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Collapse of nonsymmetric and rotating masses is considered. It is shown that the charac­
teristic pattern of gravitational self-closing valid for the spherical case also holds in the 
general case. Moreover, collapse of a nonrotating body leads to a t-1 damping of quadrupole 
and higher field moments for an external observer. The field of a collapsing rotating body 
changes in a different manner. Metric changes related to a rotating local inertial system 
approach a nonvanishing constant. However, qualitatively the collapse picture remains the 
same as in the spherical case. Static nonspherical solutions of the Einstein equations are 
also investigated and in particular the properties of the g00 = 0 Schwarzschild surface in these 
solutions are analyzed. 

1. INTRODUCTION 

As is well known, stars with M > ~1.6M() have 
an evolution such that they contract without limit. 
The theory of this phenomenon, for a simple model 
of a spherical body, has by now been clarified to a 
considerable extent (see the review[t], wher: ref­
erences to original papers can be found). A char­
acteristic feature of the process is the gravitational 
self-closing of a body, manifest in the fact that 
after contraction to a critical dimension, the grav­
itational field of the body emits neither radiation 
nor information. This critical dimension is deter­
mined by the gravitational radius Rg = 2Gm/c2, 

where G is Newton's gravitational constant, c-
the velocity of light, and m-the mass of the body. 

In close relation with self-closing is the fact 
that, from the point of view of a remote observer, 
on approaching Rg the evolution slows down, and 
the observed picture approaches asymptotically 
(as t- oo) a certain limiting state, which, how­
ever, is not at all an equilibrium state. This ap­
parent stoppage is a result of the slowing down of 
the time in the strong gravitational field, and for a 
contracting body the Doppler effect only intensi­
fies this deceleration as seen by a remote observer. 
Thus, the apparent stoppage of the contraction is 
brought about by the same factors as the red shift 
of the emitted spectrum and self-closing. 

This raises the question whether the picture is 
general, whether it has any special connection with 
the symmetry of the problem, and whether the de­
ductions remain in force also in the general non­
spherically symmetrical case. The statement that 
the picture remains qualitatively the same also in 
anonspherically symmetrical collapse was advanced 

earlier[ 2] (see also[3] concerning the stability of 
the Schwarzschild solution). In this paper we 
present a proof of this far from obvious statement. 

By way of a first attempt at finding the asymp­
totic nonspherical solution, it is natural to seek 
the stationary solutions by starting from the as­
sumption that the collapse is seen by an external 
observer as a monotonic process and that as 
t- oo all the a/at- 0. This assumption is 
proved in Sec. 3. 

An analysis of the static solution outside the 
body shows that the deviation from the spherical 
solution, which is caused by a change in the source 
of the field, leads to the appearance of true singu­
larities of space-time on the Schwarzschild surface 
g00 = 0. On the other hand, in the co-moving sys­
tem of a contracting body with small initial devia­
tions from sphericity in the density distribution, 
the instant when the surface of the body crosses 
the Schwarzschild surface is in no way specially 
distinguished, and is not accompanied by the ap­
pearance of true singularities either in the metric 
or in the density. A comparison of these results 
leads to the conclusion that the quadrupole and 
higher multipole moments of the external gravita­
tional field attenuate during the relativistic stages 
of the collapse of an asymmetrical body. 

Deviations in the stationary metric from 
sphericity, connected with the components g~, 
i.e., with the rotation of the local inertial system 
relative to a far inertial system, and the fields 
induced in the source by the ''rotational'' motions, 
do not lead to singularities when g00 = 0. During 
the process of collapse these deviations do not 
vanish. We note that the "rotational motions" 
are not necessarily connected with the rotation of 
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the body as a whole, and arise, for example, as a 
result of tangential velocities when an asymmet­
rical body is compressed. We present below a 
rigorous proof of the advanced considerations. 

2. STATIONARY SOLUTIONS 

In the spherically symmetrical case, the field 
is given by the known Schwarzschild solution and 
is static independently of the "spherically sym­
metrical" motion of the central mass which pro­
duces the field. r 4J The solution contains a critical 
surface-the Schwarzschild sphere Ss, character­
ized by the condition g00 = 1 - Rg /R = 0. Near 
this surface, the red shift of the radiation line, 
emitted by a source at rest and received by a 
remote observer, is given by the expression 

where l is a small distance from Ss, 

- ( R )''• dl=1g11 dR= R-Rg, dR, l = 2 [Rg(R- Rg)]'''· 

The observed frequency tends to zero as 
l - 0. For a stationary external observer, a 
light ray and a trial particle can approach Ss 
only asymptotically, after an infinite time. For 
both the light ray and for the freely falling trial 
particle, this time is logarithmically infinite 

Rg Rg 
t~-ln---. 

c R-Rg 

The four-dimensional space-time has no sin­
gularity on Sg, and in particular, when R = Rg 
the curvature scalar K = Raj3yoRa{3yo, where 
Raj3yo is the Riemann tensor, has a fully defined 
finite value K = 12/R~. If the field source has 
dimensions smaller than Ss, then the Schwarz­
schild solution in the vacuum can be continued 
inside Ss into the so-called T-region. [ 5•6] 

a) Static field with axial symmetry. Regge and 
Wheelerl 3J considered the nonspherical problem 
in vacuum by the method of small perturbations 
superimposed on the Schwarzschild solution. 
From the solution of the equations for small per­
turbations, given in [a], we see that in the station­
ary case any perturbation that decreases at in­
finity increases without limit on approaching the 
Schwarzschild sphere of the unperturbed problem. 
It follows therefore that no matter how small the 
deviations from spherical symmetry at a finite 
distance from Ss, the method of small perturbations 
used by Regge and Wheeler[3] cannot give a correct 
answer up to Ss itself. 

The static problem for some form of an axially 
symmetrical field of the quadrupole and higher 

multipoles was solved by Erez and Rosen[1J with 
the aid of Weyl's method. [s] The corresponding 
expression for the interval for the quadrupole 
field, with the error contained in l 7J corrected by 
us, can be found in Appendix I. In this field, the 
surfaces of constant g 00, i.e., of constant gravita­
tional potential, are singly-connected, closed, and 
imbedded in one another so that they do not differ 
topologically from the spherically symmetrical 
case, where they were concentric spheres. How­
ever, as g00 - 0 the metric of the surfaces g00 

= const differs radically from the metric of a 
sphere. In particular, for a positive quadrupole 
moment (the body is elongated along the axis like 
a cucumber), the length of the equator tends to 
zero, and the length of the meridians to infinity as 
go0 - 0. The area of the surface g00 = const tends 
to infinity (but each surface with larger area lies 
completely inside the preceding surface with 
smaller area). The light and the freely-falling 
particle reach the surface g00 = 0 within a finite 
time of the external observer ( see ApJ>endix I). 
Finally, the invariant K = Ra{3yoRaj3y , which 
characterizes the total curvature of space-time, 
becomes infinite for q "" 0 as g00 - 0 like q 2/goo· 

These results are not limited to a quadrupole 
only, and are, as shown in Appendix II, general 
for any static axially-symmetrical solution. 

b) External field of a rotating body. We now 
consider the deviations from spherical symmetry 
connected not with the change in the distribution of 
the masses in the field source, but with rotation. 
Kerrl 9] obtained an exact solution of Einstein's 
equations in vacuum. This solution describes the 
field of a body of mass m with total momentum 
M = arne, where a is a constant with the dimen­
sion of length. For a body whose particles possess 
only rotational motion about a symmetry axis, the 
only nonvanishing-diagonal component of the 
metric, in a suitable coordinate system and in an 
external field, is g 03 • This follows immediately 
from symmetry considerations and from the equiv­
alence of the past and of the future. Kerr's solu­
tion contains non-removable off-diagonal compo­
nents g~J-V' in addition to g03 • Consequently, if this 
solution is realized as an external field of some 
stationary body, then the particles of the material 
of the body should execute not only rotational 
motion about the symmetry axis, but also some 
other motions (for example, such as rising at the 
poles and dropping at the equator), leading to non­
equivalence of the past and the future. An analysis 
of Kerr's solution[ 15] leads to the following con­
clusions. 

1) For arbitrarily small but non-vanishing a, 
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the lengths of the "parallel" Lon the surface 
goo = const [these lengths are proportional to 
( - g33 + gij3 /goo) 112 at IJ = const and g00 = const I 
tend to infinity as g00 - 0. The asymptotic value 
of L is of the form 

L = 2:rta sin2 8 I "Jf g00 • 

2) The precession of a gyroscope away from 
the body is determined by the known expression [ 4]: 

Q 2 = c2a2RiR-6 ( 1 + 3 cos2 8). 

Near Ss the precession in local time tends to 
infinity. 

3) The scalar K, unlike the preceding type of 
deviations from spherical symmetry, does not 
have singularities on Ss and, in particular, we 
have on the equator, as in the Schwarzschild solu­
tion on Ss, 

K = 12 I Rg', Rg = 2Gm I c2. 

In this solution the field in vacuum can be con­
tinued inside Ss into the T-region. Kerr's solu­
tion has a space-time singularity (like Schwarz­
schild's solution) at R= 0. 

4) A light ray traveling towards Ss in the di­
rection of the pole, and light rays traveling in the 
plane of the "equator," reach Ss after a logarith­
mically infinite time of the external observer. 
(The clocks are synchronized here against the 
trajectories of the rays.) 

In Appendix III we give the field of a slowly 
rotating sphere with a « Rg. This solution is 
valid not only far away, where R » R , but also 
near Ss. In this solution of the equati~ns of small 
perturbations superimposed on the Schwarzschild 
field, only the terms linear in a and the higher 
mechanical moments are retained in the correc­
tions to the components g v• and the terms with 
a 2 and higher order have been discarded. Those 
of the effects of Kerr's solution on g00 = 0 which 
depend on the linear corrections to g v are re­
tained in this solution, too. In particJlar, we have 
here 

Kl goo=O = 12 I Rg' < 00 1 

and the rotation does not give terms of first order 
in a. 

c) Schwarzschild sphere in an external quadru­
pole field. There exist solutions of Einstein's 
equations in which there is a surface Ss which 
does not qualitatively differ at all from the 
Schwarzschild surface for the spherical case. In 
this case, however, the deviations from spherical 
symmetry should be brought about by the external 
field. For example, if we can consider a spheri-

cal mass in an external quadrupole field (which 
increases with increasing distance from the mass 
m) then the exact solution of Einstein's equations 
in vacuum is of the form given in Appendix IV. In 
this field the surface Ss is a Schwarzschild sphere 
deformed by the external fields, with all its prop­
erties. 

3. COLLAPSE OF A PERTURBED SPHERICAL 
DUST CLOUD 

Let us consider the motion of the dust in a co­
moving reference frame. 1> It is known (see [ 4]) 

that in spherically symmetrical motion in this 
reference frame the transition to Ss occurs with­
in a finite time, and in this system Ss is no singu­
larity whatever. The density of matter in this case 
is finite, and its order of magnitude is p .t = 2 

16 ( I 2 3 en x 10 Mo M) g/cm . The spherically symmet-
rical motion of dust with small perturbations has 
likewise no singularities at this average density. [ 10] 

The invariant K here is finite. From a compari­
son with the invariant K of the stationary solution 
follows the conclusion, mentioned in the introduc­
tion, that the multipole moments of the external 
field attenuate during the course of the collapse. 

It is shown in Appendix III that during the col­
lapse of a rotating body, the "rotational-type" 
deviations from sphericity are conserved. 

The foregoing considerations do not as yet ex­
clude the possibility of the following situation. 

The body contracts, and after a finite proper 
time it passes through Ss with small perturba­
tions, and then, already in the T-region, after 
being compressed to a high density and strongly 
deformed, it gives rise to strong perturbations of 
the metric of the surrounding space, making it 
possible for radiation to be emitted and for the 
body itself to expand again beyond Ss. It would 
seem that for a remote external observer, the 
question of the possibility of such a situation 
should not arise: after all, if the body crosses 
after a finite proper time Ss then this process 
stretches out for the external observer into an 
infinitely long one, and what happens afterwards 
is immaterial to the observer. Actually, however, 
this very conclusion, to which we are so used, that 
the time of approach to Ss stretches to ~nfinity, is 
obtained from the fact that the world line of the ray 
emitted from the surface of the body arbitrarily 
close to Ss, proceeds for an arbitrary long time 
( in the time of any system! ) near the world line 
of the point Ss ( see the figure). In our problem it 

l)The results are valid also for a gas. 
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is not at all obvious beforehand that the perturba­
tions of the metric will not change after an infin­
itely long time the world line of the ray to such an 
extent that this ray and other rays, which have al­
ready been emitted after the surface of the body 
crossed Ss, could go to a remote observer. In 
other words, it must be proved that the going over 
to the asymptotic solution is a monotonic process 
and that any oscillations during the relativistic 
stage of collapse are already impossible for an 
external observer. 

We shall prove the following statement: assume 
that at the instant when the surface of the sphere 
crosses the Ss of the unperturbed problem the 
perturbations of the metric in the body, and the 
perturbations of the density and the velocity of 
the matter are small. Then, for an external ob­
server, the picture of the contraction will be the 
same as in the case of an exactly spherical col­
lapse-he sees the approach of the surface of the 
sphere to Ss as a process that stretches out to 
infinity, and the possibility of rays emitted by the 
surface of the body after crossing Ss is actually 
eliminated. 

The proof (the details of which are given in 
Appendix V) consists in the following. We prove 
first that if in a co-moving freely-falling system 
of reference at some instant of proper time (close 
to the instant when the surface of the body crosses 
Ss) the perturbations in all of space are small and 
if the perturbations at infinite space remain small 
in all the succeeding instants of time, then in all of 
space outside of Ss and (this is particularly im­
portant) also in the T-region of space-time near 
Ss, the perturbations will always remain small. 
Then, using the smallness of the perturbations of 
the metric inside Ss in the T-region, it is proved 
that a light ray can never leave this region and 
consequently an external observer will never find 
out what occurred after Ss was crossed, and the 
process of the approach of the surface of the body 
to Ss stretches out for him to infinity (see Appen­
dix V). 

This completes the proof of the statement. 
This result of our paper is important for a de­
scription of the picture of the collapse from the 
point of view of the external observer. 

We note that this result cannot be obtained by 
the method of Regge and Wheeler, [3] since they 
work in the Schwarzschild reference frame, which 
cannot be used when g00 = 0 or in the T-region. 

In the proper time, the star can be compressed 
after crossing the Ss surface to tremendous den­
sities, and the perturbations become colossal. But 
no matter what takes place there, this will never 

be manifest in the region of space-time to the 
right and below the dashed line R = A in the 
figure, i.e., it will not be manifest in any way in 
the space outside Ss at any time t. This question 
is discussed in [ 16]. The conclusions of [ 16 ] con­
tradict those of [ 10]. 

The conclusions obtained are obviously impor­
tant primarily in attempts to attribute phenomena 
occurring in quasars (and also in supernovas) to 
the relativistic effects due to the collapse of large 
masses. 

" " s, ,' , 
" " 
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Matter Vacuum 
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R=D 

a 

/R=8 

,. 

Collapse of a dust sphere in a freely falling reference frame 
(for notation see Appendix VI), a and b - world lines of light 
rays. Ray a emitted from E1 near E continues for a long time 
along R = Rg (in a time measured in an arbitrary reference 
system). 

4. COLLAPSE OF AN ASYMMETRICAL BODY 
FROM THE POINT OF VIEW OF AN 
EXTERNAL OBSERVER 

We have proved that a nonspherically symmet­
rical mass collapses for an external observer 
qualitatively in the same way as a spherical one. 
The change in the multipole moments during the 
course of contraction of the body should be accom­
panied by radiation of gravitational waves, but the 
energy carried by this radiation is small. The 
radiation of waves is a consequence of the change 
in the multipole moments, and cannot be regarded 
as the cause of their total damping. We note that 
in Newtonian theory, the moments also vary during 
the course of compression of the body, but for 
finite body dimensions they are finite. In Einstein's 
theory, a relativistic damping is superimposed on 
this change in the moments of the external field, 
due to the change in the dimensions of the con­
tracting body. 
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Let us find the law governing the attenuation of 
q for an external observer during the course of 
the collapse. As shown in Appendix VI 

q,....., In-1 [Rg/ (R -Rg}], 

but the approach to Ss proceeds like 

t,....., ln[Rg/(R-Rg)]; 

hence q ~ cl, i.e., the attenuation obeys a power 
law. The external observer "sees" (for example, 
with the aid of neutrino and antineutrino radiation) 
in the ultimate "cooled" state the finite non­
sphericity of the distribution of the masses in the 
source of the field. However, this nonsphericity 
is not at all manifest in the external field. 

The deviation of the limiting external field from 
the Schwarzschild field lies in the presence of 
components g~ which do not vanish during the 
process of contraction. These components cause 
quadratic deviations of other components of the 
metric from the Schwarzschild values. As was 
already noted in the introduction, the components 
g~ arise in the external field even in the absence 
of rotation of the body as a whole, for example as 
a result of tangential velocities arising when an 
asymmetrical body is compressed. When a sphere 
rotating like a rigid body collapses, the only com­
ponent that differs from the Schwarzschild compo­
nents is g03 , with 8go3/ at = 0. 

Thus, g 03 does not change in the external space 
during the course of the collapse of the body, For 
an external observer, the surface of the collapsing 
rotating sphere approaches asymptotically Ss 
after an infinite time. The sphere has time to 
execute only a finite number of revolutions. The 
external field in the terms linear in a remains 
constant all the time 2>. 

APPENDIX I 

We present the Erez and Rosen[ 7J solution of 
Einstein's equations for a static axially-symmet­
rical field in vacuum. The solution is presented 
after correction of the error that has crept 
into [ 7J 3 > which changes the final form of the 
formulas appreciably 

( 
d).} dll2 \ ds2 = e21Pdt2 _ m2e2V-21P p,2 _ 112) ___ + ___ I 

')...2 -1 1- 112 I 

2)of course, the theory of small perturbations gives only 
terms which are linear in a. 

3 lThe expression for y given in[7 ] is in error. 

1jJ = ~ {f 1 + ~ q (3')...2- 1) (3112- 1) J In')...- 1 
2 L 4 . ')...+1 

+~q')...(3112 -1) }. 

1 ')...2 -1 3 
'Y = 2 (1 + q + q2)ln ')...2- 112-2 q(1- 112) 

[ ')...-1 J 9 
X ')...lnf..+ 1+2 +4:q2(1-!l2) 

[ 1 ')...-1 
X (')..,2 + 112-1- 9')...2112) 16 (')...2-1)ln2')... + 1 

1 5 ')...-1 
+4 (')...2 + 7112-3- 9112')...2)')...ln')... + 1 

+~')...2(1- 9!12)+ ( 112_ ~ )] . 

Here m is the mass of the body producing the 
field, q characterizes the quadrupole moment. 
The units used are chosen such that c = 1 and 
G=l. 

(1.1) 

The scalar K = Raj3yo Raf:lyo for the metric 
(1.1) has for small q and for iJ- = 0 the following 
asymptotic form as goo - 0: 

K = Bq2goo-1 + 12/ Rg", B = canst. 

We have written out the principal diverging term 
and the term that remains when q = 0. 

By virtue of the symmetry, the light rays at 
iJ- = 0 and iJ- 2 = 1, which have initially a radial direc­
tion, will move all the time in this direction. Near 
g 00 = 0, the time of propagation of light from a cer­
tain point with A. = .\0 to g 00 = 0 (A. = 1) will be 

t =canst· (')...0 - 1}q'f8 for 11 = 0, 

t =canst· (')...o -1)-q, q < 0 for 112 = 1. 

This time is finite 4), unlike in the case of the 
Schwarzschild field. 

APPENDIX II 

Weyl's equations [BJ for an axially-symmetrical 
Einstein field in vacuum can be written in the 
form 

~ ~ p OljJ + lj21jJ = 0 ov = p [ ( OljJ ) 2 - ( OljJ Y] ' 
p ap ap oz2 ' op ap az 1 

oy - 2 oljJ olj) (11.1) 
az- Pap az · 

The coordinates p and z are connected with the 
coordinates A and iJ- of Appendix I by the expres­
sions 

4 >An only exception is the case q > 0, 112 = 1. 
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For sources of the type 5> a = a ( z) 6 ( p) = 0, 
the solution of (II.1) is obviously the potential of a 
filament with linear density a = a ( z) in flat space. 
Near goo = 0, lji and y are written in the following 
manner 6>: 

'ljl = cr(z) ln p, v = cr2 (z) ln p, 

where a ( z) is arbitrary. The expression for the 
metric is of the form 

ds2 = p2adt2 _ p2a(a-1J(dp2 + dz2) _ p2(t-aJdqJ2. 

The properties of this metric are analogous to 
those discussed in Appendix I. In particular, from 
the point with coordinates p0, z 0, cp 0, moving along 
the line z = z 0 and cp = cp 0 with a velocity suffi­
ciently close to that of light, we can reach g 00 = 0 
after a time 

t = po[a(ZoJ-11' [cr(zo)- '1]-2 

measured with the clock of the external observer. 

APPENDIX III 

Let us consider the field of a rotating sphere in 
vacuum. The state of this sphere need not be 
static-the sphere can expand radially or contract. 
From symmetry considerations it is clear that in 
the case of weak rotation the only ones of the per­
turbations hf.J. 11 of the components of the Schwarz­
schild solution in first approximation will be h03, 
h13• and h23 (the perturbations in the diagonal 
components are of second order of smallness). 
By means of a small coordinate transformation 
we can always cause one of these quantities to 
vanish: after a transformation cp = (j5 + ~ the com­
ponents ho3• h13• and h23 receive increments 

llho3 = o6 I at, 11ht3 = o6 I oR, 11hz3 = as I ae. 

Let us cause h23 to vanish. We write out the 
non-trivial components 

lJR23 = _ _!__ (!._ guhos _ !._ goohts] = 0 
ae ot sin2 8 oR sin2 8 / ' 

- o2hoa 2 ogoo sine a . 
6Roa- -goo---- hoa--- ----sm- 4 8 aR2 R aR R2 ae 

ahos a ( £Jhts 2 . ) 
X aa+goo8t aR +Rhts = 0. (III.1) 

To find the stationary solution we put 

ah13/ at = ahoal at = o. 
Then the solution of (III.1) takes the form 

hts='ljl(R)R2 sin2 8, hos=R; ~a,.f,.( ~)Pn1 (cos8)sin8. 
" g (III.2) 

Here c = 1, G = 1, lji ( R) is arbitrary, Rg = 2m, 
an= const, 

u,.(x) = F(2 + n; 1-n; 4; x), 

F is the Gauss hypergeometric function (see [ 12]); 
P~ is the first associated Legendre polynomial 
(see [ 12]). Asymptotically we have 

fn (x) ""' xt-n, X >-1. 
Making now a small transformation (jJ = cp 

- lji ( R), we obtain h13 = 0, and the only non­
vanishing component is h03, for which (III.2) holds 
true. This is exactly the field to which the field of 
a contracting rotating sphere can asymptotically 
come over as t-ao ( Rsur- Rg). 

The concrete form of the field in the vacuum is 
determined by the conditions for continuity of the 
internal solutions on the surface of the body. The 
continuity conditions which follow from the require­
ments that the field equations be satisfied on the 
boundary, necessitate that h03 be everywhere 
continuous. 

For a sphere rotating like a rigid body ( but not 
necessarily stationarily-it can be deformed ra­
dially) this condition leads to h03 ~ sin2 e and 
h13 ~ sin2 e in vacuum. The first equation of (III.1) 
is then satisfied identically, while the solution of 
the two others, compatible with the boundary con­
ditions, is transformed with the aid of a small 
coordinate transformation into 

hos = - sin2 e 2: • 
(III.3) 

where M = -am is the total momentum. 
Thus, the external field of such a contracting 

sphere is constant (with respect to the terms 
linear in a). Expression (III.3) coincides in form 
with that given in [ 4] for a weak field. It is actually 
valid also in a strong field when a« Rg (accurate 
to first order in a). 

It is interesting to note that whereas the mag­
netic moment of a collapsing magnetic star atten-

5>A source of only this type gives at finite distances from uates, [ 13] the field of the mechanical moment is 
a singular surface small deviations from the spherical solution. conserved. This difference is explained in the 

6>An exception is the degenerate case of a "point singularity" following manner. The magnetic moment is con-
[see[11], p. 269, formula(8.30)]. nected with the current I, which tends to zero, for 
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a Schwarzschild observer, as the rate of collapse 
approaches c and Rsur - Rg. On the other hand, 
the mechanical moment remains unchanged, for 
although the velocity of rotation of the star v 
attenuates like I in the Schwarzschild system as 
Rsur - Rg. the mass of the volume element for a 
local Schwarzschild observer increases with in­
creasing rate of collapse. As the result, the 
moment M ~ mvR remains unchanged. 

APPENDIX IV 

The solution of Einstein's equation in vacuum 
for a spherical mass m in an external quadrupole 
field (which increases with increasing distance 
from the mass m) is of the form (the notation is 
the same as in Appendix I): 

1 A.-1 1 
'ljJ = 21nA.+ 1 +4 q(3A.2-1) (3~-t2 -1), 

1 }.,2 -1 9 
i' = --ln--- 3qA.(1- 1-tz)-- q2(J..2- 1) (1- 1-tz) 

2 ),2- f-12 16 

X [9f.-t2A.2 _ J..2 _ f.-tz + 1]. 

The surface g 00 = 0 is determined by the con­
dition A = 1. The Gaussian curvature of this two­
dimensional surface is 

1 
Ra =- eq [1 + 3q- 12q~t2 - 9q2 f.-t2 + 9qV•] 

4m2 

and is different for different 1-l• being everywhere 
finite. The constant external quadrupole field can 
be produced by remote masses which are secured 
to supports that prevent their displacement. Over 
a limited time interval, the same field can also be 
approximately produced by unfastened remote 
masses whose velocity of motion under the influ­
ence of the mutual gravitation is at first small, 
the field being almost static. 

APPENDIXV 

Let us consider the collapse of a spherical dust 
mass. We introduce in the dust a co-moving sys­
tem. We continue this freely falling system beyond 
the boundary of the dust, using the known solution 
of Tolman (see [ 4]). For concreteness we shall 
assume that a point on the boundary of the dust 
falls with parabolic velocity, and that the density 
of matter inside the dust is uniform. 7l The metric 

7 llf the collapse commenced far from Rg, then near Rg the 
velocity of the boundary is always close to parabolic. The ex­
tension of the proof to the case of motion of the boundary of the 
dust with elliptical or hyberbolic velocity and with a gradient 
of the dust density along the radius presents no difficulties. 

inside the dust is the metric of Friedman's cosmo­
logical model (see [ 4J) with pressure equal to 
zero, while the metric outside the dust is the 
Lemaitre metric[ 14] with ds 2 in the form 

ds2 = dr;2- (3/2 (r- r: + To)] -'ladr2 - (3/z (r - r: + To) ]'Ia 

(V.1) 

Here T is the proper time, To = const and depends 
on the origin of the time, r is the co-moving coor­
dinate, c = 1, Rg = 1. 

The space-time of this model is shown in the 
figure. The dashed lines are the lines R = const, 
where R = (% ( r - T + T0) ]213 is the Schwarzschild 
coordinate 8 l. Assume that at the instant T = 0 
(close to the instant T 1 when the boundary of the 
dust crosses the Schwarzschild surface R = Rg). 
the perturbations of the density, of the velocity of 
matter and of the metric h ~ are small for all 
0 :::: r < oo. Further, assume that at an arbitrarily 
large R = const the perturbations are always 
small (the latter is obvious). Then, first, hf-l 

a 
will be always small in the system in question 
when 

R = P/z(r- r: + r:o) ]'Ia >A, 

i.e., to the right and below the dashed line R =A 
in the figure; here A is some constant, A < Rg· 
Furthermore, the light ray leaving the dust after 
the instant T 1 will never emerge outside the 
Schwarzschild surface R = Rg (see the figure). 

Let us prove the first statement. It is seen 
from (V .1) that in vacuum the components ga/3 
depend only on 

R= (3/z(r-r:+To)]'l'. 

Therefore, if we now consider as independent 
variables not r and T but R and T, then small 
perturbations of the metric in vacuum can be 
written in the form h= exp(iwT)f(R) (we shall 
henceforth omit the indices a and j3). The func­
tion f ( R) depends on (} and q;, but this dependence 
is now immaterial and will not be considered. 

The idea of the proof consists in the fact that 
from the smallness of the perturbations on the 
lines (see the figure) D - r 1 - r 2 and further 
along R = C, and from the form of h, it follows 
that h is small everywhere inside the region 
bounded by R = A, R = C, and D - r 1 - r 2• 

We present a formal proof. The boundary of 
the dust crosses Rg at a finite density Pc ~ 2 

8 l1n the T-region (i.e., for R<Rg) R cannot be a space co­
ordinate. See[6]. 
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x 1016 ( MQ/Mt2. The solution of the equations of 
small perturbations inside the dustC 13] shows that 
h increases without limit only when p - oo and 
when p = Pc it is finite. Thus, up to the instant 
T2 (which is still far from T3 when p = oo ), there 
will be h < E1 in the dust if r < r 1. 

In a freely falling system in vacuum there are 
solutions which increase without limit on R = Rg· 
However, a correct formulation of the Cauchy prob­
lem excludes these solutions, and h is small near 
the surface of the sphere in vacuum up to T = T 2. 
We thus have in vacuum: 

1) from the initial conditions: h = f( R) < E2 
when T = 0, r > r 1, 

2) owing to the smallness of the perturbations 
on the boundary of the dust: h < E3, when 0 ~ T 

~ T2 when r = r 1. 
It follows from 1) that f( R) < E2 when R ~ B 

= [(%) (r1 +To) ]213 (see the figure). 
It follows from 2) that f( R) < E4, where E4 

= E3/l exp ( iwT) I max when 0 ~ T ~ T2 and A< R 
~ B (see the figure). 

We thus always have 

f(R) < Bs for R >A, Bs =max (e2e4). (V.2) 

Now, by definition, h < E6 at sufficiently large 
R = const = C and for arbitrary T > 0: 

hR=C = eiroTj(B) < Ba, 't' > 0. 

Thus, 

eiroT < Ba I f(B) = B7, 't' > 0. (V.3) 

It follows from (V.2) and (V.3) that 

h = eirotj(R) < BsB7 = Bs, R > A, 't' > 0. 

This proves the first statement. 
We now prove the second statement. In an un­

perturbed metric (V .1), for any light ray (not 
necessarily traveling along the radius) in the 
T-region, when R < Rg - F, where F is an arbi­
trary constant smaller than Rg. the following in­
equalities hold true 9>: 

dl I dr ~ (-goo I gu) 'I• > 1-N, 

where N = const. This inequality denotes that the 
inclination of the ray is larger by a finite amount 
than the inclination of the line R = Rg ( see the 
figure). We have proved above that when R >A 
the perturbations of the metric always remain 
small. It is clear that these perturbations change 
the value of dT I dr of the ray little, and that the 
inequality 

9 >we consider a ray for which dr/dr > 0. 

d-r /dr > 1-N 

remains in force. Thus, the ray in the region 
A < R < Rg never approaches R = Rg. and all the 
more, cannot cross it. Consequently, we have 
proved that in perturbed collapse the ray never 
emerges from the T-region. 

APPENDIX VI 

The axially symmetrical static quadrupole 
perturbations of the Schwarzschild metric as 
goo-- 0 are written in the form ( c = 1): 

hu ,.., q ( 1 - R~) -1 ln ( 1 - ~) , 

~ ""' h33 ,.., q ln ( 1 - Rg l , 
\ R I 

where q is the quadrupole parameter of the per­
turbation. In the collapse of a body with q '¢ 0 in 
the co-moving system, all the quantities hJ.l.v are 
finite. Inasmuch as h22 and h33 are not trans­
formed on going over from the co-moving system 
to the Schwarzschild system, it is obvious that 
as R- Rg 

R 1 q ,.., In-1 g ,.., 
Rt-Rg t' 

where R1 is the position of the boundary of the 
collapsing body. Thus, in first order in q the 
perturbations in the diagonal terms vanish 
asymptotically. However, the density perturba­
tions in the collapsing body are accompanied, in 
the general case, by the appearance of terms h13, 
h23• and h12 in the synchronous reference frame. [ 10] 
This corresponds to the appearance of non-radial 
velocities, i.e., it is equivalent to some differen­
tial rotation with zero total momentum. Therefore 
in Schwarzschild coordinates there appear non­
diagonal terms which depend on the time. 

As was shown in Appendix III, h~ terms, de­
scribing nonspherically symmetrical motion of a 
central body, still remain asymptotically as 
g00 - 0. Thus, when the body collapses with 
small deviations from spherical symmetry the 
external metric, in the limit as g00 - 0, may 
differ in first order of perturbation theory from 
the Schwarzschild metric only in the terms hoa· 
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