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Effective boundary conditions are obtained for the interface between superconducting and 
normal metals. All possible situations are considered, when the equations of superconduc­
tivity reduce to second-order differential equations.[7•8•11 •16J It is shown that the boundary 
conditions obtained in the absence of a magnetic field can be easily generalized to include 
the case when there is a constant magnetic field directed along the interface. These re­
sults of the work, which admit of comparison with experimental data, [14] are in good 
agreement with the latter. 

INTRODUCTION 

RECENTLY there has been increased interest in 
phenomena occurring on the boundary between a 
normal and superconducting metal, and also be­
tween two superconducting metals. The theoretical 
papers published in this connection [t-SJ are de­
voted to the introduction and not derivation of 
conditions on the interface. Inasmuch as it is not 
at all clear which of these conditions correspond 
to reality, we consider in this article cases when 
the equations of superconductivity admit of an 
exact solution, and the corresponding boundary 
conditions are derived directly from the micro­
scopic equations. It turns out that not all the 
conditions "introduced" are correct, and that 
some of them are correct only in individual limit­
ing cases. 

for z>O, 
~(z)= 

for z<O, 

and in the case when Tc2 > Tc1 

for z >0, 

for z <0, 

where 

a 2 _ 12(Tci,2- T) 
1'2 - 7r(3)T ' 

"' c 1,2 

Po 
S1,2 = 2 T ' 

:rtm c1,2 

t is the Riemann t function. 
The quantities ~ 1 , 2 and D.i,2 can be replaced 

respectively by 

(1)* 

(2) 

As in our preceding paper, [s] we shall neglect 
throughout the differences of the effective 
masses, the Debye temperatures, and the level 
densities t ( t = mp0/27r2 ), and will assume that 
the metals differ only in the effective interaction 
between the electrons, which changes jumpwise. 

so= Pol 2nmT, ~1,22 = 8nT(Tc1,2- T) I n(3)Tc1,2· 

1. CONDITIONS ON THE BOUNDARY BETWEEN 
TWO SUPERCONDUCTORS WITH DIFFERENT 
TRANSITION TEMPERATURES 

We consider two semi -infinite superconductors 
with slightly differing Tc. If the temperature is 
close to their transition temperatures, then for 
each of them we can write the Ginzburg-Landau 
equation (G.L.)J7• 8J The corresponding solution 
in the case when T ct > T c2 will be of the form 

Such a substitution leads to increments of order 
a 3, whereas the G.L. equations are valid with 
accuracy to a 2. [9] 

To find the constants C1 and C2 it is neces­
sary to find the exact solution of the correspond­
ing nonlinear integral equation (A.1) (see 
Appendix A). If l Tct - Tc2 l/( Tct + Tc2) « 1, 
then it is clear that even near the boundary the 
wave function D. ( z) will differ little from D-1 2. 
For this reason we shall seek the solution in fue 
form 

*th =tanh; cth = coth. 
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the wave function 6 ( z) has the following expan-for z > 0 

for z < 0, (3) sions: for ~ 0 « z « ~o/a 1 

where I cp ( z) I « 6 1,2• Thus, we again obtain a 
linear integral equation1l, the solution of which is 
given in Appendix A. 

In this case the small parameter is the quantity 
I at - a 2 I I ( 0!1 + 0!2 ). Accurate to terms of first 
order in this parameter, we obtain 

( A [1 Ut- U2 ( Ut + U2 )] 
1 Llt ----exp -----z , 

~(z) = { Ut + U2 (;ol'2 

l A [ f + Ut - U2 ( Ut + U2 ) J Ll2 ---exp ----=- z . 
a,+a2 1;oY2 

(4) 

From (4) we see that, with the assumed accuracy, 
the wave function 6 ( z) is effectively continuous 
together with its derivative ( 6 1,2 ~ a 1,2 « 1 ). We 
can show in general that the solution of the non­
linear integral equation (A.1) with accuracy to 
terms of order cpn ( z) leads, with accuracy to 
[I a 1 + 0!2 I/( a 1 + a 2) ]n, to the same continuity 
conditions: 

~(O+) = ~(0-), ~'(O+) = ~'(0-). (5) 

For the case when I Tc1 - Tc2I/<Tc1 + TC2) 
~ 1, the validity of condition (5) has so far not 
been successfully proved; nevertheless we can 
hope that these conditions are valid whenever the 
G.L. differential equations are satisfied on the 
left and on the right of the boundary (for I z I 
» ~0 ): 

-~d2~+~[Tc(z)-T _ n(3) ~2 (z)J~=O, 
4m dz2 1'] Tc(z) 8(:rtT) 2 

= n(3) !.l. T (z) ={ Te1 for z > 0, 
11 '6(:nT) 2 ' c Tc2 for z<O. (6) 

2. BOUNDARY CONDITIONS ON THE INTER­
FACE BETWEEN SUPERCONDUCTING AND 
NORMAL METALS 

Let us consider the case when at a given tern­
perature the first metal ( z > 0) is superconduct­
ing, while the second ( z < 0) is in the normal 
state. It is easy to understand that in this case 
the wave function 6 ( z ) may turn out to be small 
near the boundary even inside the superconductor. 
From Appendix C it follows that when the follow­
ing conditions are satisfied 

( T- T a)'" ( Te1- T )';, 
1 ~ Tc2 ~ Tc1 

(7) 

l)The idea of such a linearization is due to A. I. Larkin. 

A(z) =C(1;o/a2+z), 

and for z < 0, I z I » ~o, 

C(;o 
~(z) = -exp {a2z/1;o}, 

U2 

(8) 

(9) 

where C is an arbitrary constant of the order of 
a 2 • Comparison of ( 8) and (9) shows that the func­
tion 6 ( z) again satisfies the continuity conditions 
( 5). 

From formula (9) and condition (7) we see that 
inside a normal metal, at large distances from 
the boundary, the wave function 6 ( z) varies 
slowly and is not too small (when z ~ { 0, 6 ( z) 
~ 6 1 atf a 2 ~ a3 ). It follows therefore that even 
for a normal metal the G.L. equation (6) is valid, 
and in this case 

Tc(z) = { Tc~ > T 
Tc2 < T 

for z > 0, 

for z < 0. 

The corresponding solution is of the form 2 l 

for z > 0, 

for z<O. (10)* 

Thus, in this case, too, not only the differential 
equations but also the boundary conditions (5) are 
satisfied. We can hope that they are in general 
valid when the following requirements are satis­
fied: 

I T-Tal''• 
T ~1, 

c2 
(11) 

without additional limitations of the type (7). 
Let us assume that the "normal" metal has a 

very low transition temperature, namely: 

Tct~Tc2 > 0. 

It is shown in Appendix B that in this case for 
~ 0 « z « ~ 0/ a we can obtain the following 
asymptotic expansion: 

~(z) = C(~ + z), 

(12) 

(13) 

where C is an arbitrary constant ( a 3 « C « 6 1 ), 
and f3 is defined in (C.3) (see Appendix C). It 
follows from formula (13) that the wave function 

*sh =sinh. 
2)The question of the applicability of the G. L. equations 

to a normal metal is considered in the paper by Douglass, [ 10 ] 

but the purely phenomenological approach has led to different 
results. 
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satisfies the following effective boundary condi­
tion3 l 

~~'(O+) = ~(O+), (14) 

which is sufficient to obtain t. ( z) inside the 
superconducting metal from the G.L. equations. 

3. BOUNDARY CONDITIONS FOR STRONGLY 
CONTAMINATED METALS 

Let us assume that the metals contain imp uri­
ties of the same sort, and that the mean free path 
is much shorter than the dimensions of the Cooper 
pairs (Z « ~ 0 ). To carry out the suitable calcula­
tions it is necessary to average in addition the 
integral equation (B.1) over the positions of the 
impurity atoms (see Appendix B). The technique 
of such averaging, as applied to superconductors, 
was developed by Abrikosov and Gor'kov, [g] while 
the analytic expression for the average value of 
the products of two Green's functions (B.3) was 
first obtained by de Gennes and Guyon [i]: 

+oo 

<T ~ ~ Goo (r', r) G--<» (r', r) eik(r-r') dr') 
-oo 

[ 2yiii 1 1 D2 k2 J 
= ~ ln nT + 'iJ·( 2) - '~' ( 2 + -2-) ; 

~=mp0J2n2 , \jl(x)=dlnf(x)Jdx; D2 =Vo2'ttrf6nT, (15) 

where Ttr is the "transport" time between 
collisions, while the term in the angle brackets 
denotes averaging over the impurity positions. 

It is easy to check that all the general results 
obtained for pure superconductors are valid in 
this case too. Namely, when both metals are in 
the superconducting state and have nearly equal 
transition temperatures, the continuity conditions 
(5) are satisfied on the interface 4l. The same 
conditions are valid when one of the metals is in 
the normal state, and conditions (7) are satisfied. 
On the other hand, if the transition temperature 

3 )It is shown in a paper by the author[•] that for a metal 
which is normal at low temperatures (g 2 > 0), condition (14) is 
also satisfied. The value of f3 is also calculated there. 

4 )Werthamer[2 ] and the Gennes[•] introduced the conditions 
for the continuity of the quantities ~/g and ~'/g. These con­
ditions are also valid in the region jz I - l, where the wave 
function changes strongly, so that it satisfies not the differen­
tial but the integral equation. On the other hand, if we are 
interested in a solution at distances much larger than 
D - (l/;0)'h, then we can use the differential equation, and its 
solution must be joined to the asymptotic expansion of the 
exact solution of the integral equation. Conditions (5) and (14) 
are the result of such joining and, strictly speaking, are valid 
in the region D « z « D/a. 

of the normal metal is close to zero, or if there 
is repulsion inside the metal, then condition (14) 
is valid. The value of (3 is calculated from the 
general formulas of Appendix B, using (15): 

~ = D(0.6 + 1.7 /In (Tc~ I Tc2) ). (16) 

If repulsion is present inside the normal metal, 
then (3 is obtained in analogy with the correspond­
ing calculations in [sJ · 

[ ( 1 ;!.'Y(; \ -1] 
~ =D 0.6-1.7 -+In- I . 

g2\; nTc I 
(17) 

4. BOUNDARY CONDITIONS FOR METALS WITH 
PARAMAGNETIC IMPURITIES 

Let us consider the most interesting case when 
the concentration of the impurities is close to the 
critical concentration of metal 1 ( z > 0 ). For 
these conditions we can write a differential equa­
tion [1!] which is valid for all temperatures: 

[ n2 (T2- Tc2) + ~2] ~ (z)- Vo'ttr d2~ = 0 
2 t:s dz2 ' 

(18) 

where Ts is the "exchange" time between colli­
sions, and T co is the critical temperature in the 
absence of impurities. 

To find the boundary conditions, it is neces­
sary to calculate the average value of the product 
of two Green's functions. Such an averaging is 
especially simple to perform if it is recognized 
that the interaction with the impurities has a 
o-like character _[2J As a result of averaging we 
obtain 

+oo 

<T~ ~ G01 (r', r)G-oo(r', r)eik(r-r') dr') 
-oo 

=\; ln-+'iJ- -\jl -+-+-[ 2rw ( 1 ) ( 1 p n2k2 )] 
nT 2 2 2 2 ' (19) 

where p = 1/7TTTs » 1, and Dis defined in (15). 
It can be shown that in this case the conditions 

(5) are satisfied, if the concentrations are close 
to critical for both the superconductor and the 
normal metal. If the concentration is much higher 
than the critical concentration of the normal 
metal, then conditions (14) should be satisfied. 
The value of (3 is calculated from the formulas 
of Appendix Band has a simple form, if terms of 
order 1/p « 1 are discarded: 

r ( 1 2v~ )-1] 
~ = DsL O.g- g2\; + ln nTcoi ' 

(20) 
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5. BOUNDARY CONDITIONS IN THE PRESENCE 
OF A CONSTANT MAGNETIC FIELD 

To find the boundary conditions in the presence 
of a field directed along the boundary between the 
normal and superconducting metals, it is neces­
sary to solve the following integral equation 

~*(r) +oo 
~ = T~ j

00
Gw(r', r)exp{ie(A(r)+ A(r'), r'- r)] 

X ~ * (r') G:__"' (r', r) dr'. (21) 

We shall assume that the wave function ~ *( r) 
depends only on z, and that the potential satisfies 
the condition A · n = 0 ( n is a vector normal to 
the interface). From this, and also from sym­
metry considerations, it follows that the potential 
can be taken in the form 

A= (Ax(z),Ay(z),O). (22) 

At a temperature close to critical, the poten­
tial A ~ a « 1, [9] so that the phase factor in 
(21) can be expanded in powers of A. As a result 
we obtain after simple transformations 

I~ • (z)l_ = T ~ r Gw (r' r) ~· (z') G-w (r', r) dr' 
g(z) "' -oo 

+oo 
+ Te2 ~ ~ A2 (z')G.,(r', r)G-ro(r', r) (r'- r) 2 ~*(z')dr' 

"' -00 

+oo 
+ Te2 ~ ~ A2 (z) G., (r', r) G_., (r', r) (r- r')2 ~* (z) 'dr', 

"' -00 

(23) 

where 

A2(z) = Ax2 + Ay2; (r- r')2 = (x- x') 2 + (y- y')2. 

To solve Eq. (23) in the region ~ 0 « z « A. 
(A. is the depth of penetration of the field inside 
the superconductor), we can make the substitu-
A ( z') ""' A ( z) ""' A ( 0 ). Inclusion of the next higher 
terms of the expansion would lead to increments 
of the order of a 3• Equation (25) is again solved 
by the Wiener-Hopf method.[13J Calculations 
analogous to those carried out in Appendix B 
lead in all cases to the same results (5) and (14), 
with the same values of /3. 

We now carry out a canonical transformation 

z 

qJ = ~ Az(x, y, s)ds, 

"" 
where Az (x, y, z) is an arbitrary function. Then 
A*( z) transforms in the following manner: 

~ • (z) -+~* (r) = ~ • (z) e-2ieq>(r), 

so that the new function will satisfy the general 
conditions 5): 

~n(V+ 2!e A(O) )~*(O+)=~*(O+) (24) 

when Tc2 « Tc1 or g2 > 0; 

~*(O+) = ~*(0-), n( V + 2!e A(O) )~*(O+) 

=n( V + 2:e A(O) )~*(0-) (25) 

when 

( T- Tc2 )''• ( Tc1- T )'" 1 ~ T ~ T ' c2 c1 

which can be obtained directly from the require­
ment of gauge in variance. 

6. SOLUTION OF THE GINZBURG-LANDAU­
GOR'KOV EQUATIONS FOR A SUPERCON­
DUCTING FILM 

Let a superconducting film occupy the volume 
-d < z < d, and let the normal metal occupy the 
remainder of space ( z > d; z < - d). We assume 
that the thickness of the film is much larger than 
the distances over which the differential equations 
(6) or (18) are applicable ( ~ 0 -for pure metals, 
D ~ ( l~ 0 ) 112 for ''contaminated" metals, and Ds 
~ ( Zls )1/2 for metals with paramagnetic impuri­
ties). Let us consider the case when conditions 
(14) are satisfied. To find A ( z) inside the super­
conductor it is necessary to solve differential 
equation (6) with boundary conditions 

+~ d~~~d) =~(+d). 

The first integral of (6) is of the form 

_1_( d~ l 2 +~[ Tc-T _ 71;(3)~2 J~=C 
4m \ dz I 'A, Tc 16(:n:Tc) 2 • 

We introduce a new constant k2 

2~!2 (Tc- T)k2 

C = lvrTc(1 + k 2) 2 

(26) 

(27) 

(28) 

[ ~1 has been defined in (2)]. After this, as a re­
sult of the substitutions 

[ 'ArTc(1+k2) ]''' 

z-+ 12m(Tc- T) z, 
~-+~~[ _2k2_J''' ~(z) (29) 

1 +k2 ' 

expression (27) reduces to the equation of the 
elliptic sine with parameter k, so that 

~(z) = sn (z + C1; k). (30) 

5 )Conditions similar to (24) and (25) were used by de 
Gennes,[•] but he confined himself to the introduction of the 
constant (3, without indicating a method for its calculation. 
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Inasmuch as the solution must be symmetrical 
with respect to z, it is clear that the constant C1 
must be chosen in the form C1 = K ( k) [ K (k) is 
the complete elliptic integral of the first kind]. 
From the formulas for the transformation of the 
elliptic functions we obtain 

~(z) = cn(z; k) / dn (z; k). (31) 

In terms of the ordinary variables: 

[ {[ 2m(Tc- T) ] 1
/ 2 }]~I 

X dn ;<.,(1+k2)Tc z; k . 
(32) 

We see from (32) that when k = 0 we get 
l:l = 0, i.e., a second ~order phase transition takes 
place. It is easy to obtain the value of d corre~ 
sponding to k = 0. When k = 0 the functions 
en z - cos z and dn z - 1, so that 

f[2m(Tc-T)] 1
;,} 

~~cos l z , 
~ ;<.,Tc 

and the boundary conditions (26) are of the form 

~ [ 2m(Tc- T) ]I;,= ctg{d [ 2m(T ~- T) f'\f· (33)* 
;<.,Tc AT c ) 

From this we obtain the critical thickness 

d= [ ;<.,Tc ]1;, arcctg{~[2m(Tc-T) ll/'}. 
2m(Tc-T) ;<.,Tc ~ 

(34) t 

It can be shown that the remaining solutions of 
(33) correspond to the vanishing of the energet~ 
ically unfavorable states which have nodes. 

The solution (32) which we have obtained is 
symmetrical with respect to the origin, so that it 
is simultaneously a solution of the problem of a 
superconducting plate of thickness d, bordering 
at z = d on a normal metal, and at z = 0 on 
vacuum. [121 The formula for the critical thickness 
remains in force here, but it must be remembered 
that in this case d denotes the thickness, whereas 
in the preceding case it denoted the half~thickness 
of the plate. 

7. COMPARISON WITH EXPERIMENT 

Experiments [t 4, 15] have actually disclosed a 
dependence of the critical temperature on the 
thickness of a superconducting lead film which 
borders on a normal metal (copper, platinum). 

*ctg =cot. 
tare ctg = cot-•. 

t 
/0 

0501::---L----:fO~dc-.,.10=-

Dependence of the quantity t on the dimensionless thick­
ness dc/D at temperatures close to the critical temperature of 
a bulk superconductor; ~- experimental data[••]; x- experi­
mental data[•s]; curve- plot of (35). 

Under the experimental conditions the metals 
were strongly contaminated ( l « ~ 0 ) , and the 
transition temperature of the normal metals was 
close to zero. Substituting the value of A.T from 
the paper of Gor'kov [16] and the value of {3 from 
(16) in (35), we obtain6 ): 

de :n: [ :n: J 
D = 2(1- tfh arc tg 1.2(1- t) 1;, ' 

(35)* 

where t = T/Tc. 
The value of D can be expressed in terms of 

the experimentally observed quantities: 

(36) 

where r:J is the conductivity, )' the coefficient in 
the linear law of specific heat, and k is Boltz­
mann's constant. Under the conditions of the 
experiment in [14J, p = 1/r:J = 2 x 10-5 s-2-cm, 
/' = 1.71 x 10 3 erg/deg2-cm3, so that D = 110 A. 

The figure shows the dependence of t on the 
dimensionless thickness dc/D at temperatures 
close to the critical temperature of a bulky 

1 [15l superconductor. The results of Hauser et a . ~ 

were recalculated with the same value D = 110 A, 
since no data whatever are given there on the re­
sistance of the lead film. It is seen from the 
figure that relation (35) is generally in fair 
agreement with experiment. 

In conclusion I am sincerely grateful to 
Professor B. T. Gellikman for critical remarks 
and continuous interest in the work, and also to 
A. I. Larkin for numerous discussions. The 
author is also grateful to V. L. Ginzburg and 
D. A. Kirzhnits for a discussion of the results. 

6 ) A somewhat different dependence was obtained by 
Werthamer, [ 2 ] who introduced the condition for the continuity 
of the logarithmic derivative of ~(z) on the boundary; near T c 
Werthamer's formula practically coincides with (35) if we put 
f3 =D. 

*arc tg = tan -•. 



BOUNDARY CONDITIONS FOR THE SUP E RC ON DUCT lVI TY EQUATIONS 1183 

APPENDIX A 

We consider the integral equation [9] 

+oo +oo 

-
1
: (:)-

1 
= T ~ ~ Gw (I, r) ~ (l3) G_w (I, r) dl + T ~ ~ Gw (I, m) 

b() w-oo w-oo 

X ~(m3 )G.,(s, r)~(s3 )G.,(s, m)~(Z3 )G-w(l, r)dldmds, 

) { g1 for z > 0, 
g(z = 

gz for z<O. (A.1) 

We shall seek the solution in the form 

We use the circumstance that .6.1 satisfies the 
integral equation (A.1), in which g ( z) is re­
placed by g1• As a result we obtain in the first 
approximation in c.p: 

( 1 1 ) cp(z) 
~1 lgd -lgzl 6(-z)+ lg(z) I 

+«> 

= T ~ ~ G.,(l, r)cp(Z3)G-w(l, r)dl- 2T~12 
w-oo 

+oo 

X~~ G.,(l, m)G-w(l, r)G-w(s, m)cp(s3) 
"'-oo +«> 

X G., (s, r) ds dm dl- T~ 12 ~. ~ G.,(r, s) G_., (s, m)cp (m3) 
"'-00 

X G., (m, I) G_., (1, r) ds, dm dl. (A.2) 

For large I z I the function c.p is of the form 

cp (z) -+ 0 for z-+ oo, 

cp(z)-+ ~2- ~1 for z-+ -oo 

We shall therefore seek it in the form 

1 +oo-i6 

The functions 1/l g1, 2 I - K (k) vanish when 
k = ±ib1,2• 

b 2 _ 2a12 . 3a12 - a22 
1 - soz ' bz2 = soz (A.6) 

a 1, 2 have been defined in (2). It follows therefore 
that these functions can be approximately repre­
sented in the form 

1 k2 + b1, 22 

~-K(k)= 1; kz+~;o-2 . (A. 7) 

It can be shown that more accurate calcula­
tions, similar to those made earlier [6] and in 
Appendix B, are not needed in this case, for they 
give rise to increments of the order of ar,2 • 

After substituting (A.7) in (A.5) we can easily 
obtain c.p ( z). We write out b. ( z) for z > 0: 

{ ( a12 - az2) exp ( -l'2 a1z/6o) } 
~(z)=~1 1- . (A.S) 

(3a1- az) 'f,[a1l'2 + (3a1- a 2'iz] 

The expression obtained must be further ex­
panded in powers of [I a 1 - a 2 1 /( a 1 + a 2 )] ac­
curate to terms of first order, for in this case it 
is precisely this quantity which is a small 
parameter. As a result we obtain the simple 
formula 

~(z)=~1{t-a1-C::.exp[- (a1+az)z ]}. (A.9) 
· a1 + az l'2 so 

For z < 0 a solution can be found by making a 
simple substitution 1 ~ 2, z - -z. As a result 
we obtain formula (4). 

APPENDIX B 

As shown in [6], to study the behavior of the 
cp(z)=- ~ f(k)eikzdk (6>0). 

2:rt -oo-i6 
(A.4) wave function of the pair near the boundary we 

can confine ourselves to the linear integral 
Going over to Fourier components in (A.2 ), we 
obtain 

j+ ( k) ( I :1 I - K ( k) ) + J- ( k) ( I ;zl - K ( k) ) 

-- i~1 ( 1 1 \. 
- k \ Jgzj-~)' 

00 0 

j+ ( k) = ~ eikzcp (z) dz; j-(k) = ~ eikzcp(z)dz; 
0 

T :~coo 

K(k)= ( 2:rt)3~ ~ G.,(p)G-w(P-k)dp 
w-oo 

2T~12 +oo 

- (2:rt)3 ~ ~ G_.,(p) 
w-oo 

T~ 2 +oo 

X Gw(p)Gw(P- k)G-w(P)dp- (2:rt\ 3 ~ ~ Gw(P) 
w-oo 

X G_w(p)Gw(P- k)G-w(P- k)dp. (A.5) 

equation 
+oo 

~(z) =- Tg(z) ~ ~ G.,(l, r)~(Z3)G-w(l, r)dl, (B.1) 

where 

w-oo 

{ gi when z > 0, 
g(z) = 

gz when z < 0. 

We shall seek the solution in the form 

1 +oc+iO 

~(z)=- ~ f(k)eikzdk, 
2:rt -oo+iO 

00 0 

f(k) = f+(k) + j-(k) = ~ eikz~(z)dz + ~ eikz~(z)dz, 
0 

6>0. (B.2) 

Substituting (B.2) in (B.1), we obtain the following 
equation 
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Col -co 

(B.3) 

Let the functions K1 2 ( k ) be analytic in the 
strip I Im k I < a, and iet them have at k = ±ia 
singularities (poles or branch points). We assume 
also that K 1,2 (k) are even and have zeros at 
k = ±c and k = ±ib respectively, with c « a and 
b < a. As a result they can be represented in the 
form 

(k2 + b2)N2-(k) 
Kz(k) = (k2 + a2)Nz+(k) ' 

(B.4) 

where Ni, 2 (k) are analytic and have no zeros 
for all Im k > -a, and N1, 2 (k) are analytic and 
have no zeros for all 1m k < a. 

Substituting (B.4) in (B.3) and carrying out the 
usual regrouping, we obtain the values of F( k): 

j+(k) = (k + ib) INt+(c)N2+(c) liC 
(k2- c2)N1+(k)N2+(k) b ' 

j-(k) = _ i l~t+(c)Nz+(c) ICgz (B. 5 ) 
(k- ~b)Nt-(k)N2-(k) bgt 

( C is an arbitrary constant). Inasmuch as 
c «a, we can obtain in the region 1/a « x 
« 1/c the following expansion: 

where cp 1,2 are the phases of the functions 
Ni,2(k) at k =c. 

(B.6) 

(B.7) 

For negative z, if b « a, the asymptotic 
expansion will be determined only by the pole at 
k = ib: 

Ll(z)=gzCINt+(c)Nz+(c) lebz (B.B) 
gtbNt-(ib)N2-(ib) 

( I z I » 1/a ). On the other hand, if b ;s a, then 
it is necessary to add to expression (B.B) the 
term connected with the singularity at k = ia. 

For real k, the functions NT, 2 ( k) are ob­
tained from the usual formulas: 

Carrying out simple transformations, we get 

± _ [ K 2 (k) (k2 + a2) ]'f'l• 
Nz (k)- k2+b2 

{ ik "f [ K2 (~) (tt+ a2) (k2 +b2) J d~ } 
X exp .1t ~ ln Kz(k) (k2 + a2) (~2 + b2) ~2- k2 . 

(B.9) 

Confining ourselves to terms of order c/a, we 
obtain the functions cp 1, 2 for two limiting cases: 

1) a;=;;b>c 

c r [ Kt'<~> 2 J 
1Jl1 = --; ~ ~t(~) - 12 d~+c, 

K2' (~) d 
~K2(~) ~; 

IJlt- _ _:_ r [ K{(~) __ 2 ] +c 
- .1t ~ ~Kt ( ~) ~2 ' 

(B.10) 

(B.ll) 

(B.12) 

(B.13) 

where in the functions K 1 and Kf it is necessary 
to put c = 0 ( T = Tc1 ), so that for small k their 
expansion is of the form 

K{(k) ,...... k. 

Formulas (B.6)-(B.8) and (B.10)-(B.13) solve 
our problem. From (B.6) it follows that the func­
tion 6 ( z) satisfies the general boundary condi­
tion (14), and the constant {:3 is determined from 
formula (B.7). If a» b ~ c, the phases cp1 and 
cp2 differ only in sign. Therefore in this case 
{3 = 1/b, and when z < 0 and I z I » 1/a we have 

~(z) = Cebz /b. (B.14) 

Comparison of (B.14) with (B.6) shows that the 
wave function satisfies the continuity conditions 
(5). Condition (14) is in this case a consequence 
of formula (5) and is of no interest in itself. 

APPENDIX C 

Let us consider the conditions on the interface 
between two metals which do not contain impuri­
ties. The function K(k) is of the form [sJ 

{ ~ 2nimT 
Kt, 2(k) = 1 + gt, 2 ~ ln.2nT + · Po 

X ln [ f( 1/2 + ipok/4nmT)_ l\ 
f(i/2 - ip0k/4nmT) Jf (C.l) 
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We shall assume that the following conditions are 
satisfied: 

(Tc1- T) I Tel< 1; T c2 I Tel< 1. 

In this case 

a =1 I 'So, b = a(1- Tc2 I 2vTc~); c = aa1. (C.2) 

Therefore it is easy to obtain p from formulas 
(B.7), (B.10), and (B.ll): 

~ = 'So(0.7 + 0,5 /ln (Ted Tc2)). (C.3) 

Let the temperature be close both to the tern­
perature of the transition of the metal into the 
superconducting state, and to the transition tem­
perature of the normal metal: 

( Tel-T\'" 
T I ~1; 

el I 

( T- Tcz )''• 
Tc2 J <1. 

(C.4) 

In this case 

(C.5) 

so that the continuity conditions (5) are satisfied. 
We have {3 = 1/b. If we substitute this quantity 

in (B.6) it turns out that when the temperature is 
decreased .6. ( z) may become comparable with 
.6.1, so that the linear equation can no longer be 
used for its determination. As shown in [6], the 
constant C ~ .6.1 [ ( T c 1 - T )/Tctl 112 , so that the 
function .6. ( z) obtained in (B.6) is of the order of 

[ (Tet- T)Tc2 ]'" 
~(z)""'~l Tel(T-Tc2) ' 

It follows therefore that the condition for the 
applicability of the linear approximation is as 
follows: 

( T- Tc2 )'" ( Tel- T )''• '1~ T ~ T . 
\ c2 cl 

(C.6) 

1 P. G. de Gennes and E. Guyon, Phys. Letters 
3, 168 (1963). 

2 N. R. Werthamer, Phys. Rev. 132, 2440 
(1963). 

3 R. H. Parmenter, Phys. Rev. 132, 2490 (1963). 
4 P. G. de Gennes, Rev. Modern Phys. 36, 225 

(1964). 
5 P. G. de Gennes, Phys. Letters 5, 22 (1963). 
6 R. 0. Zal'tsev, JETP 48, 644 (1965), Soviet 

Phys. JETP 21, 426 (1965). 
7 V. L. Ginzburg and L. D. Landau, JETP 20, 

1064 (1950). 
8 L. P. Gor'kov, JETP 36, 1918 (1959), Soviet 

Phys. JETP 9, 1364 (1959). 
9 Abrikosov, Gor'kov, and Dzyaloshinskil, 

Metody kvantovol' teorii polya v statisticheskol' 
fizike (Methods of Quantum Field Theory in 
Statistical Physics), Fizmatgiz, 1962. 

10 D. H. Douglass, Phys. Rev. Letters 9, 155 
(1962). 

11 A. A. Abrikosov and L. P. Gor'kov, JETP 
39, 1781 (1960), Soviet Phys. JETP 12, 1243 
(1961). 

12 A. A. Abrikosov, JETP 47, 720 (1964), Soviet 
Phys. 20, 480 (1965) . 

13 E. C. Titchmarsh, Introduction to the Theory 
of Fourier Integrals, Oxford, 1937. 

14 P. Hilsch, Z. Physik 167, 511 (1962). 
15 Hauser, Theuerer, and Werthamer, Phys. 

Rev. 136, A735, 1964. 
16 A. P. Gor'kov, JETP37, 1407 (1959), Soviet 

Phys. JETP 10, 998 (1960). 

Translated by J. G. Adashko 
248 


