OPTICAL ABSORPTION SPECTRA OF Mn²⁺, Co²⁺, Ni²⁺, AND Ho³⁺ IN ANTIFERROMAGNETIC CRYSTALS

A. I. BELYAEVA, V. V. EREMENKO, N. N. MIKHAĬLOV, and S. V. PETROV

Institute for Physics Problems, Academy of Sciences, U.S.S.R.; Physico-technical Institute of Low Temperatures, Academy of Sciences, Ukrainian S.S.R.

Submitted to JETP editor January 28, 1965

J. Exptl. Theoret. Phys. (U.S.S.R.) 49, 47-53 (July, 1965)

Some features of the growth of MnF_2 single crystals alloyed with Co, Ni, and Ho, ions are reported. An analysis of the optical absorption spectra indicates that the added ions enter the MnF_2 lattice. It is also shown that the antiferromagnetic transition of the solvent crystal is accompanied by an anomalous shift of the optical absorption bands of added Mn^{2+} and Co^{2+} ions towards the shorter waves, together with pronounced narrowing that is of the same order as for the bands of pure MnF_2 or CoF_2 crystals. The absorption lines of Ho ions are not affected by the antiferromagnetic transition of MnF_2 .

 ${f M}_{
m AGNETIC}$ ordering causes certain characteristics of the optical absorption spectra of antiferromagnetic crystals [1-9] such as the fluorides of Mn, [1,2,6,8] Co, [9] and Ni. [5] There has previously been no basis for affirming that excitation in these crystals will be localized in light-absorbing ions without resonant transfer to the nearest unexcited ions of the same metal, thus forming Frenkel excitons.^[10] However, to understand the characteristics of magnetically-ordered crystal spectra it is evidently important to know whether these are only exciton spectra or will include localized impurity absorption bands. It is therefore important to investigate the spectra of antiferromagnetic crystals alloyed with transition or rare-earth metals. The latter are especially interesting, because the absorption bands of rare earth ions in crystals are usually narrow, thus permitting investigations within a broad temperature range.

We here report the first, to our knowledge, attempt to alloy MnF_2 single crystals with holmium, and also to grow fluorides containing two different transition metal ions, Mn^{2+} and Co^{2+} or Mn^{2+} and Ni^{2+} . The absorption spectra of these crystals are investigated from 4.2° to 100°K, and their characteristics near the magnetic ordering temperature of the solvent crystal are discussed.

1. GROWING OF MIXED CRYSTALS

Single crystals of pure transition-metal fluorides were obtained using the procedure described $in^{[11]}$. The growing of mixed single crystals encounters several additional difficulties. Melting diagrams of the MnF_2-CoF_2 and MnF_2-NiF_2 binary systems are not available; therefore the respective working temperatures had to be selected experimentally. It could be assumed that MnF_2 , CoF_2 , and NiF₂ are mutually soluble in any ratio, because their tetragonal lattice parameters and ion radii are very similar (Table I). When MnF_2 + Ho single crystals are grown, additional difficulties arise because HoF₂ does not exist independently (the valence of Ho is 3+); we therefore had to consider HoF₃, which has a hexagonal lattice that differs considerably from the tetragonal lattice of MnF_2 (Table I).

We obtained the following mixed single crystals:

$$\begin{array}{l} {\rm MnF_2} + 10\,\% \,\, {\rm CoF_2, \ CoF_2} + 10\,\% \,\, {\rm MnF_2,} \\ {\rm MnF_2} + 10\,\% \,\, {\rm NiF_2, \ MnF_2} + 1\,\% \,\, {\rm Ho.} \end{array} \tag{1}$$

The raw materials for the mixed single crystals $MnF_2(x)CoF_2(1-x)$ were powdered pure MnF_2 and CoF_2 single crystals which were mixed thoroughly in an agate mortar. To obtain single crystals of $MnF_2 + 10\%$ NiF₂ we used a mixture of finely crystalline MnF_2 and NiF₂ baked in a hydrogen fluoride atmosphere. To obtain single crystals of $MnF_2 + 1\%$ Ho, fluoric acid was added to a mixture of Ho₂O₃ and MnCO₃. The subsequent treatment of the fluoride mixtures was the same as the treatment of pure powdered MnF_2 , [11] in order to obtain the raw material for growing single crystals.

When MnF_2 is alloyed with Co, Ni, or Ho ions there is no danger that the alloyed fluorides will evaporate near the melting point (~ 930°C) of MnF_2 ;

Table I. Physical and Chemical Properties of Mn, Co, Ni, and Ho Fluorides

Crys-	Mol-	Density, g/cm ³	Melting point, °C	Lattice	Lattice parameters, $\overset{\circ}{A}$			Ion ra-
tal	ecular weight				a	ь	c	dius, A[17]
MnF ₂	92.94	$\begin{cases} 3,92 \ [^{12}] \\ 3,98 \ [^{17}] \end{cases}$	$\begin{array}{c} 929.5 \pm 0.5 \\ [12] \\ 930 \ [13] \\ 856 \ [17] \end{array}$	Tetrag- onal ^[17]	4.87 [16]		3.31 [16]	0,91 0.8
CoF_2	96,94	—	1200 [13]	Tetrag- ona1 ^[17]	4.69 [16]	-	3.19 [16]	0.82 0.72
NiF ₂	96.71	4.63 [17]	$\begin{array}{c} 1450 \ [^{13}] \\ 1420 \ [^{14}] \end{array}$	Tetrag- onal ^[17]	4.71 [¹⁶]		3.11 [¹⁶]	$0,78 \\ 0.69 \\ 0.74$
,HoF₃	221,92	$\left\{ \begin{matrix} 7,644 & [^{15}] \\ 7,829 & [^{15}] \end{matrix} \right.$	1380 [15]	Ortho- rhombic[15] Hexa- gonal[15]	6,404 [¹⁵] 6.833 [¹⁵]	6,875 [15] —	4.379 [¹⁵] 6,984 [¹⁵]	0,86

therefore the composition of the original mixture was determined by weight.

When mixed single crystals were grown the melt was maintained somewhat longer than in the case of pure MnF_2 at a high temperature, before reaching the working regime of the furnace.^[11] This was required for the better dissolution of the solid phase of added fluorides in the MnF_2 melt; Table I shows that the melting point of MnF_2 is lower than that of CoF_2 , NiF_2 , or HoF_3 . The temperature of the $MnF_2 + 10\%$ CoF₂ melt was ~ 1000°C; the corresponding working temperature of the furnace was ~ 1050°C.

When growing $MnF_2 + 10\% NiF_2$ single crystals the temperature in the hottest furnace zone was maintained at 1150°C. Since the viscosity of molten CoF_2 is less than that of MnF_2 (while the volatility of the former is considerably greater) and it does not capture HF bubbles while solidifying, the CoF_2 + 10% MnF_2 melt was not prepared in a vacuum. In the latter case the temperature of the hottest furnace zone was maintained at about 1220°C. The final transparent single crystals were cones ~ 30 mm high with ~ 10-mm base diameters. The single crystals of MnF_2 were pale pink and those of CoF_2 were dark red; the mixed $MnF_2(x)CoF_2(1 - x)$ single crystals were also transparent, with coloration depending on their composition; the $MnF_2 + 10\%$ NiF₂ single crystals were yelloworange.

Holmium dissolves very poorly in MnF₂. We obtained two types of MnF₂ + 1% Ho single crystals. The first type was grown in a hydrogen fluoride atmosphere. In the lower part of the crucible the crystal was transparent, pale pink, pure MnF₂; the entire Ho admixture appeared as a white blob, only very slightly dissolved, that had been squeezed into the upper part of the crucible. This obviously resulted from the fact that there had been no local compensation of excess charge resulting from the substitution of trivalent Ho for Mn²⁺. Crystals of the second type were grown under hydrogen fluoride with a slight oxygen inflow; the dissolution was then considerably improved. The excess charge was obviously compensated by isomorphic substitution of O²⁻ for the F⁻ ions that were nearest the Ho³⁺ ions. This substitution was facilitated by the very similar radii of F and O²⁻, which are 1.33

FIG. 1. Absorption spectra of pure MnF_2 and different crystals containing Ho. 1 - MnF_2 (d ~ 1 mm); 2 - MnF_2 + 1% Ho (d ~ 1 mm); 3 - MnF_2 + 1% Ho (d ~ 5 mm); 4 - $Ho_3Al_5O_{12}$ (d ~ 3 mm). The C and D bands of MnF_2 are shown at the top, and the bands I to VII of Ho^{3^+} at the bottom. T = 20.4°K

FIG. 2. Absorption spectra of single crystals (d \sim 5–6 mm). 1 – 100% CoF₂; 2 – 90% CoF₂ + 10% MnF₂; 3 – 90% MnF₂ + 10% CoF₂; 4 – 100% MnF₂; 5 – 90% MnF₂ + 10% NiF₂. The CoF₂ bands are shown at the top, and the MnF₂ bands at the bottom. T = 20.4°K.

and 1.36 Å, respectively.^[18] In this case an orange mixed crystal was produced. Completely transparent crystals could not be obtained; traces of fault planes of excess impurity were present throughout the entire volume.

2. ABSORPTION SPECTRA OF MIXED CRYSTALS

 $\underline{MnF_2 + 1\% Ho}$. Figure 1 shows the absorption spectra of MnF_2 single crystals, both pure and containing at most 1% Ho, as well as the spectrum of a $Ho_3Al_5O_{12}$ single crystal. A comparison of these spectra leads to the following conclusions:

1. The addition of 1% Ho evidently causes little distortion of the MnF_2 lattice. In any event, the sharpness of the Mn absorption bands and the details of the MnF_2 spectrum remain unchanged, with only a small shift ($\Delta \nu \approx 40 \text{ cm}^{-1}$) of the entire spectrum to shorter waves.

2. In the spectrum (No. 3) of a $MnF_2 + 1\%$ Ho crystal having the thickness d ~ 5 mm at 20.4°K seven groups of narrow absorption bands, assigned to Ho, are observed; the frequencies (ν , cm⁻¹) are given in Table II. The similarity with the spectrum (No. 4) of a Ho₃Al₅O₁₂ single crystal and with the spectra of other crystals containing trivalent Ho (Table II) indicates that MnF₂ crystals alloy with trivalent Ho. The frequencies of the observed bands agree satisfactorily with the energy level scheme of Ho³⁺.^[19]

The Ho absorption lines were observed only in the spectrum of $MnF_2 + 1\%$ Ho crystals (the second type) that were grown with a small amount of oxygen, which is evidently necessary, as already mentioned, to compensate the excess charge of Ho³⁺. The spectra of crystals belonging to the second type were reproduced well in many samples. A gradual reduction of sample thickness is accompanied by a regular decrease of Ho³⁺ absorption band intensities. These results indicate a uniform distribution of Ho in very large regions (having linear dimensions of 5 or 6 mm). $\frac{MnF_2(x)CoF_2(1-x)}{nd} \frac{MnF_2+10\%NiF_2 single}{crystals}$. Figure 2 shows the absorption spectra of single crystals of MnF₂, CoF₂, their mixtures, and MnF₂ + 10\%NiF₂. The notation of the absorption bands follows that of Finlayson et al.^[2] and Balkanski et al.;^[5] the band frequencies are given in Table III.

Figure 2 shows that the spectrum of a mixed single crystal comprises the superposition of the spectra of its components; we observe simul-taneously the bands of MnF_2 and CoF_2 , or of MnF_2 and NiF_2 (which is confirmed by a comparison with the results for pure NiF_2 in^[5]). Since the absorption bands of the solvent crystal remain sharp and narrow with a shift of not more than 100 cm⁻¹ accompanying a 10% admixture, it can be assumed

		Band frequency ν , cm ⁻¹			
Group of bands	Band No. in group	Ho spectrum in MnF ₂ + 1% Ho crystal	Ho ³⁺ spec- trum in different crystals ^[19]		
Ι	1 2 3 4 5 6 7 8	18688 18692 18719 18735 18740 18749 18764 18798	18500		
II	1 2 3	$20743 \\ 20764 \\ 20805$	20600 20800		
III	1 2	21416 21464	$21100 \\ 21400$		
IV	1 2 3 4 5 6 7 8	22256 22270 22286 22316 22321 22338 22370 22370 22414	22200		
v		24144	24000		
VI	1 2	$26076 \\ 26125$	25800		
VII	1 2 3 4	27763 27797 27819 27871	27700		

Table II

Group	Group	Band No. in group	Band frequency ν , cm ⁻¹				
of Co ²⁺ bands	of Mn ²⁺ bands		MnF ₂	CoF2	$CoF_2 + 10\% MnF_2$	$MnF_2 + 10\%$ CoF ₂	
С		1 2 3 4		22773 22903 23050 23113		22500	
D		1 2 3 4 5		$\begin{array}{c} 25085\\ 25133\\ 25202\\ 25376\\ 25444 \end{array}$			
	c	1 2 3 4 5 6 7 8 9 10	$\begin{array}{c} 25304\\ 25398\\ 25449\\ 25508\\ 25559\\ 25610\\ 25711\\ 25762\\ 25809\\ 25900 \end{array}$		25254 25398		
E		1 2 3 4		26335	$\begin{array}{c} 26161 \\ 26318 \pm 20 \\ 26472 \pm 20 \\ 26730 \end{array}$	$\begin{array}{r} 26138 \\ 26406 \pm 20 \\ 26513 \pm 20 \\ 26750 \end{array}$	
F		1		28190	28158		
	D	1 2 3 4 5 6 7 8 9 10	27926 28028 28106 28174 28249 28296 28338 28367 28420 28486		27909	$ \left. \begin{array}{c} 28002 \\ D_x & 28076 \\ 28211 \\ 28309 \\ 28390 \\ 28464 \end{array} \right. $	

Table III

that the crystal lattice is distorted only insignificantly with this concentration, as could be assumed from the very similar parameters of all transitionmetal fluorides.

The spectrum of a mixed crystal can be regarded as a simple superposition of the spectra of its components only when there is considerable separation of their absorption bands. When the absorption bands of the solvent crystal and the impurity are close, spectral changes are observed (Fig. 2). This applies especially to the spectral region containing the C group of MnF_2 and the E group of CoF_2 bands, or the D group of MnF_2 and the F group of CoF_2 . The D group of CoF_2 overlaps the very much more intense C group of MnF_2 and disappears when the concentration $10\% MnF_2$ is reached.

The behavior of the E band of CoF_2 is the most interesting. In the pure crystal this band is a singlet down to 4.2°K. With the addition of 10% MnF_2 it becomes a quartet of almost equally spaced and equally strong bands. In the $\text{MnF}_2 + 10\% \text{ CoF}_2$

crystal the outside components of the quartet are considerably intensified with practically no frequency shift, while the separation of the central components is reduced almost one-half. In pure MnF_2 and in MnF_2 + $10\%\,NiF_2$ no E bands are observed (Fig. 2). The characteristics of the concentration dependence of the E group of CoF₂ resemble somewhat those of the impurity absorption that is spectrally close to the exciton zones observed experimentally in molecular crystals $\mbox{\tt [20,21]}$ and analyzed theoretically in^[22]. It is possible that in the case of the ${\rm Mn}\,F_2(x)\,{\rm Co}\,F_2(1-x)$ solutions, when the Mn^{2+} and Co^{2+} levels are close, ions of the two different kinds are excited simultaneously, forming mixed common states of both ions and thus causing the unusual behavior of the E band.

We must also discuss the changes in the structure of the D group of MnF_2 following the addition of 10% CoF₂ or 10% NiF₂. In pure MnF_2 this group consists of the strong bands at 28 028 and 28 249 cm⁻¹ and the weak (28 106)—(28 174) cm⁻¹ doublet. Upon the addition of 10% CoF, or 10% NiF, the doublet is replaced by a fairly strong band at 28076 cm^{-1} (denoted by D_x in Table III). However, while when CoF, is added the changed structure of the D group of MnF₂ can be associated with the closeness of the F group of CoF₂, this does not apply when NiF_2 is added. It should also be noted that similar changes of the D-group structure in pure MnF₂ are observed accompanying sublattice investion by a strong external magnetic field $(H_c = 9 \times 10^5 \text{ Oe})$. [23] The magnetic structure of NiF_2 resembles that of MnF_2 when altered by a strong magnetic field H_c . It is likely that the changes in the D absorption group of MnF₂ accompanying an admixture are associated with a changed magnetic structure of the mixed crystals.

3. INFLUENCE OF ANTIFERROMAGNETIC OR-DERING ON IMPURITY ABSORPTION BANDS

Over a broad temperature range we were able to observe only the strongest and narrowest impurity bands: the Ci₁ and E₁ bands of Co²⁺, the C_1-C_2 doublet of Mn²⁺, and all seven groups of Ho³⁺. It was found that for an antiferromagnetically ordered solvent crystal the aforementioned bands of Mn²⁺ and Co²⁺ exhibit anomalies similar to those observed in the absorption spectra of ''pure'' fluorides. The temperature dependences of the frequencies and half-widths of these Co²⁺ and Mn²⁺ bands are shown in Figs. 3–5, which thus illustrate the following facts:

FIG. 3. Temperature dependence of the C_1 and E_1 band frequencies for Co in a MnF_2 + 10% CoF_2 crystal.

1. Magnetic ordering of MnF_2 + 10% CoF₂ crystals ($T_N\approx70^\circ\text{K}$) is accompanied by a large shift of the E_1 and C_1 bands of Co^{2^+} to shorter waves. This shift, $\Delta\nu\approx100$ cm⁻¹, corresponds to the energy kT_N (Fig. 3). These same bands become very much narrower below $70^\circ\text{K}.$

2. Magnetic ordering of CoF_2 + $10\%\,MnF_2$ $(T_N\approx 40^{\circ}K)$ causes a large shift of the C_1 and C_2 bands of $Mn^{2^{+}}$ to shorter waves (Fig. 5) and an

FIG. 4. Temperature dependence of band half-width. $1 - C_1$ band of MnF₂ in CoF₂ + 10% MnF₂; $2 - E_1$ band of CoF₂ in MnF₂ + 10% CoF₂.

anomalous temperature dependence of their halfwidths (Fig. 4). The frequency shift $\Delta \nu \approx 75 \text{ cm}^{-1}$ corresponds to the energy kT_N.

3. The absorption lines of Ho^{3+} are in no way affected by the magnetic ordering of the MnF₂ + 1% Ho crystal. Moreover, the Mn²⁺ bands in this crystal near 70°K exhibit the same characteristics (the frequency shift and narrowing) as in the "pure" crystal (Fig. 6). It can therefore be assumed that 1% Ho does not essentially affect the antiferromagnetic ordering of MnF₂. The fact that the Ho absorption lines are not affected by magnetic ordering indicates a negligibly small exchange interaction of Ho and Mn ions in antiferromagnetic MnF₂. This apparently results from the small radius of the 4f subshell of Ho and its strong screening by external electrons. A similar conclusion for the orthoferrites of rare earths has been based on magnetic measurements. $\lfloor 24 \rfloor$

In conclusion we wish to express our deep appreciation to P. L. Kapitza for his interest, to A. S. Borovik-Romanov for a discussion of the results, and to V. A. Timofeeva for providing the $Ho_3Al_5O_{12}$ single crystals.

FIG. 5. Temperature dependence of the $C_1 - C_2$ doublet frequencies for MnF₂ in CoF₂ + 10% MnF₂.

FIG. 6. Absorption spectrum of $MnF_2 + 1\%$ Ho single crystal at different temperatures (T°K). $1 - 77^\circ$; $2 - 40^\circ$; $3 - 20.4^\circ$; $4 - 4.2^\circ$.

¹J. W. Stout, J. Chem. Phys. **31**, 709 (1959). ² Finlavson, Robertson, Smith, and Stevenson,

Proc. Phys. Soc. (London) **76**, 355 (1960).

³I. Tsujikawa, J. Phys. Soc. Japan 13, 315 (1958).

⁴Knox, Shulman, and Sugano, Phys. Rev. 130, 512 (1963).

⁵ Balkanski, Moch, and Shulman, J. Chem. Phys. **40**, 1897 (1964).

⁶ A. I. Belyaeva and V. V. Eremenko, JETP 44, 469 (1963), Soviet Phys. JETP 17, 319 (1963).

⁷A. I. Belyaeva and V. V. Eremenko, JETP **46**, 488 (1964), Soviet Phys. JETP **19**, 330 (1964).

⁸ V. V. Eremenko and A. I. Belyaeva, FTT 5,

- 2877 (1963), Soviet Phys. Solid State 5, 2106 (1963).
 ⁹ V. V. Eremenko and A. I. Belyaeva, FTT 6,
- 3646 (1964), Soviet Phys. Solid State 6, 2918 (1964). ¹⁰ J. Frenkel, Phys. Rev. 37, 17 and 1276 (1931). ¹¹ N. N. Mikhaĭlov and S. V. Petrov, Kristallo-

grafiya (in press).

¹² J. W. Stout and M. Griffel, J. Am. Chem. Soc. **72**, 4351 (1950).

¹³ W. D. Lawson and S. Nielsen, Preparation of Single Crystals, Butterworth's, London, 1958.

¹⁴ H. Guggenheim, J. Phys. Chem. **64**, 938 (1960).

¹⁵V. V. Serebrennikov, Khimiya redkozemel'nykh élementov (The Chemistry of Rare Earth Elements) I, Tomsk Univ. Press, 1959.

¹⁶ B. F. Ormont, Struktury neorganicheskikh veshchestv (The Structures of Inorganic Substances), Gostekhizdat, 1950.

¹⁷ Spravochnik khimika (Chemist's Handbook) I and II, Goskhimizdat, 1963.

¹⁸ P. P. Feofilov, Izv. AN SSSR, Ser. fiz. **26**, 435 (1962), transl. Bull. Acad. Sci. Phys. Ser., p. 437.

¹⁹M. A. El'yashevich, Spektry redkikh zemel' (Spectra of Rare Earths), Fizmatgiz, 1963.

²⁰ E. F. Sheka, Opt. i Spektroskopiya **10**, 684 (1961). Opt. Spectry. **10**, 360 (1961).

²¹ Broude, Rashba, and Sheka, DAN SSSR 139,

1085 (1961), Soviet Phys. Doklady 6, 718 (1962).

 22 É. I. Rashba, Opt. i Spektroskopiya **2**, 568 (1957).

²³ Eremenko, Popkov, and Litvinenko, JETP **47**, 1733 (1964), Soviet Phys. JETP **20**, 1165 (1965).

²⁴ Belov, Kadomtseva, and Levitin, JETP **47**, 439 (1964), Soviet Phys. JETP **20**, 291 (1965).

Translated by I. Emin

9