ANOMALIES IN THE SUPERCONDUCTING TRANSITION TEMPERATURE UNDER PRESSURE

V. I. MAKAROV and V. G. BAR'YAKHTAR

Physico-technical Institute, Academy of Sciences, Ukrainian S.S.R.

Submitted to JETP editor January 15, 1965

J. Exptl. Theoret. Phys. (U.S.S.R.) 48, 1717-1722 (June, 1965)

It is shown that a change in the topology of the Fermi surface, induced in a superconductor by external pressure, leads to a nonlinear variation of the superconducting transition temperature T_k with pressure. The relative change of T_k is of the order of the square root of the ratio of the Debye frequency ω to the Fermi energy ϵ_0 .

 \mathbf{I} . The present experimental data on the effect of pressure on the superconducting transition temperature Tk in various metals can be divided schematically into two groups. For most superconductors, a linear change of Tk with pressure is observed. Thus, for example, for In, Cd and Pb, the value of Tk decreases with increase in pressure, while for Ti and Zr, it increases. There is a different behavior of T_k as a function of pressure for thallium. In the range of low pressures (up to 2000 atm), T_k increases, [1] while upon a further increase in the pressure the superconducting transition temperature decreases.^[2] In the region of "high" pressures, Tk decreases according to a linear law, while the increase of T_k in the region of "low" pressures has a nonlinear character.

The observed dependence of the superconducting transition temperature ΔT_k on pressure for Tl can be expressed as the sum of two components, one of which decreases according to a linear law with increase in pressure and the other increases nonlinearly in the region of low pressures, and approaches a constant value at high pressures.^[3] The hypothesis has been advanced [3,4] that the nonlinear part of the dependence of Tk on the pressure can be connected with a change in the topology of the Fermi surface under pressure. This hypothesis does not contradict the investigations of the concomitant effect on the superconducting transition temperature of impurities and pressure.^[5,6] In this case, it was shown that the maximum of the derivative dT_k/dP as a function of pressure is associated with the nonlinear component of $\Delta T_k(P)$.^[6]

By starting out from the simplest model of superconductivity, $^{[7,8]}$ it is shown in the present work that one of the reasons for the nonlinear dependence of ΔT_k on the pressure can be a change

in the topology of the Fermi surface under pressure. Since the change in the topology of the Fermi surface is associated with a change in the Fermi energy ϵ_0 with pressure, we shall in what follows compute the variation of the superconducting transition temperature with variation of ϵ_0 . If a closed Fermi surface transforms to an open one with increase in ϵ_0 , or a new cavity is formed, then the superconducting transition temperature increases. If on the other hand an open Fermi surface transforms to a closed one, or one of the cavities disappears, then T_k decreases.¹⁾

It is shown that the contribution to $\Delta T_k(\epsilon_0)$ from this mechanism has a nonlinear character and is especially large for a variation of ϵ_0 from $\epsilon_k - \omega$ to $\epsilon_{\mathbf{k}} + \omega$, where $\epsilon_{\mathbf{k}}$ is the value of the energy of the conduction electrons for which the character of the surface $\epsilon(p) = \epsilon$ changes; ω is the Debye frequency. If $\epsilon_0 < \epsilon_k - \omega$ or $\epsilon_0 > \epsilon_k + \omega$, then upon further increase in ϵ_0 the contribution to ΔT_k from this mechanism tends to a certain constant value. The relative variation of T_k in this case is equal to $\delta T_k/T_k \sim (\omega/\epsilon_0)^{1/2}$ in order of magnitude, the derivative $dT_k/d\epsilon_0$ has a maximum for $\epsilon_0 = \epsilon_k$. The specific character of the change in the topology of the Fermi surface can be discussed in terms of the asymmetry of the derivative $dT_k/d\epsilon_0$ as a function of ϵ_0 relative to the maximum point $\epsilon_0 = \epsilon_k$.

2. The singularities in the density of electron states per unit energy range $\nu(\epsilon)$ and their effect on the thermodynamic characteristics of the metal in the normal state were considered by I. Lifshitz.^[9] In order to take into account the effect of the

¹⁾It can be supposed that the decrease of T_k with pressure in tin[³] is explained by one of these transitions.

1152

singularities of $\nu(\epsilon)$ on the thermodynamic properties of the metal in the superconducting state, we shall begin with the simplest model of the superconductor.

The equation which defines the dependence of the gap Δ in the energy spectrum on the temperature T has in this case the form

$$1 = \frac{\lambda}{2} \int_{-\omega}^{\omega} \frac{\operatorname{th}\left(\gamma \xi^2 + \Delta^2(T)/2T\right)}{\gamma \xi^2 + \Delta^2(T)} \nu(\varepsilon_0 + \xi) d\xi, \qquad (1)^*$$

where $\boldsymbol{\lambda}$ is the constant of electron-electron interaction and

$$v(\varepsilon) = \frac{1}{(2\pi)^3} \int_{\varepsilon} \frac{dS}{v}$$

Near those values of the energy ϵ_0 where the character of the topology of the Fermi surface changes, $\nu(\epsilon)$ can be written in the form

$$v(\varepsilon) = v_0(\varepsilon) + \delta v(\varepsilon),$$
 (2)

where $\nu_0(\epsilon)$ is a smooth function of the energy, and $\delta\nu(\epsilon)$ is equal to [9]

$$\delta \mathbf{v}(\varepsilon) = \begin{cases} \mp \frac{1}{2}m_1 \pi^{-2} [2m_3(\varepsilon_k - \varepsilon)]^{1/2} \theta(\varepsilon_k - \varepsilon), \\ \mp \frac{1}{2}m_1 \pi^{-2} [2m_3(\varepsilon - \varepsilon_k)]^{1/2} \theta(\varepsilon - \varepsilon_k). \end{cases}$$
(2')

The upper sign on the right hand side of Eq. (2') refers to the case of a transition from a closed Fermi surface to an open one (with minus sign) or the disappearance of one of the cavities of the Fermi surface (with plus sign), the lower sign refers to the case of reverse transitions; m_1 , m_3 are the effective masses of the electron at $\epsilon = \epsilon_k$; $\theta(x) = 1$ if x > 0 and $\theta(x) = 0$ if x < 0.

Let us consider the variation of the gap Δ , T_k , and H_k brought about by transitions from a closed Fermi surface to an open one. The analysis of the remaining cases is similar and we shall not present it here. Substituting T = 0 in (1) and carrying out integration in the usual way with the smooth part of the density of the electron states $\nu_0(\epsilon)$, we get an equation for the gap Δ :

$$\lambda v_0(\varepsilon_0) \ln \frac{2\omega}{\Delta_0} = 1 + \frac{\lambda m_1(2m_3)^{1/2}}{2\pi^2} \int_{-\omega}^{\omega} \frac{(\varepsilon_k - \varepsilon_0 - \xi)^{1/2}}{(\xi^2 + \Delta_0^2)^{1/2}} \times \theta(\varepsilon_k - \varepsilon_0 - \xi) d\xi.$$
(3)

Assuming $|\epsilon_k - \epsilon_0| \ll \epsilon_0$, we then find

$$\frac{1}{\Delta_0} \frac{d\Delta_0}{d\varepsilon_0} \sim \frac{m_1(2m_3)^{1/2}}{2\pi^2 v_0(\varepsilon_0)} \int_{-\omega}^{\omega} \frac{\theta(\varepsilon_k - \varepsilon_0 - \xi) d\xi}{\left[(\xi^2 + \Delta^2)(\varepsilon_k - \varepsilon_0 - \xi)\right]^{1/2}}.$$
 (4)

As is seen from Eq. (4), the size of the gap increases with increase in energy, while the derivative $d\Delta_0/d\epsilon_0$ approaches its largest value for $\epsilon_1 = \epsilon_k$ and is equal to

$$\left(\frac{d\Delta_0}{d\varepsilon_0}\right)_{\varepsilon_0=\varepsilon_h} \approx 1.85 \frac{m_1(2m_3)^{\frac{1}{2}}\Delta_0^{\frac{1}{2}}}{\pi^2 v_0(\varepsilon_0)} = 1.85 \frac{|\delta v(\varepsilon_0 - \Delta_0)|}{v_0(\varepsilon_0)}.$$
(5)

Schematically, the dependence of $d\Delta_0/d\epsilon_0$ on ϵ_0 in the case of the simplest topological variations of the Fermi surface is shown in Fig. 1.

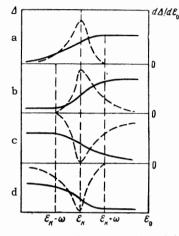


FIG. 1. Dependence of Δ (solid line) and $d\Delta/d\epsilon_0$ (broken line) on ϵ_0 following a change in the topology of the Fermi surface: a - transition of a closed Fermi surface to an open one $(d\Delta/d\epsilon_0 > 0)$, b - formation of a new cavity in the Fermi surface $(d\Delta/d\epsilon_0 > 0)$, c - transition of an open Fermi surface to a closed one $(d\Delta/d\epsilon_0 < 0)$, d - disappearance of one of the cavities of the Fermi surface $(d\Delta/d\epsilon_0 < 0)$.

The solution of Eq. (3) with respect to Δ_0 has in general a complicated form. We shall write it out for several limiting cases. The largest value of the gap size is reached for $\epsilon_0 = \epsilon_{\rm k} + \omega$, and is equal to

$$\Delta = 2\omega \exp\left\{-1/\lambda v_0(\varepsilon_0)\right\}. \tag{6}$$

If $\epsilon_0 = \epsilon_k$, then

$$\Delta = 2\omega \exp \left\{-1 / \lambda v_0(\varepsilon_0) + \delta v(\varepsilon_0 - \omega) / v_0(\varepsilon_0)\right\} \quad (6')$$

and, finally, for $\epsilon_0 \leq \epsilon_k - \omega$,

$$\Delta = 2\omega \exp \left\{-1 / \lambda \nu(\varepsilon_0)\right\}. \tag{6''}$$

Schematically, the dependence of the gap on ϵ_0 is also shown in Fig. 1. It should be noted that the relative correction to the value of the gap in the energy interval $\epsilon_k - \omega \leq \epsilon_0 \leq \epsilon_k + \omega$ brought about by the change in the topology of the Fermi surface is of the order of $(\omega/\epsilon_0)^{1/2}$ while the correction to the gap brought about by dependence on the energy of the coupling constant λ and the quantity $\nu_0(\epsilon)$ is generally of the order ω/ϵ_0 , that is, significantly smaller.

3. Starting out from Eq. (1), one can determine

^{*}th \equiv tanh.

the variation on the superconducting transition tem- Using Eq. (1), we get perature T_k with variation of the Fermi energy ϵ_0 . This change, together with the change in the gap, is especially large in the range of values of ϵ_0 from $\epsilon_k - \omega$ to $\epsilon_k + \omega$. Setting $T = T_k$, $\Delta(T_k) = 0$, we rewrite Eq. (1) in the form

$$1 = \frac{\lambda}{2} \int_{-\omega}^{\omega} \frac{\operatorname{th}(|\xi|/2T_{\hbar})}{|\xi|} v(\varepsilon_0 + \xi) d\xi.$$
(7)

Using Eqs. (2) and (2') and taking the continuous function $\nu_0(\epsilon_0)$ outside the integral sign, we get

$$\lambda v_0(\varepsilon_0) \ln \frac{\omega \gamma}{\pi T_k} = 1 + \frac{\lambda m_1(2m_3)^{\frac{1}{2}}}{2\pi^2} \\ \times \int_{-\omega}^{\omega} \frac{\operatorname{th}(|\xi|/2T_k) \left(\varepsilon_k - \varepsilon_0 - \xi\right)^{\frac{1}{2}}}{|\xi|} \theta(\varepsilon_k - \varepsilon_0 - \xi) d\xi, \quad (8)$$

where $\ln \gamma = C = 0.577$.

Differentiating this equation with respect with ϵ_0 , it is not difficult to establish the fact that for $\epsilon_{\mathbf{k}} - \omega \leq \epsilon_{0} \leq \epsilon_{\mathbf{k}} + \omega$, the derivative of T_k with respect to ϵ_0 is positive (that is, T_k increases with increase in ϵ_0) and reaches its largest value at $\epsilon_0 = \epsilon_k$ equal to

$$\left(\frac{dT_{h}}{d\varepsilon_{0}}\right)_{\varepsilon_{0}=\varepsilon_{h}}\approx 1.4\left|\frac{\delta v(\varepsilon_{0}-T_{h})}{v_{0}(\varepsilon_{0})}\right|.$$
(9)

The dependence of $dT_k/d\epsilon_0$ on ϵ_0 is similar to the dependence of $d\Delta_0/d\epsilon_0$ on ϵ_0 .

The largest value of T_k is achieved for $\epsilon_0 = \epsilon_k$ $+ \omega$:

$$T_{h} = \frac{\gamma \omega}{\pi} \exp \left\{ -\frac{1}{\lambda v_{0}(\varepsilon_{0})} \right\}.$$
 (10)

If $\epsilon_0 = \epsilon_k$, then the superconducting transition temperature is equal to

$$T_{k} = \frac{\gamma \omega}{\pi} \exp\left\{-\frac{1}{\lambda v_{0}(\varepsilon_{0})} + \frac{\delta v(\varepsilon_{0} - \omega)}{v_{0}(\varepsilon_{0})}\right\}, \quad (11)$$

and, finally, for $\epsilon_0 < \epsilon_k - \omega$ the value of T_k takes on the value

$$T_{h} \approx \frac{\gamma \omega}{\pi} \exp\left\{-\frac{1}{\lambda v(\varepsilon_{0})}\right\}.$$
 (12)

4. The singularities of the state density brought about by the change in the topology of the Fermi surface also give information on the value of the critical magnetic field Hk. In order to estimate this effect, we compare the difference between the free energy F in the normal and superconducting state with the magnetic energy density. The difference $F_s - F_n$ is equal to ^[8]

$$F_s - F_n = \int_0^{\Delta(T)} \frac{d}{d\Delta} \left(\frac{1}{\lambda}\right) \Delta^2 d\Delta = -\frac{H_k^2}{8\pi}$$

$$\frac{H_{k}^{2}}{8\pi} = -\frac{1}{2}\int_{-\omega}^{\omega} v(\varepsilon_{0}+\xi) d\xi \int_{0}^{\Delta(\Gamma_{*},\varepsilon_{0})} \frac{d}{dz} \Big\{ \frac{\operatorname{th}\left[(\xi^{2}+z^{2})^{\frac{1}{2}}/2T\right]}{(\xi^{2}+z^{2})^{\frac{1}{2}}} \Big\} z^{2} dz.$$

Since both quantities $\nu(\epsilon_0)$ and $\Delta(T, \epsilon_0)$ increase with increase in ϵ_0 in the transition from a closed Fermi surface to an open one (or in the appearance of a new cavity), $H_k^2/8\pi$ also increases in this case, i.e., $dH_k/d\,\varepsilon_0$ >0. The maximum value of the quantity H_k^2 is achieved for $\epsilon_0 = \epsilon_k + \omega$ and the formulas for H_k in this case have the usual form.^[8]

The derivative of H_k with respect to ϵ_0 is a maximum as also are $d\Delta_0/d\epsilon_0$, $dT_k/d\epsilon_0$ for $\epsilon_0 = \epsilon_k$. If $\epsilon_0 = \epsilon_k$, then H_k^2 , in the region of temperatures much less than in the superconducting transition temperature, is determined by the equation

$$H_{h^{2}}/8\pi \approx \frac{1}{2}\Delta^{2} \left[\nu_{0}(\varepsilon_{0}) + 0.2\delta\nu(\varepsilon_{0} - \Delta) \right] + \frac{2}{3}\pi^{2}\nu_{0}(\varepsilon_{0})T^{2},$$
(13)

where Δ is determined by Eq. (6'). Thus, the contributions to H_k^2 are of the order of $(\Delta/\epsilon_0)^{1/2}$ in comparison with the usual formulas and the smooth change of H_k brought about by the change in Δ . For a temperature that is sufficiently close to T_k , the value of H_k is proportional to $1 - T/T_k$. However, the constant of proportionality decreases relative to the usual expression by an amount of the order of $(\omega/\epsilon_0)^{1/2}$.

5. Since the density of electrons in the metal changes with change in the external pressure, and consequently the Fermi energy also changes, then in the region of pressures P close to Pk, which corresponds to a Fermi energy ϵ_0 close to ϵ_k , a nonlinear change of the thermodynamic characteristics of the superconductor with pressure (Tk, Hk and Δ) should be observed. To study the specific character of the variation of the topology of the Fermi surface, it is necessary to study the derivative $dT_{l_{r}}/dP$ with great accuracy and detail. The introduction of impurities can make it possible to observe the nonlinear change of Tk in a region of comparatively low pressures.

Experiments on the effect of pressure on Tk in thallium (Fig. 2, curve 1), ^[6] can be interpreted in the following fashion, on the basis of what has been set forth above. In the case of pure thallium, the energy ϵ_0 is somewhat higher than ϵ_k , but the difference $\epsilon_0 = \epsilon_k$ is less than ω (Fig. 1b). This leads to the result that in the region of low pressures, the nonlinear component, with which the increase of Tk is associated, predominates (see Fig. 2, curve 1). Upon increase in pressure, the nonlinear contribution to ΔT_k reaches some constant value and the increase in Tk according to the

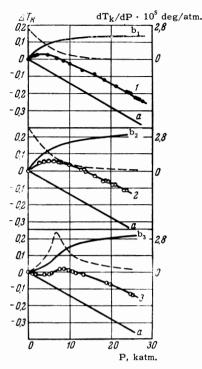


FIG. 2. Dependence of the change of superconducting transition temperature in thallium and its alloys on the pressure; [⁶] curve I – pure Tl, 2 – Tl-Hg (0.45 at. % Hg); 3 – Tl - Hg (0.9 at. % Hg); curve a – linear component, b_1 , b_2 , b_3 – nonlinear components of curves 1, 2, 3, respectively. The dashed lines are the nonlinear parts of the dependence of dT_k/dP on the pressure.

linear law at high pressures is connected with the dependence on pressure of ω , ν_0 , and λ .

The addition of impurities leads to a decrease in ϵ_0 . Two cases are possible: if the valence of the impurity is larger than the valence of thallium, then the difference $\epsilon_0 - \epsilon_k$ increases, and the role of nonlinear contribution in $\Delta T_k(P)$ decreases (Fig. 1b). If the valence of the impurity is lower than that of thallium, then the difference $\epsilon_0 - \epsilon_k$ decreases, which leads to an increase in the role of nonlinearity of the contribution to the increase in the maximum on the curve $\Delta T_k(P)$ for not too high a concentration of impurities (0.45 at% Hg; see Fig. 2, curve 2).

Upon further increase in the impurity concentration, when $\epsilon_0 < \epsilon_k - \omega$ (Fig. 1b) in the region of low pressures, ΔT_k decreases with pressure as the result of the linear component. Under the effect of the pressure, ϵ_0 increases and in the region $\epsilon_k + \omega > \epsilon_0 > \epsilon_k - \omega$ the nonlinear component in $\Delta T_k(P)$, associated with the change in topology of the Fermi surface (see Fig. 2, curve 3), becomes

dominant. With further increase in the pressure (and ε_0), the linear component in $\Delta T_k(P)$ again plays the dominant role, since the nonlinear component reaches its limiting value. Such a behavior of ΔT_k with pressure was observed in Tl - Hg 0.9 at% (see Fig. 2).

By the asymmetry of the dependence of dT_k/dP on P (Fig. 2), which is brought about by the nonlinear component, thallium can be associated with the case b of Fig. 1. The presence in thallium of a Fermi surface with $\epsilon_0 - \epsilon_k \sim \omega$ does not contradict the experimental data on the de Haas-Van Alphen effects^[10] and the absorption of ultrasound in the magnetic field. ^[11]

We note that anisotropy of the gap and of the lattice has not been considered by us; however, in our opinion this would not qualitatively change the results.

The authors express their gratitude for discussion of results to A. I. Akhiezer, B. G. Lazarev, T. A. Ignat'eva and N. C. Tereshina.

¹Kan, Lazarev, and Sudovtsov, DAN 6, 9173 (1949).

² L. D. Genings and C. A. Swenson, Phys. Rev. **112**, 31 (1958), D. H. Bowen and G. O. Jones, Proc. Roy. Soc. (London) **A254**, 522 (1960).

³Kan, Lazarev, and Makarov, JETP 40, 457 (1961), Soviet Phys. JETP 13, 317 (1961).

⁴ Lazarev, Lazareva, and Makarov, JETP 44, 481 (1963), Soviet Phys. JETP 17, 328 (1963).

⁵ Lazarev, Lazareva, Makarov, and Ignat'eva, JETP 48, 1065 (1965), Soviet Phys. JETP 21, 711 (1965).

⁶Brandt, Ginzburg, Ignat'eva, Lazarev, Lazareva, and Makarov, JETP 49, 85 (1965), Soviet Phys. JETP 22, in press.

⁷ Bardeen, Cooper, and Schrieffer, Phys. Rev. 108, 1175 (1957).

⁸ Abrikosov, Gor'kov, and Dzyaloshinskiĭ, Metody kvantovoĭ teorii polya v statisticheskoi fizike (Methods of Quantum Field Theory in Statistical Physics), Fizmatgiz, 1962.

⁹I. M. Lifshitz, JETP 38, 1569 (1960), Soviet Phys. JETP 11, 1130 (1960).

¹⁰ D. Shoenberg, Phil. Trans. Roy. Soc. (London), A245, 1 (1952).

¹¹J. A. Rayne, Phys. Rev. **131**, 653 (1963).

Translated by R. T. Beyer 243