CONSERVATION OF VECTOR CURRENT AND THE $\nu + N \rightarrow \mu + N + \pi$ PROCESS

E. P. SHABALIN

Institute of Theoretical and Experimental Physics, State Atomic Energy Commission

Submitted to JETP editor January 16, 1965

J. Exptl. Theoret. Phys. (U.S.S.R.) 48, 1750-1758 (June, 1965)

The relation between the $\nu + N \rightarrow \mu + N + \pi$ process and the electroproduction of π mesons is established phenomenologically on the basis of the hypothesis of the conservation of vector current. Numerical values are obtained by employing the experimental data on the electroproduction of π mesons.

ONE of the interesting results of the experiment performed at CERN^[1] on the interaction of high energy neutrinos with matter is the approximate equality of the cross sections for the "elastic" process

$$\nu + N \to \mu + N \tag{1}$$

and the ineleastic process for the production of a single π meson

$$\nu + N \to \mu + N + \pi. \tag{2}$$

Theoretical predictions ^[2] with respect to process (1) based on the hypothesis of conserved vector current^[3] have been confirmed in this experiment. With respect to process (2) there exist estimates for cross sections in the domain of small transferred momenta ^[4] which indicate that this domain of transferred momenta gives no essential contribution to the observed cross section.

In the work of Bell and Berman^[5] the total</sup> cross section for the process (2) was obtained on the basis of a static model with the $(\frac{3}{2}, \frac{3}{2})$ resonance in the πN interaction. A more exact calculation taking into account the recoil of the nucleon and on the assumption that the process (2) proceeds through the intermediate $(\frac{3}{2}, \frac{3}{2})$ isobar is contained in the paper by Berman and Veltman [6]. In this paper we obtain an estimate of the cross section of process (2) based on a phenomenological approach utilizing the hypothesis of conserved vector current and the experimental data on the electroproduction of π -mesons.

1. PHENOMENOLOGICAL DISCUSSION OF THE PROCESS OF ELECTROPRODUCTION OF π MESONS

The matrix element for the process

$$e + N \to e + N + \pi \tag{3}$$

is represented in the form

$$M = ieJ_{\mu}A_{\mu}(2\pi)^{4}\delta^{4}(p_{1} + s_{1} - p_{2} - s_{2} - q), \qquad (4)$$

where

$$A_{\mu} = \frac{i e \overline{u} (s_2) \gamma_{\mu} u(s_1)}{(s_1 - s_2)^2}, \qquad J_{\mu} = i \langle p_2, q | I_{\mu} | p_1 \rangle. \tag{5}$$

Here u are spinors, s_1 and s_2 are the fourmomenta of the electron before and after scattering and J_{μ} is the current of strongly interacting particles.

The requirement of relativistic and gauge invariance leads to the following expression for the matrix element $J_{\mu}^{[\tau]}$:

$$J_{\mu} = \frac{1}{\sqrt{2E_q}} \bar{u} \left(p_2 \right) \left\{ \gamma_5 \alpha_{\mu} f_1 + \gamma_5 \beta_{\mu} f_2 + \hat{N} \alpha_{\mu} f_3 + \hat{N} \beta_{\mu} f_4 \right. \\ \left. + N_{\mu} f_5 + \gamma_5 \hat{N} N_{\mu} f_6 \right\} u \left(p_1 \right).$$
(6)

In this expression p_1 and p_2 are the fourmomenta of the initial and final nucleons, E_{α} is the energy of the π meson, while the vectors α , β , and N are defined in the following manner. We introduce the notation

$$k = s_1 - s_2, \quad \lambda^2 = -k^2,$$

$$\Delta_{\mu} = \frac{(p_1 - p_2)_{\mu}}{2}, \qquad P_{\mu} = \frac{(p_1 + p_2)_{\mu}}{2}$$

$$S_{\mu} = \frac{2(ks_2)}{\lambda^2} s_{1\mu} - \frac{2(ks_1)}{\lambda^2} s_{2\mu}.$$

Then the vectors

$$N_{\mu} = \varepsilon_{\mu\nu\rho\sigma}P_{\nu}k_{\rho}\Delta_{\sigma}, \qquad \alpha_{\mu} = S_{\mu} - \frac{(NS')}{N^{2}}N_{\mu},$$
(7)
$$\beta_{\mu} = -\frac{1}{\lambda^{2}}[\lambda^{2}(S\Delta) + (\Delta k)(Sk)]P_{\mu} + \frac{1}{\lambda^{2}}[(\alpha P)(k\Delta) - (kP)(\alpha\Delta)]k_{\mu} - (\alpha P)\Delta_{\mu}$$

and k_{μ} constitute a complete orthogonal set.

The isotopic dependence of each of the coeffi-

Table I	та	.bl	١e	1
---------	----	-----	----	---

Operator	1) $p \rightarrow p + \pi^0$	2) $n \rightarrow n + \pi^0$	3) $p \rightarrow n + \pi^+$	4) $n \rightarrow p + \pi^{-1}$
$\frac{1/2}{1/2} (\tau_3 \tau_{\alpha} + \tau_{\alpha} \tau_3)$ $\frac{1}{2} (\tau_3 \tau_{\alpha} - \tau_{\alpha} \tau_3)$			$\begin{vmatrix} 0\\ -\sqrt{2}\\ \sqrt{2} \end{vmatrix}$	$\begin{vmatrix} 0\\ \sqrt{2}\\ \sqrt{2} \end{vmatrix}$

cients can be represented in the form

$$f = \frac{1}{2} (\tau_3 \tau_\alpha + \tau_\alpha \tau_3) f^{(+)} + \frac{1}{2} (\tau_3 \tau_\alpha - \tau_\alpha \tau_3) f^{(-)} + \tau_\alpha f^{(0)}, \quad (8)$$

where τ are the Pauli matrices operating in isotopic space, and $f^{(+)}$, $f^{(-)}$, and $\hat{f}^{(0)}$ are scalar functions of the invariants (p_1k) , (p_1p_2) and λ^2 . Relation (8) means that the total amplitude M can be represented in the form

$$M = \frac{1}{2} \{ \tau_3 \tau_\alpha \} M^{(+)} + \frac{1}{2} [\tau_3 \tau_\alpha] M^{(-)} + \tau_\alpha M^{(0)}.$$
 (8')

The matrix elements of the isotopic operators chosen above for the different charge states of the meson-nucleon system are shown in Table I.

The amplitudes $M^{(+)}$, $M^{(-)}$ and $M^{(0)}$ can be expressed in terms of the amplitudes for the transition to the final state with total isotopic spin T equal to $\frac{3}{2}$, $\frac{1}{2}$. Indeed, the amplitudes of the processes 1)-4) (Table I) can be expressed in terms of amplitudes with definite isotopic spin in the following manner ^[8]:

$$A_{1} = 2t_{3} + t_{1} + s, \quad A_{2} = 2t_{3} + t_{1} - s,$$

$$A_{3} = \sqrt{2}(-t_{3} + t_{1} + s), \quad A_{4} = \sqrt{2}(t_{3} - t_{1} + s), \quad (9)$$

where t_3 and t_1 are the amplitudes for the transition into states T respectively equal to $\frac{3}{2}$ and $\frac{1}{2}$ determined by the isotopically vector part of the current J_{μ} ; s is the amplitude for the transition into the state $T = \frac{1}{2}$ determined by the isotopically scalar part of the current J_{μ} .

From a comparison of (9) with the representation (8') and taking Table I into account we obtain

$$M^{(+)} = 2t_3 + t_1, \ M^{(-)} = t_3 - t_1, \ M^{(0)} = s.$$
 (10)

2. PHENOMENOLOGICAL DISCUSSION OF PROCESS (2)

The matrix element of the process of production of the π meson in reaction (2) has the form

$$M_{\nu} = \frac{G}{\sqrt{2}} J_{\mu}^{w} j_{\mu} (2\pi)^{4} \, \delta^{4} (p_{1} + s_{1} - p_{2} - s_{2} - q), \quad (11)$$

where

$$j_{\mu} = \bar{u}(s_2)\gamma_{\mu}(1+\gamma_5)u(s_1), \quad J_{\mu}^w = i\langle p_2, q | I_{\mu}^w | p_1 \rangle.$$
 (12)

The current J_{μ}^{W} can be represented [in analogy with (6)] in the form

$$\begin{split} V_{\mu}^{w} &= \frac{2}{V 2E_{q}} \, \bar{u} \, (p_{2}) \left\{ \gamma_{5} \alpha_{\mu} \left(f_{1}^{\,\prime} + \gamma_{5} g_{1} \right) + \gamma_{5} \beta_{\mu} \left(f_{2}^{\,\prime} + \gamma_{5} g_{2} \right) \right. \\ &+ \hat{N} \alpha_{\mu} \left(f_{3}^{\,\prime} + g_{3} \gamma_{5} \right) + \hat{N} \beta_{\mu} \left(f_{4}^{\,\prime} + g_{4} \gamma_{5} \right) + N_{\mu} \left(f_{5}^{\,\prime} + g_{5} \gamma_{5} \right) \\ &+ \gamma_{5} \hat{N} N_{\mu} \left(f_{6}^{\,\prime} + g_{6} \gamma_{5} \right) + \gamma_{5} k_{\mu} \left(f_{7}^{\,\prime} + g_{7} \gamma_{5} \right) \\ &+ \hat{N} k_{\mu} \left(f_{8}^{\,\prime} + g_{8} \gamma_{5} \right) \right\} u \, (p_{1}). \end{split}$$
(13)

The isotopic structure of the coefficient f'_1 has the form

$$f' = \frac{1}{2} \left(\tau_{+} \tau_{\alpha} + \tau_{\alpha} \tau_{+} \right) f'^{(+)} + \frac{1}{2} \left(\tau_{+} \tau_{\alpha} - \tau_{\alpha} \tau_{+} \right) f'^{(-)}, \quad (14)$$

the structure of g_i is analogous. The coefficients $f'^{(\pm)}$ and $g^{(\pm)}$ are, as before, scalar functions of the invariants (p_1k) , (p_1p_2) and λ^2 , where f'^(±) in accordance with the hypothesis of conserved vector current are simply related to the coefficients describing the electroproduction of π mesons. Specifically,

$$f_i^{\prime(\pm)} = f_i^{(\pm)} \quad (i = 1, 2, \dots, 6),$$

$$f_7^{\prime} = f_8^{\prime} = 0.$$
 (15)

The factor two in formula (13) is necessary for the following reasons. The Lagrangians of the electromagnetic and the weak interactions can be represented in the form

$$\mathscr{L}_{\mathrm{em}} = rac{e}{2} \,\overline{\psi} \,(1+\tau_3) \,\psi, \quad \mathscr{L}_{\mathrm{w}} = rac{G}{\sqrt{2}} \,\overline{\psi} \tau_+ \psi.$$

According to the hypothesis of conserved vector current the initial interactions $\psi \tau_3 \psi$ and $\psi \tau_+ \psi$ are renormalized in the same manner as a result of strong interaction. If in addition to that a π meson is emitted, then $\overline{\psi} \tau_3 \psi$ goes over into

$$\psi(a\tau_3\tau_{\alpha}+b\tau_{\alpha}\tau_3)\psi\varphi_{\alpha},$$

while the interaction $\overline{\psi}\tau_{+}\psi$ goes over into

$\overline{\psi}(a\tau_+\tau_{\alpha}+b\tau_{\alpha}\tau_+)\psi\varphi_{\alpha}.$

Therefore, if the isotopic representation of the coefficient f' is chosen in the form (14), then the relation (15) corresponds to the replacement

$$e \rightarrow 2G / \sqrt{2}$$
.

The matrix elements of the operators $\frac{1}{2} \{ \tau_+ \tau_{\alpha} \}$ and $\frac{1}{2} [\tau_+ \tau_{\alpha}]$ are shown in Table II. The expressions for the amplitudes of processes I-III (Table II) in terms of the amplitudes of the states of the meson-nucleon system with total

Operator	$\left I \right) \nu + n \rightarrow \mu^{-} + p + \pi^{0}$	II) $v + n \rightarrow \mu^- + n + \pi^+$	III) $\nu + p \rightarrow \mu^- + + p + \pi^+$
${}^{1/_{2}}(\tau_{+}\tau_{\alpha}+\tau_{\alpha}\tau_{+})$ ${}^{1/_{2}}(\tau_{+}\tau_{\alpha}-\tau_{\alpha}\tau_{+})$	0 —1	$\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}$	1/V2 1/V2

isotopic spin T equal to $\frac{3}{2}$ and $\frac{1}{2}$ is given by the formulas

$$A_{\rm I} = (t_3' - t_1'), \qquad A_{\rm II} = \frac{1}{\sqrt{2}} (t_3' + 2t_1'), \qquad A_{\rm III} = \frac{3}{\sqrt{2}} t_3'.$$
(16)

In the case of the vector interaction, as shall be seen later, the amplitudes t'_3 and t'_1 are obtained from the amplitudes t_3 and t_1 by multiplying them by $\sqrt{8}G/e^2$. Relations (16) enable us to establish different relations between the cross sections of processes I-III if the amplitudes t_3 and t_1 are known.

Representation (13) enables us to carry out easily the summation over the spins in $|M_{\nu}|^2$ and to obtain an expression for the total cross section of process (2). Specifically,

$$d\sigma_{\mathbf{v}} = \frac{G^2}{(2\pi)^4 \cdot 8M^2 E_{s_1}^2} d\lambda^2 dw^2 [V'(w^2, \lambda^2) + A(w^2, \lambda^2)], (17)$$

where

$$V'(w^{2}, \lambda^{2}) = \int \frac{d^{3}p_{2}}{E_{p_{2}}} \frac{d^{3}q}{E_{q}} \delta^{4}(p_{2} + q - p_{1} - k)$$

$$\times \{ (|f_{1}'|^{2} - N^{2}|f_{3}'|^{2}) (p_{1}p_{2} - M^{2}) \alpha^{2} (\alpha^{2} - s_{1}^{2} - s_{2}^{2} - \lambda^{2}) + (|f_{2}'|^{2} - N^{2}|f_{4}'|^{2}) (p_{1}p_{2} - M^{2}) \beta^{2} (-s_{1}^{2} - s_{2}^{2} - \lambda^{2}) + (|f_{5}'|^{2} - N^{2}|f_{6}'|^{2}) (p_{1}p_{2} + M^{2}) [(NS)^{2} - N^{2} (s_{1}^{2} + s_{2}^{2} + \lambda^{2})] \}, \qquad (18a)$$

$$A(w^{2}, \lambda^{2}) = \int \frac{d^{3}p_{2}}{E_{p_{2}}} \frac{d^{3}q}{E_{q}} \delta^{4}(p_{2} + q - p_{1} - k)$$

$$\times \{ (|g_{1}|^{2} - N^{2}|g_{3}|^{2}) (p_{1}p_{2} + M^{2}) \alpha^{2} (\alpha^{2} - s_{1}^{2} - s_{2}^{2} - \lambda^{2}) + (|g_{2}|^{2} - N^{2}|g_{4}|^{2}) (p_{1}p_{2} + M^{2}) \beta^{2} (-s_{1}^{2} - s_{2}^{2} - \lambda^{2}) + (|g_{5}|^{2} - N^{2}|g_{6}|^{2}) (p_{1}p_{2} - M^{2}) [(NS)^{2} - N^{2} (s_{1}^{2} + s_{2}^{2} + \lambda^{2})] + (|g_{7}|^{2} - N^{2}|g_{8}|^{2}) \lambda^{2} \\ \times (s_{1}^{2} + s_{2}^{2} + \lambda^{2}) (p_{1}p_{2} + M^{2}) \}.$$
(18b)

We note that, generally speaking, $|M_{\nu}|^2$ contains the cross products $f_i^* f_k$ and $f_i g_k^*$, but as a result of integration over the variables p_2 and q they drop out. This circumstance facilitates the comparison of process (2) with the electroproduction of π mesons. The cross section for the latter process is equal to

$$\sigma_{\rm ep} = \frac{e^4}{(2\pi)^4 \cdot 64M^2 E_{s_1}^2} \frac{d\lambda^2 dw^2}{\lambda^4} V(w^2, \lambda^2, s_2^2 = 0), \ (19)$$

where $V(w^2, \lambda^2)$ is expressed by formula (18a) with f'_i replaced by f_i .

Experiments carried out by Hand ^[9] on the electroproduction of π mesons on protons enable us to compare σ_{ν} and σ_{ep} in the energy range of the incident particle of the order of 1 GeV. Hand has studied the behavior of the ratio $d\sigma_{ep}/d\Omega dE_{s_2}$ as a function of the variables λ^2 and $K = E_{s_1} - E_{s_2} - \lambda^2/2M$. It can be easily seen that $K = (w^2 - M^2)/2M$. If we use the notation

$$X(K, \lambda^2) \equiv \frac{d\sigma_{ep}}{d\Omega \, dE_{s_2}} \frac{1}{E_{s_2}}, \qquad (20)$$

$$\varkappa(w^2, \lambda^2) \equiv \frac{V'(w^2, \lambda^2)}{V(w^2, \lambda^2)}, \qquad (21)$$

then the part of the cross section of process (2) due to the interaction of the vector current is expressed in the form

$$\sigma_{\mathbf{v}}^{V} = \frac{8G^{2} \langle \mathbf{x} \rangle}{e^{4}} \frac{\pi}{E_{s_{1}}} \int dK \, d\lambda^{2} X(K, \lambda^{2}) \lambda^{4}, \qquad (22)$$

where $\langle \kappa \rangle$ is the average value of κ over the range of variation of the variables w^2 and λ^2 . The coefficient κ takes into account the fact that in the different charge modifications of processes (1) and (2) the matrix elements of the operators $\frac{1}{2} \{ \tau_{+} \tau_{\alpha} \}$ and $\frac{1}{2} [\tau_{+} \tau_{\alpha}]$ appearing in f_{i} and consequently in V' (w^2 , λ^2), differ from the matrix elements of the operators $\frac{1}{2} \{ \tau_{3} \tau_{\alpha} \}$ and $\frac{1}{2} [\tau_{3} \tau_{\alpha}]$ contained in the f_{i} which determine V (w^2 , λ^2).

In formula (22) the range of integration is determined by the relation

$$K_{max} = E_{s_1} \frac{\lambda^2}{\lambda^2 + m_{\mu}^2} + \frac{m_{\mu}^2}{4M^2} - (\lambda^2 + m_{\mu}^2) \frac{M + 2E_{s_1}}{4ME_{s_1}}$$
$$K_{min} = m_{\pi} + \frac{m_{\pi}^2}{2M}.$$
 (23)

In order to obtain the value of the integral (22) for the energy of the incident neutrino E = 1 GeV, the data of Hand have to be extrapolated a bit into the domain of larger values of K, but the possible errors involved in this are not great since the dependence X(K) is fairly smooth for all values of λ^2 . Below we give the values of the integrand in formula (22) for various values of λ^2 :¹⁾

¹⁾The value of $(XdK \text{ is given in units of } 10^{-32} \text{ cm}^2/\text{Gev.})$

λ ² , GeV ² :	0,0776	0,194	0,310	0,465	0.620	0.776
$\int X dK$:	102	20,5	10	3,1	1,04	0.21
$\lambda^4 \int X dK$:	0.612	0,77	0,96	0,67	0.4	0.126

As a result of integrating (22) we find that the part of the cross section σ_{ν}^V due to the vector current at an incident neutrino energy of 1 Gev amounts to

$$\sigma_{\mathbf{v}}^{V} = 1.96 \cdot 10^{-39} \langle \mathbf{x} \rangle \,\mathrm{cm}^{2} \tag{24}$$

The numerical value can be obtained if we determine the value of $\langle \kappa \rangle$.

3. CONCLUSIONS

From relations (9) it follows that the cross section measured by Hand depends both on the isotopically vector and on the isotopically scalar current. Indeed, the cross section for a proton is the sum of cross sections of processes 1) and 3) (Table I):

$$|A_1|^2 + |A_3|^2 = 3(2|t_3|^2 + |t_1 + s|^2).$$
(25)

On the other hand, as follows from (16), the cross section for the production of π mesons by a neutrino on neutrons is

$$|A_{\rm I}|^2 + |A_{\rm II}|^2 \sim \frac{3}{2} (|t_3|^2 + 2|t_1|^2).$$
(26)

The total cross section for the production of π mesons as a result of the interaction of a neutrino with matter containing an equal number of neutrons and of protons is

$$\sigma_{\mathbf{v}^{(n+p)}} = |A_{\mathrm{I}}|^2 + |A_{\mathrm{II}}|^2 + |A_{\mathrm{III}}|^2 \sim 3(2|t_3|^2 + |t_1|^2).$$
(27)

The coefficient of proportionality in relations (26) and (27) is $8G^2/e^4$. We have already taken it into account in formula (22). Therefore, if we are interested in $\sigma_{\nu}^{(n+p)}$, then in accordance with (25) and (27) we obtain

$$\varkappa = \frac{2|t_3|^2 + |t_1|^2}{2|t_3|^2 + |t_1 + s|^2} \tag{28}$$

The experimental data on the photoproduction of π mesons ^[10,11] enable us (with an accuracy ~20%) to take the value of $\langle \kappa \rangle$ equal to unity (cf. the Appendix). Then the cross section $\sigma_{\nu}^{V(n+p)}$ of the neutrino process due to the vector interaction at an energy of 1 GeV turns out to be equal to 1.26×10^{-39} cm² or ~ 1×10^{-39} per nucleon. The figures obtained above give a lower limit on the value of the cross section, since we do not know the contribution of the axial interaction. From the CERN experiment ^[1] it follows that the cross section per nucleon at an energy of 1 GeV apparently does not exceed 3×10^{-39} cm². If we accept this figure, then the part of the cross section due to the axial interaction exceeds the vector part by a factor two.

Relations (16) provide an interrelation between the different charge modifications of process (2). For example, the ratio of the cross sections for the production of charged π mesons compared to neutral ones in matter with the same number of neutrons and protons is

$$\frac{\sigma(\pi^+)}{\sigma(\pi^0)} = \frac{\langle 5|t_3|^2 + 2\operatorname{Re}(t_3^*t_1) + 2|t_1|^2\rangle}{\langle |t_3|^2 - 2\operatorname{Re}(t_3^*t_1) + |t_1|^2\rangle}$$
(29)

In the Appendix it is shown that in the effective range of K, λ^2 for the vector part of the interaction we have

$$\int dK (2|t_3|^2 + |T_1|^2) \approx 1.4 \int dK (|T_1|^2 - 4 \operatorname{Re}(t_3^*T_1)).$$

Assuming that the isoscalar part of the amplitude s, appearing in $T_1 = t_1 + s$, is not great compared to the isovector part t_1 , and utilizing the preceding relationship at an energy of 1 GeV we obtain

$$\sigma(\pi^+) / \sigma(\pi^0) \approx 2.5.$$

The experimental value of this ratio including all cases of energy up to 9 GeV, is [1]

$$(\sigma_{\pi^+} / \sigma_{\pi^0})_{exp} = 1.9 \pm 0.4.$$

This could mean that at large energies the state with $T = \frac{1}{2}$ plays a dominant role.

The approach developed in the present paper enables us to obtain values of $\sigma_{\nu}^{\rm V}$ over the whole energy region for which there exist experimental data on the electroproduction of π mesons. In particular, for the cross section $\sigma_{\nu}^{\rm V}$ at an energy $\rm E_{S_1}$ equal to 0.5, 0.75, and 1.0 GeV, we obtain

$$\sigma_{v}{}^{v}(E = 0.75 \text{ GeV}) \approx 0.57 \sigma_{v}{}^{v}(E = 1 \text{ GeV}),$$

$$\sigma_{v}{}^{v}(E = 0.5 \text{ GeV}) \approx 0.16\sigma_{v}{}^{v}(E = 1 \text{ GeV}).$$

A further extension of the experimentally investigated energy range for the electroproduction of π mesons would give us the energy dependence of the cross section of process (2) in the domain of high energies, and this is very important for comparison with experimental data ^[1].

The author is grateful to L. B. Okun' and M. V. Terent'ev for useful discussions.

APPENDIX

In order to determine the value of the quantity κ one must know the contributions of the isotopically vector and isotopically scalar amplitudes to the electroproduction of a π meson. The data on the production of π^+ and π^- mesons on deuterium ^[11] do not contradict the assumption that the isoscalar amplitude makes a contribution to the state of isotopic spin T = $\frac{1}{2}$ smaller than the isovector one. However, it is not possible to carry out a rigorous analysis, and, therefore, we estimate the value of κ from other considerations.

We consider the data on the photoproduction of charged and neutral π mesons on protons^[10]. The cross sections for processes 1) and 3) (Table I) is expressed in the form

$$\sigma_1 = 4|t_3|^2 + \varphi + |t_1 + s|^2, \ \sigma_3 = 2|t_3|^2 - \varphi + 2|t_1 + s|^2.$$

The quantity φ represents the interference of states with T equal to $\frac{3}{2}$ and $\frac{1}{2}$. We shall show that in the energy range of interest to us φ is negative. We consider the difference

$$\frac{1}{3}(2\sigma_1 - \sigma_3) = 2|t_3|^2 + \varphi.$$

From the data on the total cross sections for the photoproduction of π^0 and π^+ mesons on protons ^[10] it follows that this difference is negative for K < 240 MeV and for K > 550 MeV (cf. the Figure). Consequently, in these regions φ is negative and in absolute value is greater than twice the value of the square of the modulus of the amplitude with T = $\frac{3}{2}$.

In the range $240 \le K \le 450$ MeV it is sufficient to take into account only the S- and P-waves in the meson-nucleon system. Then we have

$$t_3 = t_3(3/2, 1)e^{i\delta_{33}} + t_3(1/2, 1)e^{i\delta_{31}} + t_3(1/2, 0)e^{i\delta_3},$$

where t(j, l) are real matrix elements for the transition with total angular momentum j and π -meson angular momentum l; δ are the phases for the scattering of π mesons by a nucleon ^[12]. Similarly we have

$$t_1 + s \equiv T_1 = T_1(3/2, 1)e^{i\delta_{13}} + T_1(1/2, 1)e^{i\delta_{11}} + T_1(1/2, 0)e^{i\delta_{11}}$$

In the energy range under consideration the

phases δ_{31} , δ_{13} , and δ_{11} do not exceed $5^{\circ [13]}$ and can be neglected. If we take into account the fact that the angular distributions in the process $\langle p\gamma | \pi_p^0 \rangle$ in the energy range K < 650 MeV are well described by the term $1 - (\sqrt[3]{5}) \cos^2 \theta$ ^[10], it follows that in the given process the transitions $M_1 P_{3/2}$ and $E_1 D_{3/2}$ ^[14] are dominant. In the energy range K \leq 450 MeV the second transition is small, and therefore from (9) we obtain

$$2t_3(1/2, 0) = -T_1(1/2, 0), \ 2t_3(1/2, 1) = -T_1(1/2, 1).$$

These relations immediately lead to the following expression for the contribution of φ to the total cross section:

$$\varphi = 4t_3(3/2, 1) T_1(3/2, 1) \cos \delta_{33} - 2[T_1^2(1/2, 1) + T_1^2(1/2, 0) \cos (\delta_3 - \delta_1)].$$

Near the resonance the phase δ_{33} goes through $\pi/2$ and

$$\varphi_{\rm res} = -2[T_1^2(1/2, 1) + T_1^2(1/2, 0)\cos(\delta_3 - \delta_1)],$$

i.e., φ is negative. It is evident that φ is also negative in the energy range from resonance to K = 550 MeV, since otherwise the total cross sections would exhibit an irregularity in place of a continuous falling off in this region.

From the Figure it can be seen that

$$\int dK (2|t_3|^2 + |T_1|^2) \approx 1.4 \int dK (|T_1|^2 - \varphi),$$

and from this, if one sets φ equal to zero, it follows immediately that

$$2|t_3|^2/(2|t_3|^2+|T_1|^2) > 0.28.$$

If we take into account that φ is actually a negative quantity and assume that the contribution of the state $T = \frac{1}{2}$, $j = \frac{3}{2}$ is small, we obtain

$$2|t_3|^2/(2|t_3|^2+|T_1|^2) > 0.6.$$

Since κ actually contains another additional positive term, one can assume (with an accuracy 20%) a value of κ equal to unity.

We have obtained the value of κ at $\lambda^2 = 0$. The data of Hand ^[9] indicate a certain diminution in the dominance of the $\frac{3}{2}$, $\frac{3}{2}$ resonance at λ^2 different from zero. However, as λ^2 increases the range over K decreases, and with a decrease in the range with respect to K the ratio $2 |t_3|^2/(2|t_3|^2 + |T_1|^2)$ increases (cf. the Figure). Therefore, for the average value of $\langle \kappa \rangle$ one can also take the value unity with good accuracy.

¹Block, Burmeister, Cundy, et al., Phys. Letters **12**, 281 (1964).

² T. D. Lee and C. N. Yang, Phys. Letters 4,

³S. S. Gershtein and Ya. B. Zel'dovich, JETP 29, 698 (1955), Soviet Phys. JETP 2, 576 (1956). R. P. Feynman and M. Gell-Mann, Phys. Rev. 109, 193 (1958).

⁴ Yu. P. Nikitin and E. P. Shabalin, JETP 47, 708 (1964), Soviet Phys. JETP 20, 472 (1964).

⁵ J. S. Bell and S. M. Berman, Nuovo Cimento **25**, 404 (1962).

⁶S. M. Berman and M. Veltman, CERN preprint, 1964.

⁷ Fubini, Nambu, and Vataghin, Phys. Rev. 111, 329 (1958).

⁸K. Watson, Phys. Rev. 95, 228 (1954).

⁹ L. N. Hand, Phys. Rev. 129, 1834 (1963).

¹⁰G. Bernardini, Proc. 9th International Confer-

ence on High Energy Physics, Kiev, 1959, p. 11. ¹¹ Neugebauer, Wales, and Walker, Phys. Rev.

119, 1726 (1960).

¹² M. Gell-Mann and K. Watson, Ann. Rev. Nuclear Sci. 4, 219 (1954).

¹³J. M. McKinley, Revs. Modern Phys. 35, 788

(1963).

¹⁴B. T. Feld, Phys. Rev. 89, 330L (1953).

Translated by G. Volkoff 247