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The infrared asymptotic form of the Green's function of a charged particle with spin 0 and 
% is found including all singular terms to all orders in e. 

1. INTRODUCTION 

IN meson theory (without account of the electro
magnetic interaction), the Green's function G ( p2 ) 

of a particle with mass m has in the infrared 
region, p2 >::; m 2, the form (x = p2m- 2 - 1) 

G (p2) ,...., x-1 + const. (1.1) 

This formula follows from the Kallen-Lehmann 
representation [t,2J and is valid in all orders of 
the coupling constant. However, if the particle is 
charged, the asymptotic form of its Green's func
tion becomes considerably more complicated 
when the electromagnetic interaction is taken into 
account. This asymptotic form has been investi
gated in a great number of papers. It was shown 
by various methods-the renormalization group 
method, [2' 3] the method of approximate solution of 
the functional equations of Schwinger, [4] by direct 
solution of the Dyson integral equation in the 
ladder approximation [5] and with the help of func
tional integration [SJ -that the first term of the 
expansion of the Green's function in the infrared 
region has the form 

(1.2) 

where y is, in general, a series in the fine 
structure constant a, of which the first term has 
been determined. It was shown by the renormali
zation gro11p method that y contains no term of 
order a 2 . [T] 

The problem is now to find the exact expres
sion for the exponent y and to determine the 
higher terms in the expansion of the Green's func
tion. This question has been investigated by 
Milekhin, [BJ who used the method of functional 
integration. [S] The higher terms of the expansion 
were estimated by perturbation theory. Finally, 
it was shown by the author [tO] that the infrared 
asymptotic form of the Green's function has, in 
all orders in the coupling constant, the form 

G(p2) ,...., (-x)-1+" + O(x") + const, 

where, with a Feynman gauge, 

V =-a/ n 
to all orders in a. 

(1.3) 

(1.4) 

In the present paper we determine the explicit 
form of the function 0 ( xY) without use of per
turbation theory. We obtain a formula which, in 
analogy to (1.1), contains explicitly all terms 
which are singular in the infrared region. It thus 
fully generalizes (1.1) to the case with electro
magnetic interaction. 

We consider the Green's function of a particle 
with spin 0 and V2. We shall use the Kallen
Lehmann representation [t, 2,to] and expansions of 
the matrix elements of the fields with respect to 
the momenta of the soft photons, obtained by the 
Low method [tt] as generalized by the author, [t2] 

who showed that the Low method is in general not 
applicable to the matrix elements for real proc
esses in the higher orders in e. The graphs for 
such processes contain at least two external lines 
corresponding to charged particles. The exchange 
of soft photons between these leads to infrared 
divergences and makes the Low method invalid. 
In our case, however, we shall consider matrix 
elements of fields whose graphs contain only one 
line corresponding to a real charged particle. 
These matrix elements contain no infrared 
divergences, and the Low method can be applied 
to all orders in e. 

2. PARTICLE WITH SPIN 0 

Let us consider the Green's function for a 
charged spinless particle, which we shall call a 
meson for definiteness. We consider first the 
matrix element1 l 

l)As in[12], fi = c = 1, ab = g"'nambn = a0 b0 - ab, 

<kik')= (2:rt) 32k 0 /l(k-k'),dk=dk/(2:rt) 32k 0, (F)n= IIF(k;). 

i=l 
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(2 .1) 

where <I> is the Heisenberg operator of the meson 
field at the origin of the coordinate system, r and 
m are the momentum and the mass of the meson, 
and ki is the momentum of the photon with polari
zation Ei. This matrix element is represented by 
the graph of Fig. 1. 

,. 

FIG. 1. 

It has been shown earlier, [1o] that the expan
sion of Tn in the momentum kn = k has the form 

T n ~ k-1 + 0 ( 1) . (2 .2) 

It can be shown in a similar fashion that the next 
term in this expansion has the form 0 ( k ln k ). 
Let us determine the explicit form of 0 ( 1 ) in 
(2.2). To this end we use the following equality: 

Tn(e-+k) = eTn-1, (2.3) 

which is a generalization of the Ward identity. 
This equalitj follows from the relations obtained 
by Kazes.[13 It is easy to prove it directly. For 
this purpose we note that insertion of a photon 
line with momentum k in the internal line corre
sponding to the charged particle or in the simple 
meson-photon vertex and the substitution E:- k 
lead to the change 

F(q)-+ e[F(q)- F(q + k)], (2 .4) 

where F ( q) is the factor corresponding to the 
above-mentioned line or vertex and q is the mo
mentum of the charged particle on which it de
pends. The factor corresponding to an external 
line is simply multiplied by e. 

Let us now consider an arbitrary graph for 
Tn-t corresponding to a renormalizable interac
tion with all counter terms, insert in it a photon 
with momentum k in all possible ways and make 
the replacement E: - k. Then we obtain Eq. (2 .3) 
for the given graph of Tn-t and the corresponding 
class of graphs Tn. Summing over all graphs of 
Tn-t• we obtain this equation for all renormaliza
ble matrix elements (2.1). We note that (2.3) is 
valid fo::- an arbitrary charged particle with a 
renormalizable interaction. 

Following Low, [t 1J we further consider the 
class of graphs T~) in which a photon with 
momentum kn = k and the incoming meson can 

FIG. 2. 

be separated from the remainder of the graph by 
cutting a single meson line (Fig. 2). They give the 
contribution 

Tn<1) = An-1(r + k) (2rk)-1e/(r+ k, r). (2.5) 

We shall consider arbitrary directions E, in 
particular such for which Ek "' 0. The function I 
has the following general structure: 

I(r+k, r) = (2r+k)f+kg, (2.6) 

where f and g are invariant functions of 
( r + k )2• It follows from (2 .3) (for n = 1 ) that 

(2rk)-1k/ (r + k, r) = e<O I cD I r) = eZ, (2.7) 

where Z corresponds to the external meson line 
with all inserts. (In the usual renormalization 
method, where the contribution of these inserts is 
equal to zero, Z = 0. ) From (2. 7) we obtain 

f= eZ. (2.8) 

As far as the function g is concerned, it 
suffices to take it into account for k = 0, i.e., for 
the case of real meson lines. But in this case 
g = 0. Thus, to the accuracy of interest to us, 

, (2r + k) e 
T n(i) = An-1 (r -r- k) ---- eZ. 

2rk (2 .9) 

In An-t ( r + k) it suffices to include two terms of 
the expansion in k: 

ZAn-dr+ k) = ( 1 + 
\ 

where 

C == k1, ... , kn-1, E1, ... , Bn-1· 

The contribution of the remaining graphs of 
T~2 ) can be taken account of for k = 0. In order 
to determine its magnitude, we use (2.3). Substi
tuting in it T~1) from (2.9) and (2.10) and 
T~2 l ( k = 0 ), we find 

e [( 1 + ')1. ck-8-) Tn-! + 2rk!!_An-t(r)ZJ 
' ~J ore dr2 

(' 

+ 7',<2) (e-+ !c)= eT n-1, (2 .11) 

which leads to 

T n(2) =- e [ LJ~ CE --~- T n-1 + 2re~An-1 (r)Z l. (2 .12) 
ore 8r2 J 

c 
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Combining the expressions (2.9), (2.10), and (2.12) 
and including the order of the next term of the 
expansion, we obtain the desired expansion of Tn 
in terms of k: 

Tn= (A+ ~Bc)Tn-i+O(klnk), 

(2r + k) e 
A=e------, 

2rk 

c 

Bc=e -ck-ce -. ( re ) a 
rk ore 

(2 .13) 

(2 .14) 

We note that this derivation is strictly valid 
only if a mass A. is introduced in the photon 
propagation function. Otherwise the derivative 
oAn-t ( r )/or2 does not exist. However, this de
rivative drops out from the final result, which 
remains true for A. = 0. As to the next term in 
the expansion, which is denoted by 0 in (2.13), it 
would be of order k for A. ~ 0. For A. = 0, it has 
the order k ln k. 

In deriving (2.13) we assumed that k = kn is 
much smaller than all other momenta. Let now 
kn-t be much smaller than all other momenta 
except kn, with kn « kn-t as before. Then we 
can expand Tn-t in (2.13) with respect to kn-t· 
We keep in the pole terms in kn two terms of 
this expansion and one term in the terms of the 
order of a constant .. We thus obtain an expansion 
in kn and kn-1> in which all terms are symmetric 
under the interchange of the variables, except the 
term 

(2 .15) 

However, this term can be easily symmetrized.C12J 
Using the condition kn « kn-t• we replace the 
factor rkn-t in the denominator of (2.15) by 
r (kn + kn-t ). Then we obtain the symmetric ex
pression 

(2 .16) 

and the expansion in kn, kn-t will be valid for 
arbitrary kn, kn-t much smaller than all remain
ing momenta. Extending this expansion to the 
remaining photon momenta, we obtain finally 

tion v (p2 ) is continuous in the neighborhood of 
m 2• The spectral function, which is a generalized 
function of the class s*, 

g(p2)=(2:n:) 3 ~II(P-PN)<OI<I>IN> <Ni<I>+iO> (2.19) 
N 

for p2 sufficiently close to m 2, reduces to a sum 
over the states IN) = I r, k1, .•• , ku) containing 
a meson and an arbitrary number of soft photons. 
Here 

00 1 
(2:rt)3 ~ ll(p- PN) = (2:n:)3~ elrn~on! ( ~ 1') ~ elk t 

X II (p - r- k1- ... - kn) = ~ ( ~ 1') ) n, (2 .20) 

where ~71 denotes summation over all four 
polarizations of the photon2 ) (Feynman gauge) and 

~ = (2:n:) 3 ~ elr ~ -~-( ~ elk) II (p- r- k1 - ••• - kn) 
n n! n 

= ~ i d4x i elr e-i(p-r):x: ~ ~ ( i elk eik:x: l . (2 .21) 
2:rt J J n! J J n 

n 

In the last equation we have introduced the 
Fourier integral of the 6 function from the con
servation law in order to factorize the contribu
tions from the different photons, which are then 
summed over n. 

In order to avoid the singularities in (2.19) in 
integrating over the small momenta of the inter
mediate photons, we provide these with a small 
fictitious mass A., i.e., we set k0 = (k2 + A.2 )112 • 

We then take the limit A. - 0 before the limit 
p2 - m 2• Substituting (2 .17) in (2 .19), we obtain 

g.(p2) = zz ~ ( ~ 1') ) n (A2)n 

X [1 + ~ ~i~j + ~ O(k;2lnk;) ]. 
tJ ' 

(2 .22) 

Noting that 

(A 2)n=(a2)n[ 1+~ ;i+·~O(k;kj)]. 
• 'J 

(2 .23) 

where 

(2 .24) 
ere 

a=-rk' 
1 n B·· n 

T n =(A),.[ ( 1 + -2 . ~ A;~Jz + ~ O(k;Zlnk;)] · (2.17) we rewrite (2.22) in the form 
'· J=i t=l 

eke 
d=

rk' 

We are now in the position to find the asymp
totic form of the meson Green's function G (p2 ), 

using its spectral representation, [t, 2J which we 
write in the form [to] 

a (r2) dr2 
G (p2) = i -~--. + v (p2), 

J p2-r2-~0 
m' 

(2 .18) 

where a is arbitrarily close to m 2 and the func-

(2 .25) 

gi = ~ ( ~ 11) (a2)n [ 1 +~ B;J + ~ O(knnk;) l, 
.,, ii a,aJ i J 

(2 .26) 

2}7) = -1 for the time-like and 1) = 1 for the space-like polar
izations, ~ TJilmlln = -Cmn• 
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g2= ~( ~1Jt(a2}n~~ii. 
' 

(2 .27) 

Let us consider g1. Summing over the polari
zations and changing the notation of the photon 
momenta, we write (2 .26) in the form 

g! = ~[(h) n +(h) n-2 n(n + 1}H n, n-1 +(h) n-1 nO (In kn)], 

(2.28) 
where 

h =-(em)~ 
. rk 

H;i = --~tmz ( mZk;kJ - 1 ). 
rk;r(k; + ki)rki rk;rki ; 

(2 .29) 

Substituting in this (2 .21) and summing over n, 
we find 

+ ~ ak 0 (Ink) eikx]. (2.30) 

where 

11 11 

F=~ akheikx= ~akh+~akh(eikx-1)+ ~akheikx. 
y 

Here the integral to y (from y) is an integral 
over the region pk::; y -fP2 (pk > y/p2): 

(2 .31) 

y = ypz-m. (2.32) 

For A - 0 we have 

1 dz B=v( 1- ~-), 
0 1- bz 

b = 1- ( mp )z (2.33) 
pr ' 

[y is given by (1.4) ]. In the remaining terms of 
(2.31) and (2.30) we can set A= 0. Let us write 

(2.34) 

D=yiny+~ akh(eil<x~1)+~ akheikx. (2.35) 
y 

The subsequent calculations are conveniently 
carried out in a coordinate system where p = 0. 
It follows from the conservation of four-momentum 
in (2.21) that in this system actually r 2 < p2 - m 2. 

Therefore, all terms in (2.30) (except e-ir·x) 
can be expanded in r, which after integration over 
r leads to 6 (x) and its derivatives. After inte
gration over x we can easily estimate each term 
of this expansion with the help of a change of 

variables, 3 > x0 - x0/y, k- ky. It is not difficult 
to see that H 12 of (2.29) and B of (2.33) give no 
contribution of interest to us. We have 

1 ( 2 )v 1 S [ ix0 an g1=-- - d4 xe-iyx'+D 1---V26(x)+iV6(xf--
2m 'Ae 2:n: 2m ar 

+ 1\(x) ~ akO(lnk)eikx], 

where all quantities are taken at r = 0. Inte
grating over x, we obtain 

(2.36) 

g1 = 2~ (A~ r [ R1 + ~ (-~ R2 - 2R3 )+ O(y1+VIny) ]. 

(2.37) 

where 

1 "" 
R; = "2-;i ~ dx exp {- ixy + yS} /;(x), (2.38) 

-00 

(2.39) 

00 00 

/!(x)= 1, f2 (x)= ix~ dkkeikx, 
0 

fa(x) = ~ dk eikx. 
0 

It is easy to show that 

S =- C + i~-In(x + iO), 

where C is the Euler constant, [t(] and 

-h(x) = /a(x) = i(x + i0)-1• 

(2 .40) 

(2.41) 

(2 .42) 

We are therefore, dealing with integrals Ri 
which, as shown by Gel'fand and Shilov,Ct5J 
uniquely define, in the class s*, the generalized 
step functions: 

1 oo 'I' I 
R 1 = e-Cv+iv:t/Z_ ~ dxe-ixY(x + i0)-'1' = e-cv Y+- , (2.43) 

2Jt_ 00 f(y) 
Y+"l 

- Rz = Ra = e-cv ------ (2 .44) r(1+v)· 
In the last expression the index + may be omitted, 
since it is integrable at zero in the usual sense 
for the value ( 1. 4) of '}'. Thus 

g1 = ~(~-)ve-cv!f.±_~~[ 1- _!)X+ O(yZin y) J. (2.45) 
2m 'J..e f('y} 2m 

Introducing 
(2.46) 

3 >we note that the integral over x 0 in (2.30) defines, in gen
eral, a generalized function of y in the neighborhood of y = 0. 
Therefore, this change of variables is possible only for y .P 0. 
The integrals remaining after that are defined as the values of 
this generalized function at the regular point y = 1. This remark 
refers to the terms written in (2.36). The remaining terms are 
continuous at y = 0. 
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and noting that 

y={mx( 1-{x) +O(xa), 

we obtain finally 

g 1 = -~- ( m )v e-cv :l' +v~~ IL 1 - x - _V x + 0 ( x2 In x) J . 
m2 'Ae r(v) 4 

(2 .4 7) 

Let us now consider g2 of (2.27). Summing 
over polarizations, we have 

., ( e2 \ 
g2=~ (h)n-11l --k- }· 

\ r n' 

The subsequent calculations are analogous to 
these just discussed. We obtain finally 

g2 = _i_ ( rn~-~ "'e-C"/_1- r i + 0 (x) J . 
m2 'Ae ; f ( y) l 2 . 

Thus the spectral density of the meson 
Green's function (2.25) is equal to 

(2 .48) 

(2 .49) 

rz(p2) = z2 (~)v e-cv =-. +v-~ [1- (\! + Y) x + O(x2 1nx)] . 
c m2 'Ae r('v) 2 4 

(2.50) 

Substituting this expression in (2.18) and inte
grating it as a generalized step function for p2 

~ m 2,C15· 12J we obtain for the meson Green's 
function the following asymptotic expression: 

G(p2)=Z1n~2 (-x)'~-1 [ 1-U2 + :)x ]+canst, (2.51) 

z1 = z2( !!!__)"/ e-cvr ( 1-v). 
. 'Ae 

(2.52) 

We note that at the point x = 0 this function 
must be regarded as a generalized step function 
( -x + iO )Y-1.[15] 

3. PARTICLE WITH SPIN % 
Let us now find, in exactly the same fashion, 

the infrared asymptotic form of the Green's func
tion of a charged particle with spin % (proton). 
We consider the matrix element (2.1), where now 
<P is the proton field, and r and m are the mo
mentum and the mass of the proton. We write it 
in the form 

Tn = ::9nZu, (3.1) 

where u is the proton spinor, and the constant Z 
corresponds, as before, to inserts in the external 
proton line. 

The equation (2 .3) is also valid in this case. 
The contribution from the graph of Fig. 2 is now 
equal to 4) 

~ 71 <1> = An-1 (r + k) (2rk)-1 (~ + k + m)/(k). (3.2) 

As shown in[11 •16J, we have, up to terms in (3.1) 
which do not depend on k, 

I (k) = ee + ~, [!~, h (3.3) 

where ll' is the anomalous magnetic moment of 
the proton. 

Let us consider, instead of (3 .2 ), 

g n<1> = An-dP) (2rk)-1 (P + M)I(k), (3.4) 

P=r+k, M2 =P2, M=m+rk/m+O(k2). (3.5) 

The difference of (3.2) and (3.4) does not contain 
k-:. a?d we include it in ;g~l. Since P (:P + M) 
= M ( P + M ), we see that An-1 ( P) in (3.4) has 
the same matrix structure as ::9n-1 and does not 
contain P. Therefore, the expansion of An - 1 ( P) 
in k has the form (2.10) (with T replaced by ::§ 

and Z = 1 ) . Substituting T~1) and T~ l ( k = 0) in 
(2 .3), we have 

[ . ~ a' a J 
eZ ( 1 + ~ ck ore) ::9n-1 + 2rk 0,.2 An-1 (r) 

c 

x (2rkr1 (F + M) ku + T n<2> (8--+ k) = eT n-1 . (3.6) 

Noting that 

• • ( k ) (2rkr1 (P + Jl!l) ku = 1 + Zm u, (3.7) 

we obtain 

( ; a 
T n<2> = - eZ ::9 n-1 2m + 2re fJr2 An-1 ( r) 

+ ~ C8 fJ~c :f) n-1) u . (3.8) 
c 

Combining this expression with T~1l, we find the 
following expansion for Tn: 

Tn = (a+ LcBc )rn-1 +Z:f}n-16n + O(klnk), (3.9) 
c 

where a and Be are given by (2.24) and (2.14) 
and 

;+m 11' • • fc8 
6 = ~2[k, 8] +e2rk. 

Extending the expansion to the remaining 
photon momenta, we obtain 

[( ~ 6; 1 n B;j ) 

T n = (a) n ' 1 + i=1 ~ + 2 i,~L a;aj Zu 

+ ~ 0 (k;2 ln k;) J . 
i=1 

(3.10) 

(3.11) 

Let us now consider the proton Green's func
tion 

(3.12) 

The spectral representation for Gi ( p2 ) has the 
form (2.18):[1•2] 
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(3.13) 

= (2n)3 ~t'l (p- pN) (0 I <DIN) <N J<D / 0). (3.14) 
N 

Substituting in this the expansion (3.11) and 
summing over the spin directions of the inter
mediate proton according to the formula 

~uu= ~+m, 

we obtain 

s (p) = Z2 ~ (}J TJ)n (a 2)n {[ 1 + ti :~: + ~ 0 (ki2 ln ki) J 
+(~ + m)+ f [t'li(; + m) + (; + m) y0t'l/y"]fa+ 

(3.15) 

The terms with ~-t' in this expression cancel, 
and we have 

s (p) = Z2 {g1 (p + m) + ~ (~ TJ),. (a2 )n 

X~[-ki + (k~;i (; + m) + (; + m) e~ki)/2rei]}, (3.16) 
t 

where g1 is given by (2 .26). Summing over photon 
polarizations, we obtain 

(3.17) 

where g2 is given by (2.48). Thus the present 
case is reduced to the previous one: 

(3.18) 

From (2.47) and (2.49) we obtain the spectral 
densities of the proton Green's function: 

(3.19) 

(3.20) 

The infrared asymptotic of this function has the 
form 

1 
Gi (p2} = Z1 - ( -x) v-1 ( 1 + Lix) + const, (3.21) m2 

where Z1 is given by (2.52). Instead of (3.12) and 
(3.21) one can also write 

G ( ) = z (-1- + 2p + ~ + p + m) (m2- p2 )Y 
p 1 m- p 2m2 y 4m2 m2 

+const. (3.22) 

The first two terms in this formula agree with 
the result obtained by Milekhin by functional in
tegration. [8] 

In conclusion we note that the method just 

presented can also be employed to find the in
frared asymptotic forms of the vertex functions 
and scattering matrix elements to all orders in 
the coupling constant.C10 •12J In particular, it turns 
out that the scattering of charged particles into 
small angles is described (except for a phase 
factor) by the simplest one-photon graph in all 
orders in e. This means that the scattering into 
small angles follows the Coulomb law for arbi
trarily large energies. 
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