action region under the influence of the electric
field. Therefore the particle drift in the electric
field imposes an upper limit on the time 7 during
which the colliding charged plasma particles inter-
act. The drift along the magnetic field corresponds
to the maximum possible interaction time:

7 = [wkp;(0) cos 8]

Similarly, the drift transverse to the magnetic
field leads to a maximum time

7, = [wkp (0) sin 0]

The corresponding cutoff in (1.8) arises automati-
cally because of oscillations of the integrand.

It must be noted that, strictly speaking, the con-
cept of the dielectric tensor which is customarily
used in the linear theory can be employed here
only if the electric drift is negligible, for only then
does the current depend linearly on the field. The
dissipative (antihermitian) part of the dielectric
tensor of a plasma consisting of electrons and a
single species of ions is of the form
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Here wy, = (417Nee2/m)1/2 is the electron Langmuir
frequency.

2. DIFFUSION TRANSVERSE TO THE MAGNETIC
FIELD AND TRANSVERSE STATIC CONDUC-
TIVITY

The formula for the transverse static conduc-
tivity of the plasma, as follows from (1.12), can be
written in the following form:
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o (2.1)
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where
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According to Einstein’s relation, (6] we have for
the coefficient of transverse diffusion
nTe
mQ2 vert(0)-
Therefore it is sufficient to consider in what follows
the expression for the transverse collision fre-
quency. In the limit of weak magnetic fields, when
the Larmor radii of the particles greatly exceed
the Debye screening radius rp, formula (2.2) gives
the well-known expression for the effective colli-
sion frequency:

D= (2.3)
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(2.4)
We assume here that MT; » mTgs. We shall as-

sume this inequality to be satisfied throughout.

In a strong magnetic field, when the Debye rad-
ius greatly exceeds the Larmor radius of the elec-
trons pg, formula (2.2) can be approximately repre-
sented by
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In view of the appearance of large logarithms,
we can write, accurate to the principal terms, the
following asymptotic expressions for the trans-
verse collision frequency:
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Here pj = v;i/Qj is the ion Larmor radius.

In the limit of equal temperatures, formulas
(2.9)—(2.13) correspond to formulas (3.5)—(3.10)
of the paper by Aliev and one of the authors. t5]
What is essentially new in our formulas is the oc~
currence of a term containing (Tg — T)/Tj. This
term can become the largest if To/Tj > 5—10.
Therefore in a strong magnetic field and for a
sharply non-isothermal plasma with an electron
temperature much larger than the ion temperature,
the transverse effective collision frequency is in-
versely proportional to the ion temperature and to
the square root of the electron temperature, and
not to the temperature of the electrons raised to
the 3/2 power, as in the case of a relatively weak
magnetic field {formula (2.4)] or when the electron
temperature does not exceed the ion temperature
greatly. It must be emphasized that the ratio of the
electron and ion temperatures must still not be
larger than the ratio of the ion and electron masses,
for otherwise the assumption which we made,
namely that the Larmor radius of the electrons is
smaller than that of the ions, will no longer be
valid.
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3. DEPENDENCE OF THE TRANSVERSE COLLI-
SION FREQUENCY ON THE ALTERNATING
FIELD

As seen from (1.11), the transverse collision
frequency of the electrons and the ions depends
both on the frequency and on the magnitude of the
alternating electric field. In the region of frequen-
cies larger than the Langmuir frequencies of the
electrons, it is well known that the effective colli-
sion frequency has a logarithmic dependence on
w. M ma strong magnetic field, the correspond-
ing dependence on w was considered earlier,[ 7%
The results presented below greatly extend the
values of the alternating-field frequencies for
which the dependence of Véi on w turns out to be
appreciable. In addition, more accurate criteria
are obtained for the applicability of the previously
known formulas, and new expressions are obtained
for the transverse collision frequency if these
criteria are violated. Because of a consistent ac-
count of the relative drift of the charged particles
of the plasma in the magnetic and alternating elec-
tric fields, we obtain below a weakly nonlinear
(logarithmic and double logarithmic) dependence
of the collision frequency on the electric field in-
tensity. Compared with[u], in this respect the
difference consists, first, in the disclosure of a
qualitative increase in the transverse collision
frequency due to the non-isothermal nature of the
plasma, and, second, in the fact that the formulas
obtained below for the weakly-nonlinear dependence
on the field contain information on the dependence
of the effective collision frequency on the time,
which in fact determines the occurrence of new
field harmonics in the plasma.

An appreciable dependence of the collision fre-
quency on the magnetic field arises under condi-
tions when the radius of gyroscopic rotation of the
electrons is small compared with the radius of the
Debye screening and compared with the ratio of the
thermal velocity of the electron to the frequency of
the alternating field. Being interested precisely in
this case and bearing in mind the appearance of
large logarithms, we can write an expression for
the transverse collision frequency in the form (2.5),
the only difference being that L; and L, are func-
tions of the alternating-field frequency
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Here & (x) is the probability integral, and the func-
tion ¢ (¢) is determined by expression (2.8).

In (3.1) and (3.2) we introduce the following
dimensionless variables:

Q1
® = pekr E == 2 )
Pe Pe
Hmin =— —, Hmax — ;
p T'min

& max(k) is defined as follows:
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Here the relative electric drift velocity is vy |
= pr_,“(O). The values of pJ_’“(O) are determined
in accordance with (1.9) for 7 = 0.

We first analyze the case when the nonlinear
effects of the electric particle drift are insignifi-
cant, that is, the values of L; and L, do not depend
on vE. Here, as already stated in the first section,
the usual concept of the dielectric tensor is mean-
ingful. Therefore, bearing in mind formula (1.2)
and giving below asymptotic formulas for the func-
tions L and L,, which are connected with the trans-
verse collision frequency by formula (2.5), we de-
termine by the same token the w-dependent trans-
verse conductivity of the plasma.

As in Sec. 2, we shall determine L, with doubly
logarithmic accuracy. The integration ranges with
respect to k and £ are limited by the conditions

Amin << % << 1, 1 <<E << Emax, ®g > 1,
wp <1, E<Qo.

The entire region of possible impact parameters

is subdivided into several intervals, the number of
which coincides with the number of different mech-
anisms which limit the interaction of the particles
in time. Let us list these mechanisms. First,
limitation by the period of the external field w 10187,
second, departure from the interaction region due
to the electric drift; third, the displacement of the
particles from their trajectories because of Cou-
lomb interaction, and, finally, fourth, the departure
of the free ion from the interaction region. The
latter takes place for impact parameters smaller
than the Larmor radius of the ion. The number of
the doubly logarithmic terms in L; coincides with
the number of the indicated intervals. In this con-
nection, L, can be represented in the form

L=%2mﬂM§ﬂ§.
kR

Ty Thit Tr

(3.4)

(3.5)

Here the argument of the first logarithm repre-
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sents the ratio of the final and initial values of the
impact parameters, which limit one of the intervals
into which the entire region of impact parameters
is subdivided. In each such interval there appears
one of the possible causes which limit the interac-
tion of the particles in time. In the numerator of
the argument of the second logarith there appears
the product of the minimum and maximum interac-
tion time for a given impact-parameter interval.
The product of the impact parameters which limit
the considered interval enters in the denominator
of the argument of the second logarithm.

We present first the values of L; which do not
depend on w. This occurs when the period of the
oscillations of the external field is much larger
than the time during which the interaction of the
particles will be limited either by the Coulomb
acceleration mechanism, or by the aforementioned
free emergence of the unmagnetized ion. In this
case we have
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In formulas (3.6)—(3.10) the speed of the electric
drift is defined as follows: vg = max{vg, vg}.
With the aid of (3.5) we shall analyze the fore-
going formulas. In (3.6) the interaction of the par-
ticles at arbitrary impact parameters in the region
from pg to rp is limited by the free emergence
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from the interaction sphere. In (3.7), at distances
from pe to rmmve/v the interaction is limited by
the effect of the Coulomb acceleration, and from
rmmve/v2 to rp it is limited by the free emergence
of the ion. Formulas (3.8)—(3.10) pertain to the
case when both species of particles are magnetized.
The first term in (3.8) corresponds to the region of
impact parameters from the electronic to the ionic
Larmor radii. In this region the interaction is
limited by the free emergence of the ion. The
second term of formula (3.8) and the third formu-
las of (3.9) constitute the contribution made to L,
by the interaction of the particles at impact dis-
tances larger than the Larmor radius of the ion
and smaller than the Debye radius. In this region
the time of interaction is limited by the effect of
the Coulomb acceleration. In Eq. (3.9) the first
term corresponds to the region of impact parame-

ters from pe to roinV é/v , in which the interaction

time is limited by the Coulomb acceleration effect,
and the second corresponds to the region rminvze/vi
to pj, where free emergence of the ion takes place.

The presence in formula (3.10) of only one term
is connected with the fact that here, in the entire
region of impact parameters from the electronic
Larmor radius to the Debye-screening radius, the
interaction of the particles is limited by the mech-
anism of Coulomb acceleration. It must be pointed
out that in the case of a non-isothermal plasma
formulas (3.6)—(3.9) go over into formulas
(3.5)—(3.9) from[5], and are also a generalization
of the results obtained by Golantt4J to the case of
a non-isothermal plasma.

We present below formulas which are close in
their structure to formulas (3.6)—(3.10), but in this
case L, depends explicitly on the oscillation fre-
quency of the external field. We have:
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The transition from formulas (3.6)—(3.10) to
the expressions (3.11)—(3.15) can be explained in
the following manner. If the maximum time of in-
teraction becomes smaller than the period of the
oscillations as the frequency of the oscillations of
the external field increases, then the last term in
(3.6)—(3.10), corresponding to the impact-parame-
ter region bounded by the Debye radius, goes over
into the two last terms of formulas (3.11)—(3.15).
Thus, the last term in (3.11) and (3.12) corresponds
to the region of impact parameters between the
Debye radius and the average distance traversed
by the ion during the period of field oscillation. In
formulas (3.13)—(3.15) the last term is due to the
interaction of the particles in the interval of values
of the impact parameters from réﬁn (Vo /w)z/3 to the
radius of the Debye sphere. The last term of
formulas (3.11)—(3.15) corresponds to the region
of those values of the impact parameters, in which
the time of interaction does not exceed the period
of oscillation of the external field.

With further increase in frequency, we obtain in
place of (3.13)
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The first term in formulas (3.16)—(3.18), as in
(3.13), corresponds to the region of impact param-
eters between the electronic and ionic Larmor
radii. In this region the time of interaction is limi-
ted by the free emergence of the ion. The second
term in (3.16) is due to the interaction of the parti-
cles at distances larger than the Larmor radius of
the ion and smaller than the radius of the Debye
sphere; the time of interaction does not exceed
here the period of oscillation of the external field.
The second term in (3.17) corresponds to the region
between the ionic Larmor radius and the average
distance which the electron traverses during one
period of the external field. It is precisely this
distance which plays here the role of the maximum
impact parameter. The third term in (3.18) corre-
sponds to the region of impact parameters from

gfm(v /w)z/3 tov /w, and the second to the region
from the ionic Larmor radius to rmm(v /o.))Z/3

In analogy with the transition from (3.13) to
formulas (3.16)—(3.18), there occurs also a transi-
tion from (3.14) to the following formulas:

Li—In' A(ﬁﬁ') In ’;’e(—p‘-’—)'/+1 e ve
Ui Pe Ui > T'min FminVe? Ui
r
—I—ln~21n ,
pi  ©Ypirp
2 E
pe<rm1n <P1<rD< *»
s
> >,,, rmm< )", (3.19)
w w/
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! Ui\ Pe vl\rmm rm-nve2 vy
+’1 1n2 ve ’
2 Uin
%] . Ve 2[3
pe<7'mm <pz< < <rD, pi>;rmin/f(zo‘> ;

(3.20)
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In the case when at all impact parameters the

time of interaction is bounded by the period of os-
cillation of the external field, we have

1 Qe
_ zﬁ
L1 5 In " N

(3.21)
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Ve Ve

Pe << —<<Tp,Pe~,
(0] Ui
(3.22)

A contribution is made to (3.22) by the region of
impact parameters between the Larmor radius of
the electron and a distance on the order of the
average path of the electron over the period of the
external field. If this path exceeds the radius of
the Debye screening, and the time of interaction
for all values of r is limited by the quantity w™! as
before [in (3.22)], we have

r ), v v 3/2
Li=mPhm—2—, p<m<®<®p, 2, 2
Pe  ®Yrppe o} v; Vg r?/rzlm

(3.23)

In the case when the average path of the electrons
over the period of the external field is smaller
than the Debye radius, and the average path trav-
ersed during the same time by the ion is larger
than po, L, can be represented in the form of one
term [formula (3.24)], in which account is taken of
both the contribution from the region pe to Vi/w
(where free emergence of the ion takes place), and
the contribution from the interaction in the region
from v;/w to ve/w:

L — 1% 17
Ui (Ope

U2

rmmf < Pe < < < r7p, vEg < Ui (3.24)

If the path covered by the electron during the
period of field oscillation is smaller than the
radius of the Debye sphere, the following values of
L, are also possible:

Ly ‘171 S_z_e(rmm)/ vepe +- Ve
9 o\ pe/ © r/z O I'min |
2fs 2 2
UE Ue ve 1%
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\ (0] 171‘2 UE2
(3.25)
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1 Ve
ZIn2-f
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Pe << rmm < < < 'p, Vg > V. (3.26)

The second term in (3.25) differs from the second
term of (3.15) in the fact that the region of the im-
pact parameters is limited not to the value of the
Debye radius, but to the average distance which is
traversed by the electron during one period of the
external field. Analogously, formula (3.26) differs
from formula (3.12) in that in the last term rp is
replaced by the quantity ve/w. The first term in
(3.25) coincides with the first term in (3.15).

It must be noted that in the case of an isothermal
plasma formulas (3.6)—(3.26) go over into the re-
sults of the work of one of the authors.[!4) The
values of L; in (3.17), (3.22), and (3.24) coincide,
respectively, with the values of the doubly-logar-
ithmic terms in (10b), (10), and (102a) ofL"3, where
the case w > wy,e is considered. However, the
limits of applicability of these formulas differ,
since, in particular, it was assumed inl™ that the
radius of the Debye screening of the non-isothermal
plasma coincides with the Debye radius of the iso-
thermal plasma.

Carrying out, with logarithmic accuracy, the
integration in formula (3.8), we can readily verify
that a nonvanishing result is obtained only when

VE < vi. We ultimately obtain
r ve? ;
L=I"", rmm—<pe<rp<pi', (3.27)
Pe Uj (O]
rp v V2 ;
Ly=ln"—", pe<rmin°’—2—<rn<pi,"i, (3.28)
T'min Ue b
Lzzlnpfiv rmtn <Pe<p1<l,rp, (3.29)
Pe ®
0iU:2 v;
Ly=1In - ) pe<rm1n <pz<—l,7‘D, (3.30)
'min Ve ®
; L’.
Ly=1n - ) rm‘m < Qe < < Pi, 'p, (3.31)
®P;
v; 3
Ly = =In-—0- ) Pe << rmm. < < Pi, I'D. (3 32)
O T'min U

We note that L, does not contain logarithmic ex-
pressions if

f v . 2
m(axlpe, rmin;é‘ = miny 7p, pi,—of) .
1

We point out that formula (10a) int™ contains a
logarithmic term proportional to Te/Tj, but the
argument of the logarithm, unlike in formula (3.34),
contains ve/wpe. The difference from(™ is due
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also to the limits of applicability. This is connec-
ted both with the established new effects in our
work, and with the use of the correct expression
for the Debye screening radius.

Let us turn to consider those values of L;, for
the determination of which it is essential to take
into account the electric drift of the particles. In
the case when in the entire interaction region,
from the electron Larmor radius to the radius of
the Debye sphere, the time of interaction of the
particles does not exceed the period of oscillations
of the external field, we have

Li—=ln2m?,

rm‘m <Pe<rD<‘— Vg = Uj;
Pe VE
(3.33)
- Y 2
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Formula (3.33) differs from (3.6) in that v; is
replaced by v, for at any value of the impact
parameter the drift terminates the interaction of
the particles earlier than the mechanism of free
emergence of the ion. The difference between
(3.34) and (3.7) is connected with the replacement
of vi by vg. The time of particle interaction at
distances pg to 1, ;) V2/v§ is limited by the
Coulomb acceleration effect, and at distances

mmve/v to rp it is limited by the particle drift
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in the electrical field. Formulas (3.35)—(3.38)
correspond to the case when the particles of both
species are magnetized. The first terms of (3.35)
and (3.36) coincide with the first term of formula
(3.8), while the first and second terms in the right
side of (3.37) and (3.38) coincide with the first and
second terms of (3.9). The corresponding discus-
sion was presented above. The second term in
(3.35) and the third term in the right side of (3.37)
correspond to the interaction of the particles at
impact parameters from the Larmor radius of the
ion to the radius of the Debye sphere. The time of
interaction for these values of the parameters is
limited because of the particle drift. The second
term of (3.36) and the third term of (3.38) corre-
spond to the region from p; to r ;v e/VE, where
the time of interaction is limited by the effect of
the Coulomb acceleration. Finally, the third term
in (3.36) and the fourth in (3.38) pertain to the

. 2 . . .
10 n
regionr . Vv e/v to r'ns where the interaction is

limited by the particle drift in the electric field.

In analogy with the transition from (3.6)—(3.10)
to the formulas (3.11)—(3.15), a transition is also
effected from (3.33)—(3.38) to formulas (3.39). In
this transition the last term in (3.33)—(3.38) is
replaced by two terms. The first of these terms
corresponds to the region of impact parameters
smaller than vE/w, in which the time of interaction
is limited by the same mechanism as in formulas
(3.33)—(3.38). The second term corresponds to the
region of impact parameters extending from a dis-
tance through which the particles separate with
drift velocity during one period of the external
field to the radius of the Debye screening. At these
impact parameters, the time of interaction of the
particles is limited by the period of the external
field.

As a result we have:
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If the average distance traversed by the elec-

trons during the period of the oscillations of the

external field is smaller than the radius of the

Debye screening, we have
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In the case when the Larmor radii of the parti-
cles of both species are smaller than the Debye
radius, the following formulas also hold true:
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(3.41)

As can be seen from (3.33)—(3.41), Ly, and
therefore also v |, depends explicitly on the ex-
ternal field. Therefore, if the conditions defined
by the inequalities in (3.33)—(3.41) are satisfied,
we are actually dealing with a nonlinear dependence
of the current on the electric field. Therefore,
generally speaking, the frequency of the collisions
turns out to be a function of the time. We note that
when a wave of circular polarization propagates in
a plasma along the magnetic field, the velocity of
the electric drift, that is also the transverse fre-
quency of the collisions, does not depend on the
time.
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