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The energy distribution of the electrons in a covalent semiconductor in the presence of a 
strong electric field is determined. It is shown that the number of ionizing electrons in
creases with increasing field E, first approximately like exp ( - const • E -1), and in 
extremely strong fields like exp ( - const • E -2). 

THE average probability of impact ionization for 
electrons in a strong electric field is determined 
essentially by the probability that the electron will 
acquire in the field an energy equal to the ioniza
tion threshold energy q. The increase in the 
electron energy depends on the relation between 
two factors: acceleration in the external field and 
energy dissipation by collision with phonons. From 
this point of view, we can visualize two extreme 
possibilities, as a result of which the electron 
would acquire an energy q. First, it can receive 
this energy from the field without experiencing 
accidentally even a single collision; second, the 
same energy can be attained gradually, after many 
collisions, such, however, that in each collision 
the electron loses on the average less energy than 
it receives from the field during the time between 
two collisions. 

The first of these possibilities was pointed out 
already in the first papers of Townsend on dis
charge in gases, and was investigated theoretically 
by Shockley for the case of ionization in semicon
ductors. [ 1] In this case the probability of impact 
ionization wi is proportional to the probability 
that the electron will cover without collision a 
path L = q I eE, i.e., 

w; ~ exp (-e; I eEl), (1) 

where l is the mean free path. A formula of the 
type (1) was first used by ChynowethC 2J to de
scribe the experimental data on impact ionization 
in semiconductors. 

The second possibility was investigated by 
Druyvesteyn, [ 3] Davydov, [ 4] and many other 
authors and was applied to an investigation of the 
breakdown in covalent semiconductors by Wolff. [ 5] 

In this case the increase of the electron energy 
has the character of energy diffusion. The sta
tionary distribution of the electrons with respect 

to the energy is described by the distribution 
function 

( 
2 

fo(e) = const·exp - ~--6) e2E2l2 , 
(2) 

where 6 is a small quantity on the order of the 
ratio of the energy lost by the electron in one 
collision to the total energy. For elastic colli
sions in gases, 6 is of the order of the ratio of 
the mass of the electron to the mass of the ion, [ 3] 

while for collisions with acoustic phonons in 
semiconductors [ 4J o ~ mc2/kT, where c is the 
speed of sound and T the temperature. Finally, 
for the case of interaction between electrons and 
optical phonons in semiconductors [ s] or with 
molecular vibrations in gases, we have 6 ~ tiw/ E, 

where tiw is the energy of the emitted vibrational 
quantum. In the latter case, the velocity distribu
tion of the electrons (2) becomes Maxwellian with 
effective temperature kT e ~ ( eEl) 2/tiw. [ 5] 

The essential result contained in (2) is the fact 
that the number of the ionizing electrons, which is 
proportional to f0 ( q), increases with increasing 
field like 

Wi "" exp (--canst I E2). (3) 

Thus, the two possibilities considered lead to 
essentially different dependences of the probabili
ties of the impact ionization on the field, (1) and 
(3). At first glance the result (3), derived from 
the kinetic equation, appears to be better founded. 
However, the experimental dataC 2•6 •7J confirm the 
existence of a relation of the type (1) over a wide 
range of field intensities E. This contradiction 
was clarified by Baraff, [SJ who showed that in the 
region of relatively weak fields, when eEl :S liw 
( w is the average frequency of the emitted 
phonons ), the kinetic equation also leads to a de
pendence of the type (1), while the diffusion approx-
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imation cannot be employed for its solution. If we 
assume for the mean free path in semiconductors 
a value l ~ 10--6 em, and for the phonon energies 
nw ~ 5 X 10-2 eV, then the field in which the diffu
sion approximation and its corollary (3) are valid 
should be much stronger than 5 x 104 VI em. How
ever, the breakdown fields in germanium and sili
con are of the order of 105 VI em, and consequently, 
even if the dependence (3) could be observed, this 
would happen only in fields directly preceding 
breakdown. 

Baraff's results[ 3] were obtained by numeri
cally integrating the kinetic equation for a series 
of chosen values of the parameters and, in addi
tion, pertained to temperatures that were suffi
ciently close to zero. The purpose of the present 
paper is to solve the problem of impact ionization 
in semiconductors in analytic form, and for arbi
trary values of the field E and of the temperature 
T. We shall show below that in the region of large 
energies E » nw, which are the only ones of 
interest for the impact-ionization problem, the 
distribution function of the electrons interacting 
with the acoustic and optical phonons in a covalent 
crystal is of the form 

fo(e) = const· ev exp (- - 8- s0 (E, T) ), (4) 
' eFl 

where E is the electron energy, the parameter 
s 0 ( E, T) is determined as the positive root of the 
transcendental equation 

tuJ) / [ fiw ( fiw fiw )] (1+A)ch- Ach-+ch --s0 -
2kT 2kT \ 2kT eFl 

1 1- so +2-In-1-- = 0, so> 0, 
so +so 

(5)* 

and the exponent v is expressed in terms of s 0: 

1 { fiw ( fiw ) so 
v = - i 1 - eFl th 2kT 1 - so2 

r 1+A 1+Al 1-so 
X --+--n--

L 1 - so2 2so 1 + so 

ll.w ( 1 1- s0 ) 2 
-so-- -1n---

eFl 2so 1 +so 

X sh ( ;kwT- So e~~ ) I ch 2~~ r1 
} . (6)t 

From these formulas F is the effective electric 
field intensity, which coincides with its true value 
E in the case of a semiconductor with a scalar 

*ch =cosh. 
tth = tanh; sh = sinh. 

effective carrier mass (independent of the direc
tion). In the presence of anisotropy 

(7) 

where m is the effective mass, determined from 
the state density, 

and m11 is the effective mass for motion along the 
field direction 

1 oo~v oo~v oo~v _ = __ ,_x + __ ,_Y + __ ,_z ; 
mu mx my mz 

m~1 , m;,i, and m~1 are the principal values of the 

effective-mass tensor, and Yx• Yy· and Yz are the 
angles between the field E and the principal axes 
of this tensor. Thus, formula (7) contains, in par
ticular, the anisotropy of the impact ionization and 
of the breakdown fields. The dimensionless param
eter A determines the relative contribution of the 
scattering by acoustic and optical phonons to the 
total mean free path 

Lop 
A=---., 

lac 

1 1 1 i+A 
--- = --+ -- = ---. 
l lap lac lop 

We now consider qualitatively the behavior of 
the parameter s 0 as the field intensity is varied. 
In extremely strong fields, eFZ » nw, we have 

3 fiw fiw 
so;::::; -----th--

1 +A eFl 2kT. 

In this case the distribution function (4) is 
close to that investigated by Wolff, [SJ and conse
quently the diffusion approximation describes the 
real situation quite well. We assume now that 
2kT « nw, and investigate the region of fields 
such that kT :S eFZ « nw. In this region s 0 is 
close to unity, but it never reaches this value, 
remaining smaller: 

s0 ;::::; 1-2exp{ -2(1+A)ch;k~/[ Ach;:T 

+ ch( !!!!!___ - ~(J)-)ltf . 
2kT eFl J 

When eFl R: 2kT the value of s 0 reaches its 
maximum 

{ 2 ( 1 + A) } ( 8) 
Som;::::; 1 - 2 exp - A+ sech (fiw/2kT) ' 

and in still smaller fields it begins to decrease. 
In this entire range of fields, when eFZ « nw, the 
distribution function (4) is proportional to 
exp (- EleFl), i.e., it describes electrons accel
erated by the field to an energy E without colli-
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sions, in other words, it corresponds to the pic
ture considered by Shockley.Ct] At the smallest 
fields eFZ « kT the parameter s 0 tends to eFZ/kT, 
and the distribution function goes over into a Max
wellian distribution with a temperature equal to the 
lattice temperature. 

If the effective-mass approximation, i.e., the 
assumption that the electron energy is quadrati
cally dependent on the momentum, cannot be valid 
at energies on the order of q, then the mean free 
path can no longer be regarded as energy inde
pendent, i.e., l = l (E). In this case, as will be 
shown below, the distribution function fo (E) be
comes not Maxwellian, but of the form 

8 cl , 
/o(e)- exp{- ~ eFl~e') s0 (e') }. (4a) ., 

where Eo is the bottom of the band and s 0 (E) is 
determined by the same transcendental equation 
( 5), the only difference being that the constant l 
in it should be replaced by the function l ( E). 
The qualitative analysis presented above of the 
dependence s 0 on the field intensity E is conse
quently applicable also to this case, but for a 
quantitative comparison of the theory with exper
iment the difference between (4) and (4a) may turn 
out to be significant. 

We present also a formula for the impact
ionization coefficient K ( E, T) -the average num
ber of ionization collisions of the electron per 
unit length of path. In the case described by (4) 
we have 

( mu )'/, eF ( BiSo )v+2 
x(E T)=a - -

' m Bi eFl + liwe(so-1)/so 

X 'Pk { :;lo ( 18;: tkJ exp (- :;l so), (9) 

where a is a numerical coefficient of the order of 
unity, cflk(z) a function defined by formula (75) 
below, and p and k are constants characterizing 
the energy dependence of the impact-ionization 
cross section near threshold, in accordance with 
formula (72). The asymptotic behavior of cflk ( z) 
at both small and large values of the argument 
has a power-law character: 

cp,(z) ~ k!z-k, z~i, 

- ( k + 1 ) ( z )-k/(k+2) 
'Ph(z)"' 2f \2 k + 2 k + 2 , 

The following explanation is in order with 
respect to formula (9). The most important fac
tors which are contained in it-the exponential 
function and cflk-follow from formulas (4) and 
(4a), and therefore are not subject to any doubt, 

in contradistinction from the factor preceding 
them, which is essentially connected with the 
normalization constant in f0 (E). The latter can
not be determined accurately when eFZ « liw, for 
then the greater part of the electrons have ener
gies E :S liw, for which our solutions (4) and (4a) 
are generally inapplicable. Therefore the factor 
in the parentheses in (9) was obtained by interpo
lation between the limiting cases eFZ « kT, 
kT « eFl « liw, and liw « eFl. The specific 
form of the interpolating formula is of no impor
tance, since the role of this entire term in (9) is 
very small compared with the two factors follow
ing it. 

We now proceed to derive formulas (4) -(7). 
The electron momentum distribution function 
f( p) is determined by the usual kinetic equation 

(10) 

where p is the electron momentum, sp the prob
ability of collision with the phonon: 

2:n: \ 
Sp- = T J \ mk 12 {(i + N.,k) ~ (ep- ep+k- liwk) 

d3k + N.,k~ (ep- Bp+k + 7iwk)} (2nli)3 , (11) 

mk-the matrix element of the interaction between 
the electron and the phonon with wave vector k, 
Wk the phonon frequency, and Nwk the equili-

brium number of such phonons: 

(12) 

Ep is the energy of an electron with momentum p; 

sp { f}-the number of electrons arriving per unit 

time in the state with momentum p from all other 
states as a result of emission or absorption of 
phonons: 

Sp+{j}= ~n ~!mk!2 {(1 +N.,k)~(ep-ep+k+nwk) 
d3k + N.,k~ (ep- ep+k -1i~)} I (p + k) (2:n:1i)s . (13) 

We shall assume that there are two branches of 
phonons-acoustic and optical. The energy losses 
are essentially connected with the emission of 
optical phonons, for which we assume that 

mk = mo = const, Wk = w =1 const. 

The energy lost to emission of acoustical phonons 
can be neglected in the energy region of interest 
to us Ep » liw, i.e., we can leave out the liwk of 
the acoustical phonons in the arguments of the o 
functions of (11) and (13). Using also the approxi
mations customarily made for acoustical phonons 
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N"'kz1 +N"'kzkTjliwk~!k!-I, !mk!2 ~!k!, 

we verify that only f ( p + k) and E ( p + k) in the 
integrand of (13) depend on k. Going over there
fore to a new integration variable p' = p + k and 
integrating over the surface Ep' = const, we obtain 

S ____ 1_ _1_{~ .Q(ep-liw) 
P - 'tac (p) +'top (p) 2 ch ~ Q (ep) 

(14) 

(15) 

We have introduced here the following notation: 
{3 = tiw/2kT; f0 (Ep)-symmetrical part of the dis
tribution function: 

- 1 s d3p (16) 
/o(e)- .Q(e) /(p)l\(e-ep)(2nfi)3' 

(17) 

T - 1 ( p) -frequency of collisions with the optical 
op 

phonons: 

1'-t ( ) =~I 12 Q (ep) . 
op p 1i mo th ~ ' 

T- 1 ( p) -frequency of collisions with acoustical 
ac 

phonons, determined in analogous fashion. 
We now note that the energy dependence of 

T-1 and T-1 is determined by the same factor ac op 

( 18) 

Q ( E ) , and therefore their ratio does not depend on 
the energy: 

'top (p) 
'A = --- = const. 

'tac (p) 

Using this circumstance and expanding (14) and 
(15) in powers of tiw/ Ep up to first order, we 
obtain 

(19) 

S-~ _1_ {1 _l!!!!__ d ln Q (ep) th ~} (20) 
P ~ 1' (p) 1 +A dep ' 

S + {f} z _ 1 {A+ ch (~ + 1iwdjdep) 
P (1+A)'t(p) ch~ 

+ tz din Q (ep) sh (~ + liwdjdep) } f ( ) (21) 
~w dep ch ~ 0 8P • 

In the last formula we have introduced, for con
venience in notation, the operators 
cosh ({3 + tiwd/dEp) and sinh ({3 + nwd/dEp), 
whose action is defined by the well-known relations 

exp (± nwdjdep) fo (ep) = fo (ep ± liw). 

The mean free time T ( p) is connected with 
r ac and Top in the following fashion: 

-r-1(p) = 'tac-1(p) + 'top-1(p) = (1 + A)'top-1(p). (22) 

We now solve (10) with respect to the distribu
tion function f ( p), regarding Sp { f} as the free 
term of the equation 

0 t 

j (p) = \ s;+eEt {f} exp {~ S~+eEt' dt'}dt. (23) 
- ()() 0 

Substituting (20) and (21) in (23) and integrating 
the first two terms in SJ>+eEt by parts, we obtain 

f ( ) _[A+ ch (~ + liwdjdep) J fo (ep) 
p - ch~ 1 +'A 

0 t 
_ \ exp {~'[ 1-liw dlnQ( Bp +eEd th ~ J 

J J dep+eEt' 1 + A 
-oo 0 

dt' } {dep+eEt [A+ ch (~ + liwdjdepceEt)J 
X 1' (p + eEt') dt ch ~ 

X f o' ( Bp+eEt) _ liw dIn Q ( 8p+eEt) 
1 + 'A 1' (p -±- eEt) dep+eEt 

[ ~ (')., + Ch (~ + fiwdjdep+eEt)) 
X • 1 +A ch~ 

+ sh (~ + liwdjdep+eEt)J fo (ep+eEt)} dt 
ch~ 1 +A · 

( 24) 

Here f0 is the derivative of the function f0• 

Formula (24) is a generalization of the usual 
relation 

f (p) = fo (ep) -- eE't (p) dep dfo (ep) 
dp dep ' 

(25) 

into which it goes over if we put eEt ~ eETp « p 
and tiw/ Ep - 0. In our problem, however, in 
accordance with the statements made above, an 
important role may be played by electrons whose 
range accidentally is anomalously large, i.e., 
t » Tp· The velocity distribution of these elec
trons is certainly strongly anisotropic, and the 
approximation (25) is not suitable for their de
scription, since it is based on the assumption 
that the asymmetrical part of the distribution 
function is much smaller than the symmetrical 
part. 

Formula (24) reduces the problem of deter
mining the total distribution function f ( p) to the 
finding of its symmetrical part f0 ( Ep). In order 
to obtain an equation for f0, we should average 
Eq. (24) over the constant-energy surface in ac
cordance with the definition (16). 

We present the subsequent calculations, 
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assuming the electron dispersion equation to be 
anisotropic but quadratic: 

(26) 

In this case our problem can be reduced to the 
problem with quadratic and isotropic dispersion 

Bq = q2 /2m (27) 

by changing the scales along the x, y, and z axes: 

q; = (mImi) '!.p; (28) 

( i = x, y, z) and introducing the effective electric 
field F, whose components are connected with the 
components of the true field E by relations 
analogous to ( 28): 

F; = (m/m;)'I•E;, 

F= (m/mu)E. 

(29) 

(30) 

For the average mass m we choose the effective 
mass determined from the energy-state density 

(31) 

We now introduce for convenience in subsequent 
manipulations a set of new symbols. The effective 
mean free path l we define by the relation 

_ ( 2ep )'/, _ ( 2sq )'/• l - -- 't'p - - 't'q. 
m m 

(32) 

It is obvious that it is independent of the energy. 
All the energies are measured in units of eFl, 
i.e., 

(33) 

The optical-phonon energy expressed in these units 
will be denoted by a : 

a= lim/ eFl. (34) 

Finally, u and v denote the cosines of the 
angles between the field F and the vectors q and 
q + eFt respectively: 

u =cos {F, q}, v =cos {F, q +eFt}. (35) 

The quantities ?; = t q• t' = t q+e Ft' u, and v 

are connected by the obvious relation 

~(1- u2) = ~'(1- v2). (36) 

It follows from (17) and (33) that 

dln Q(~) 1 
d~ =2~ 

(37) 

We now multiply (24) by W 1 r E) o ( E - Ep) and 
integrate it over all the momenta p. Using then 

formulas (26) -(37), we obtain the following equa
tion for the function f0 ( t ) : 

{ 1 __ 1_ [A.+ ch(a + Pd/d~)-] }t m + t. r du r ~!!____ 
1 + A. ch p 0 2 J J 1 + A. 

-1 -1 

X { 2~(1- u2) v fA.+ ch(p + ad/d~') ]to' 
(1-v2)2 L chp 

X(~ 1-u2 ) __ a_ [ thp (!,+ ch(P+ad/d~l) 
1 - v2 1 - v2 1 + 'A ch p 

sh(P + ad/d~'L] .. (,. ·1- u2 )} = 0 + ch p 10 "' 1 - v2 • 
(38) 

The derivative with respect to t' in (38) denotes 
differentiation with respect to the total argument 
t'=t(1+ u2)/(1-v2). 

Equation (38) was obtained by expanding with 
respect to tiw/E, and is consequently valid only in 
the region E » tiw, i.e., t »a, and consequently 
it is meaningful to seek its solution only in this 
region. This is most conveniently done by taking 
the Laplace transform, i.e., going over to the 
function 

00 

f(s) =) e-•~fo(~)d~. (39) 
0 

Then 

1 c+ioo 

/o(~) = -2 . ) e•~f(s)ds, 
m. 

(40) 
C-100 

where c > Re s 0, and s 0 is the singular point of 
f( x) farthest to the right. At large t, the asymp
totic value of f0 ( t ) is determined only by the 
position and the character of the extreme right 
singular point s 0• Therefore, going over from 
(38) to the expression for {( s), we should inves
tigate only the singular points of this equation. 

Here, however, it will be more convenient for 
us to write the equation not for f( s), but for the 
related function <P ( s): 

!l>(s) = ~ {A.+ ch(p + ad/d~)}fo(~)_e-•l;d~ 
0 ch ~ 1 +A. 

=(A.+ ch(~ +as)) f(s) _ 
ch ~ 1 +A. 

e~+as a; 

- 2(1+A.)ch~o~ e-•t:fo(~)d~. (41) 

We multiply (38) by e-st and integrate with 
respect to t from zero to infinity, representing 
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fo (?;') in the integrand in terms of f( s) with the 
aid of (40). After several elementary transforma
tions we obtain for <I> ( s) the following equation: 

[ (1 + A.) ch p 1 1 1 + s] Q> 

A.chP+ch(P+as) -2s n1-s- (s) 

1 c+ioo 

- 2ni ~ [K(s,s')<l>(s')-g(s,s')]ds'=h(s), (42) 
C"-100 

where 

K(s s') = _1_ \! __ du_ t __ dv / 1 + u 1- v )ath~/2(1+~> 
' 2 J 1 -- u2 J 1 - v2 1 - u 1 + v 

-t -1 

( s + u s' + v 1 1 + u 1 - v )-1 
X -----+·· ln--~-

1 - u2 1 - v2 2 1 - u 1 + v 

[ s'(i-v2) ath{3 
X (1 + s'vP + (1 +A.) (1 + s'v) 

a sh(p +as') J 
+A.chP+ch{P+as') ' 

1 u 
• J _ a ~ du ~ dv ( 1 + u 1 - v \ ath~/2(1+AJ 

g(s s )- --- -- ------I 
' 2 1 - u2 1 - vz 1 - u 1 + v ; 

-1 -1 

( s + u s' + v 1 1 + u 1 - v )-1 

X -----+ ln----
1 - u2 1 - v2 2 1 - u 1 + v 

X 1 - -----'-'---'----:c-
e~+as' [ sh(p +as') J 

2(1 + A.)ch {3 A. ch p + ch(p +as') 

a 

X ~ fo(~)e-•'td~, 
0 

1 ~(s')ds' 
h ( s) = 2 i ----;-"-'---,-

~ s' (s- s') 2[A.ch p + ch(p +as)] 

(44) 

(45) 

In the derivation of (42) we assume that Re s 0 

< c < Re s. We now note that the kernels K ( s. s') 
and g( s, s') have as functions of s' a logarithmic 
cut along the real semi-axis ( s, + oo) in the half
plane Re s' > c, and also an additional branch 
point s' = 1. The points determined by the zeros 
of the expression 

A. ch p + ch ( p + as), 

are not singular for ci> ( s), as can be readily veri
fied by multiplying all the equations in (42) by this 
expression. We then see directly that at these 
points 

f II 

(1 + A.)ch p<D(s)+ e~+as ~ fo(~)e-•td~ = 0, 
2 0 

and consequently the singularities corresponding 
to them in K( s, s') <I> ( s') and g( s, s') cancel 
out. 

We consider further the values of s in the 
strip -1 < Re s < 1, since s = 1 is likewise not a 
singular point of <I> ( s). The singularities of the 
different terms of the equation at these points 
cancel each other. Thus, for example, the loga
rithm in the first term in the left side of (42) 
cancels a similar divergence of the integral in the 
first term of (45). Shifting the contour of integra
tion in (42) to the right, we reduce this equation 
to the form 

00 00 

- ~ x(s, s') II> (s') ds' = h(s)- ~ y (s, s') ds', (46) 

where K (s, s') and y(s, s') are the jumps in the 
functions K(s, s') and g(s, s') on the cut 
s~s'<oo. 

On the segment s ~ s' < 1 we have 

1 
x(s, s') = -2 . [K(s, s' + i6)- K(s, s'- ill)] 

m 

1 u 
= 1 ~ _____!!!!:___ ~ ~( 1+u 1-~ r th ~/2(1+A) 

2 _1 1- u2 _ 11- v2 , 1-u 1+v, 

[ s' ( 1 - v2) a th p 
X (1 + s'v)2 + (1 +A,) (1 + s'v) 

+ ash(P+as') J 
A ch p + ch ( p + as') 

( s + u s' + v 1 1 + u 1-v \ 
XII-----+- In----' 

1-u2 1-v2 2 1-u 1+v )' 
(47) 

The terms in the left side of (46) have singulari
ties at those points where the function <I> ( s) has 
singularities, while the terms in the right side 
have no singularities at these points. 

The only singular point of <I> ( s) in the half
plane Re s > -1 is determined by the zero of the 
coefficient of <I> ( s) in the left side of (46): 

(1 + A.)ch {3 __ 1 In_!+ s0 = O. (4S) 
A,ch {3 + ch({3 +raso) 2so 1- s0 

The point s 0 is also the farthest singularity of 
<I> ( s) on the right. In order to investigate the 
behavior of <I> ( s) in the vicinity of s 0, we expand 
all the coefficients in (46) in powers of ( s - s 0 ) 

near this point, retaining the first nonvanishing 
term. This equation then takes the form 

8 

(s- s0)$ (s) + v ) Q> (s') ds' = const, (49) 
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where 

v = x(so,so) {__:!___[ (1 +A,)ch~ 
dso A,ch~+ch(~+aso) 

- _1_ln _! + so J }-1. 
2so 1- so 

(50) 

The solution of (49) is of the form 
const • ( s - s 0 ) -v-1• More strictly speaking this 
denotes that <I> ( s ) is of the form 

<D(s) = (s- so)-v-icp1(s) + cpz(s), (51) 

where cp 1 ( s ) and cp 2 ( s) are functions that are 
regular at the point s 0• They cannot be obtained 
without a complete solution of Eq. (46). For our 
purposes, however, this is not necessary. 

Equation (48), which determines s 0, has two 
roots. One is s 0 = 0 and the other s 0 < 0. How
ever, the singular point corresponds only to the 
second, negative root, since v = -1 when s 0 = 0, 
and consequently the function (51) is regular at 
this point. Indeed, 

x(s s =__!_[_1 __ __!_ln~]+ ath~ __ 1_ 
' ) 2s 1 - s2 2s 1 - s 2 ( 1 + A,) 1 - s2 

+~In~ sh(~+as) (52) 
4s 1 - s A, ch ~ + ch ( ~ + as) 

Substituting this result in (50), we obtain 

v = _ 1 { 1 + a~th ~ [-1_:+-~ _1,+ /..ln 1 + s0 

2 1 - so2 1 - so2 2so 1 - so 

+ aso 
sh(~ + IUSo) 

ch ~ 
( _1 ln-1 +so )z]-1} 
\ 2so 1- so · 

(53) 

The point s 0 is also the extreme right singu
larity for the function f< s). Substituting (51) and 
(41) in (40) and shifting the contour of integration 
in (40) to the left, we obtain the following asymp
totic representation for f0 ( /;) at large /;: 

(54) 

The constant C is proportional to cp 1 ( s 0 ) and 
therefore cannot be calculated in the approximation 
employed by us. However, its influence on the 
probability of impact ionization is negligibly small, 
and we confine ourselves to an estimate of its 
order of magnitude. This is easily done on the 
basis of the following considerations. Physically, 
C is connected with the normalization constant in 
the distribution function. In the case of large 
fields 0! « 1, when most electrons have an energy 
on the order of a-1eFZ » eFZ » nw and are conse
quently in the region of applicability of the solution 
(54), C simply coincides with the normalization 
constant 

( li 3a2 
)''' ~---th~n 

mw 1 +A, ' 
(55) 

where n is the total number of electrons. 
If a » 1, then the bulk of the electrons has 

energies smaller than nw and is not described by 
the function (54). In this case C is the number of 
electrons in the tail of the distribution function, 
and can be estimated in the following fashion. In 
this case the electrons fill practically uniformly 
the region of energies Ep < nw, and n (E), the 
number of electrons reaching an energy E, is 
proportional to the probability of passing without 
collision through the energy range from 
Ep < fiw to E. This probability is in turn propor
tional to 

t 

exp (- ~ s;+eEt•dt') 1 

0 

where t is determined from the condition 
Ep+eEt = E. An elementary calculation of this 
type yields under the condition 1 « a ;S {3 

{ ath~ 
n(\;) ~ na-1 exp - \; + ln \; 

2(1+1.,) 

ath ~ ( a )} 
- 2(1+/.,) ln 4 -1 _· 

On the other hand, the quantity n ( 1; ) can be 
determined also as 

12 (meFl)''• I _ 
n(\;) = 2fi3 .l /o(\;)y\;d\;. 

:It ~ 

Substituting here (54) and using the fact that 
s 0 ~ -1 when a » 1, and that the exponent 

1 + a hR 
v :::::; - 2 2 ( 1 + A,) t t'• 

we obtain 

f'Z f mw \ 'h { a th ~ 1 
n (\;):::::; -~2 ~ lia) C cxp - \; + -2(1-t--J:) ln \;f. 

Comparing (56) and (57) we obtain, leaving out 
numerical factors, 

( li )'!• { a th ~ ( a ) } C ~ n - l'a exp - In - 1 . 
mw 2(1 +A,) 4 

(56) 

(57) 

(58) 

It is now easy to construct an interpolation 
formula for C, which when a « 1 coincides with 
(55), and when a » 1 with (58); in the interme
diate region 0! ~ 1 the formula gives a result of 
the correct order of magnitude. For example, 
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X exp{- 2 (~~~) ( ln~-1)}. (59) 

We emphasize once more that a more accurate 
calculation of C (a, {3) is of no interest in the 
problem of impact ionization, for in the worst 
case C (a, {3) results in corrections to the expo
nential in (54), the relative magnitude of which is 
of the order of tiw/q- 10-2• 

More important are the other simplifications 
made in the derivation of (54), particularly the 
assumption that Ep is a quadratic function of the 
momentum up to an energy on the order of Ei, and 
that the influence of the impact ionization process 
itself on the function f0 (E) in the region E ~ Ei 
is small. The first of these limitations can be 
eliminated. We now present a derivation which is 
somewhat less rigorous than the preceding one, 
but which leads to the same results and makes it 
possible to take into account the non-parabolic 
nature of the function Ep· For concreteness we 
confine ourselves here to the most interesting 
case, when the dispersion law is not parabolic but 
isotropic: 

(60) 

where ~ is the half-width of the forbidden band, 
from the middle of which the energies are reck
oned in the given case. This type of dependence of 
Ep is precisely the one which is typical, as is well 
known, for the majority of semiconductors of the 
AliiB V group and for a number of other semicon
ductors. In this case 

_ m'l•f1't. ~ (~ _ 1 )'I• 
Q (e)- 2n2fi3 11 f12 

and the mean free path l ( E ) depends on E like 

e2 (61) 
Z(e) = Li"2l, 

where l is the mean free path in the region of 
energies nw « ( c: 2 - ~ 2 ) 112 « ~. 

Since we are interested only in calculating the 
exponential in the distribution function f0 ( E ) , we 
now omit in (24) all the terms of order tiw/E. We 
change over again to the variables 

u =cos {E, p}, v =cos {E, p + e Et} 

(62) 

After averaging (24) over the angles we obtain 

[ ch(~ + liwd/de) J /o(e) 
/o(e) = ').. -L ch~-- 1 +f.. 

1 1 • [ 2 f12 ]-'/• - l" du S exp {- l" 1 - e - ( 1 - u2) 
2 J .. J e"2 - f12 

-t r e' 

de" } [ ch (13 + liwd/ de') J /o' ( e') de' (63) 
X eEt(e") f..+ ch~ 1+f.. 

The integral with respect to c:' in (62) is taken 
along the contour r which goes from + oo along 
the real axis, but in the lower half-plane, to the 
branch point E ~ - ~ 2 = ( E 2 - ~ 2 ) (_I - u2), turning 
around this point and then proceedmg to E' = E. 
The point E itself is assumed to lie on the upper 
branch of the contour r, if u > 0 and on the lower 
if u < 0. When c:' varies along the contour r, 
the quantity v (62) increases monotonically from 
-1 to u. The branch point corresponds to v = 0. 
The integral with respect to E" is taken along a 
segment of the same contour r. 

We now seek a solution of (63) in the form 
8 d I 

/o(e) = const·exp{- S s(e') eEl~e') }. (64) 
a 

Substituting (64) in (63), we shall assume that 

dn [ s(e) Jn 
(lerJo(e) ~ -- eEl(e) /o{e), 

since the other terms which appear upon differen
tiation will be on the order of eEl/£ or smaller, 
and we neglect terms of this order, because we 
seek only the asymptotic value of fo (E) when 
E » eEl. As a result we obtain from (63) the fol
lowing equation for s ( E ) : 

I 1 1 8 dQ' ch f3 - ch [(3 - a (e) s (e) (" (" "' 
· (1 + f..)rch f3 -2 ~1du Jr eEl(e') 

E 2 f12 ]-'I, 
xexp{-5([1-e- (1-u2) · 

~ , e"2 -112 
e' ' 

) de" }[ ch[f3- a(e')s(e')] J s(e') _ 0. s(e") A. -L ---
- , eEl(e") ' ch~ 1+f.. · 

(65) 

The value of s (E), as we shall show below, is 
always less than unity. Therefore 

-~- s(e") = [1- £_ -/12 (1- u2) ]-'/,- s(e") > 0 
v e"2 -f12 

for v > 0, i.e., on the upper edge of the cut. If 
v < 0, i.e., on the lower edge of the cut, this dif
ference is negative. 

Thus, the exponential in (65) contains a negative 
quantity, the absolute value of which increases 
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monotonically with increasing distance between 
the points E' and E, and consequently the main 
contribution to the integral with respect to E 1 is 
made in the asymptotic region E » eEl by the 
region E' "' E. Taking this circumstance into 
account, we expand the exponential in powers of 
( E - E') up to first order inclusive: 

8 \ r( 82 - f12 ,-'.', l de" 
~, L 1-8"2- f12 (1·- u2) J - s(e") J eEl(8") 

~ c -s( 8)) e~l(ee; ' 

and replace the remaining quantities that depend 
on E' by their values at E' = E. We note further
more that from the definition of the contour r, the 
difference E 1 - E is positive when u < 0 and 
negative when u > 0 in the region making the main 
contribution to the integral. Carrying out now all 
the integrations, we reduce (65) to the form 

(1 + /.)ch ~ __ 1_1n 1 + s(e) = O. (66) 
I. ch ~ + ch [~ - a ( 8) s ( 8)] 2s (e) 1 - s (e) 

Thus, an account of the non-parabolic nature of 
the dispersion law introduces nothing essentially 
new to the problem of impact ionization, but makes 
the distribution function (64) non-Maxwellian. 

It is easy to include in the scheme under con
sideration also the impact ionization process. To 
this end we must add to sp (20) a term in the form 
Ti-1( p), describing the ionization collision proba
bility of an electron with momentum p. The subse
quent derivations are perfectly analogous to 
(63) -(66), so that we present immediately their 
final result. The distribution function can again be 
represented in the form (64), but with l (E), the 
total mean free path, determined by the scattering 
by phonons and by the ionization collisions: 

while the parameter s (E) is determined by an 
equation which differs somewhat from (66): 

1 +I. ch ~ 
--~··-- ----
1 - ll (e) I. ch ~ -1- ch [f3 - a (e) s (e) ] 

1 1 1+s(e) -U· ---n----
2s(e) 1- s(e) ' 

(67) 

(68) 

iJ. (E) is the relative contribution of the ionization 
collisions 

(69) 

At energies E < Ei this ratio is equal to zero, and 
then (68) coincides with (66). 

An experimentally determined characteristic of 
the impact ionization process is usually the coeffi
cient of impact ionization K ( E, T), defined as the 
ratio of the average probability of impact ioniza
tion to the average electron drift velocity Vd: 

x(E, T)= 1 -~ -rci(e)fo(e)Q(e)de=a(E,T)f0 (e;). (70) 
n~ 0 n~ 

For a distribution function in the form (64) 
u ( E, T) is of the form 

00 • d f 

a(E, T) = \ -r,-1 (8)exp{- I s(e') _ __!:_----,)lJ Q(e)d8. (71) 
o1 .l eEl(e 
ei ei 

Compared with f0 (q), this quantity, like Vd, is a 
slowly varying function of the field. 

The main contribution to (71) is made by the 
region of energies close to threshold: E - Ei 
:S eEl ( q) s-1 « q. In this region the probability 
of impact ionization can be represented in the 
form 

-rc1(8) = -r-1(8;)p ( 8 e; 8; r. (72) 

where p is a dimensionless constant which, gen
erally speaking, is much larger than unity, [ 9] and 
the exponent k can assume values equal to 1, 2, 
and 3 depending on whether the crystal is isotropic 
or notC 10] and depending on how large its dielectric 
constant is. [ 9] 

In order to calculate (71) in explicit form, we 
now note the following: in a narrow region of 
energies close to a threshold, which makes the 
main contribution to (71), the condition iJ. (E) « 1 
is apparently always satisfied. Therefore, in the 
calculation of u ( E, T), we can put l ( E ) Rl l ( E i) 
and 

1 
s(e) = -2 [s(8;} + (s2 (e;) + 12J.l(8)) •;, ]. (73) 

Indeed, expression (73) follows directly from (68), 
if 

a(8) ~ a(e;) ~ 1 

and JJ. « 1. On the other hand, if 

a(e) ~ a(8;) ~ l'3J.l(e) 

the quantity JJ. in (68) plays no role at all and 
s (E) Rl s ( E i). By virtue of the condition JJ. « 1, 
these regions overlap and consequently (73) holds 
true everywhere. Using (72) and (73), we can 
eui~transfurm(7U~~ 

(E T) = Q(e;) El( ·) { 8;s(e;)(~e;))1/h} (74) 
a ' 't'(8;) e e, (jlh eEl(e;) 12p ' 
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00 "' 

q!n(z)=z~ exp{-z ~ [1+(1+y")'f,]dy}x"dx. (75) 
0 2 0 

The calculation of the normalization constant in 
f0 (E) and of the drift velocity Vd in (70) is less 
definite. Both terms, however, vary very little as 
functions of E, compared with the exponential and 
with <fk• so that it is sufficient to be able to write 
down at least their order of magnitude. This can 
be done by writing down their correct values in 
two limiting cases: eFZ « kT and eFZ » tiw, when 
the propagation function is almost isotropic and the 
function (4) gives a solution which describes cor
rectly the majority of the electrons, after which 
one can use (59) to interpolate in the intermediate 
region kT « eFZ « tiw. This method yielded the 
factor 

( e;so )v+2 
eFl + ftwe<so-i)/Jo 

in (9). As a rule, impact ionization is observed in 
such fields that a :S 1. Then, apart from factors 
of the order of unity, this term can be calculated 
from the formulas that pertain to the case a « 1. 
In formula (9) this reduces simply to the fact that 
it is necessary to put tiw exp [ ( s 0 - 1) I s 0 I = 0. 

Formulas (4) -(9) thus yield the solution of the 
problem of impact ionization in covalent semicon
ductors, for which as is well known, mk = const, 
at arbitrary values of the field and of the tempera
ture, and also under rather general assumptions 
concerning the character of the band structure and 
the interaction between the electrons and the 
phonons. There is, however, one limitation, 
which has been used in the derivation: we have 
assumed that the probability of scattering by an 

optical phonon will not depend on the scattering 
angle, i.e., mk = canst. This is precisely why we 
can write a closed equation such as (38) for the 
function f0 ( E ) , dependent only on the energy. 
Qualitative deductions concerning the variation of 
the law of the growth of the number of ionizing 
electrons with the field in fields such that eEl 
~ tiw apparently remain also in force when 
mk "" canst, but the quantitative estimates may 
differ. In particular, some caution is necessary 
when the results of the present work are applied 
to semiconductors with a noticeable fraction of 
ionic bonding, for in this case mk contains a term 
proportional to I k 1-1 for sufficiently small phonon 
momenta, i.e., small scattering angles. 
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