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The parametric resonance conditions are derived for a plasma in an external periodic elec­
tric field. The largest oscillation growth rate, which is of the order of the cube root of the 
electron-ion mass ratio multiplied by the electron Langmuir frequency, obtains at wave­
lengths comparable with the oscillation amplitude of the electrons in the external field if 
the external frequency (or its harmonics) are near the electron Langmuir frequency. At 
the same wavelengths, but far from harmonic resonances (harmonics of the external 
field below the electron Langmuir frequency) the growth rate is of the order of the ion 
Larmor frequency. If the amplitude of the electron excursion is small compared with the 
plasma oscillation wavelength the reduction factor for the growth rates is given by the 
excursion/wavelength ratio to the two-thirds power. 

INTRODUCTION 

IN experiments on radiation acceleration of 
plasma [t] it frequently happens that the velocities 
associated with electron oscillations in the ex­
ternal electric field are appreciably greater than 
the thermal velocity. Under these conditions the 
oscillation amplitudes can be appreciably greater 
than the Debye radius and it is of interest to in­
vestigate the stability and characteristics of these 
oscillations of a plasma in a strong high-fre­
quency electric field. The plasma can be de­
scribed by a two-fluid hydrodynamic model with­
out including the effect of thermal motion. It has 
been shown by Aliev and the author [2J that when 
the frequency of the external field is appreciably 
greater than the electron Langmuir frequency the 
plasma can exhibit some new effects which are 
quite sensitive to the external field. In the present 
work we investigate one aspect of this problem 
which is of interest from an experimental point of 
view-this is the case in which the frequency of 
the external electric field is comparable with the 
electron Langmuir frequency. 

It will be shown below that oscillations are in­
deed excited in a plasma located in a uniform 
high-frequency electric field. The maximum 
growth rate of these oscillations is of the order 
of the electron Langmuir frequency multiplied by 
the cube root of the electron-ion mass ratio; this 
maximum growth rate obtains near resonance at 
harmonics of the external frequency (harmonic 
resonance). Far from this resonance the maxi­
mum growth rate is of the order of the ion Lang-

muir frequency. The maximum growth rates are 
found at oscillation wavelengths approximately 
equal to the amplitude of the electron oscilla­
tions. In weak electric fields, where the wave­
lengths of the plasma oscillation are appreciably 
greater than the excursion of the electron in the 
external field, the growth rates are found to be 
much lower than the maximum value cited above. 
The reduction is given by the excursion/wave­
length ratio to the two -thirds power. 

Finally, when the fields are very strong and 
the plasma oscillation wavelengths are very 
small (large excursion/wavelength ratio) the 
coupling between the plasma components is re­
duced and independent oscillations of the elec­
trons and ions are possible. In this case the ions 
oscillate at the ion Langmuir frequency. This re­
sult agrees with that obtained in [2] in which the 
case of a high-frequency external field was 
treated. We may note that the low-frequency 
branch of the oscillations considered in the 
present work, which corresponds to parametric 
excitation, goes over to the low-frequency spec-

c2l 
trum found earlier L ' in the limit of high-fre-
quency external fields. 

1. INITIAL EQUATIONS 

Assuming that the plasma is cold so that the 
thermal motion of the particles can be neglected 
we base our analysis on the hydrodynamic equa­
tions: 

ana . -- + d1v naVa = 0, at 
1127 

OVa ( 8 ) ea. -_ -+ Va Va=--E. (1.1) at or' ma 
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No magnetic field appears in these equations be­
cause we are not interested in a magnetized 
plasma, (no strong constant field); moreover, the 
subsequent analysis is concerned only with ir­
rotational oscillations ( oE == -'ilocp ) . The equili­
brium state of the plasma is uniform in space: 
na == na (o). In this case the particle velocities in 
the equilibrium state are given by 

ea 
Ua = ---Eo cos Wot, 

maWo 

where E0 is the amplitude of the external ac 
field.n 

(1.2) 

For small oscillations about the equilibrium 
state we may assume that the displacements from 
equilibrium are proportional to eik · r ; then, 
eliminating the nonequilibrium electric field po­
tential by the use of Poisson's equation we obtain 
from (1.1) the following equation, which describes 
the time variation of the particle number density 
ona: 

[ fJ 12 4nea ~ - + ikua bnu. = - -- na(O) LJ e~bnB. 
{)t J ma B 

(1.3) 

For a plasma consisting of electrons and one ion 
species the functions 

{ eaEok } 
Va = eabna exp - i ---2 sin wot 

maw a 

are governed by the following two equations :[2] 

ve'' + WL.Z[ Vc + v; exp ( -ia sin wot)] = 0, 

(1.4) 

, ( ) ] O (L5) v;' + WLi2 [ v; + Ve exp ia sin wot . = . 

Here, wLa = ( 41Tehn~l/ma )112 represents the 
Langmuir frequency of the electrons and ions 
respectively and 

( e e; ) 1 ekE0 
a= --- -kE0 ~ --. (1.6) 

me m; Wo2 mewo2 

We shall investigate the solutions of Eq. (1.5) 
for the case in which the frequency of the ex­
ternal field w0 is appreciably greater than the 
ion-Langmuir frequency but comparable with the 
electron-Langmuir frequency. The small parame­
ter in (1.5) is the ratio of the ion-Langmuir fre­
quency to the electron-Langmuir frequency or, 
what is the same thing, the mass ratio. This 
small parameter is used in investigating the 
solutions of (1.5). 

2. NONRESONANCE CASE AND SUB-HARMONICS 
(HIGH-FREQUENCY OSCILLATIONS) 

In a number of cases the system in (1.5) can be 
investigated directly using methods developed by 

*The generalization to the case E(t) = liEi sin (w 0 t + oi) 
is trivial.['] 

Bogolyubov and MitropolskiL [3] In particular this 
holds for the nonresonance case in which the 
equalities 

Wo ~ (pI q)WLe (2 .1) 

do not hold ( p and q are simple integers). The 
solution of (1.5) can then be written in the form 

Ve(t) = u_(t) e-iwLet + u+(t) ei"'Le1 + cu(l) + :}u(Z; + 0 0 0 

v;(t)=ew<1l(t)+e2w<2l+ ... , (2.2) 

where E = ( wu/wLe )2 • 

The characteristic time for changes in the 
functions u_ and u+ is appreciably greater than 
2r•/wLe· It is then evident that 

(2.3) 

u(!) = WLe' ~. e-inwot ~ lz(a)ln+z(a) u e-iwLet 
Won*o n(nwo + 2WLe',~-='oo (lwo- WLe) 2 -

WL 4 e-inwot +oo Jz(a)Jn+l(a) . ' + _e_ ~. "'5'; U+e 1"'Le' 
Wo n*o n(ncuo- 2wLe) 1~-:_oo (lwo + WLe) 2 

(2 .4) 

( Jz is the Bessel function). Furthermore, in the 
first approximation in E we have 

d 1 +oo J 2 (a) 
-d-U±= +iu,., 2 WLeWLi2 ~ (l l )Z 

t z~-oo Ctlo - WLe 
(2.5) 

The last equation allows us to write the follow­
ing approximate expression for the characteristic 
frequency of the plasma oscillations: 

W = WLe{ 1 + ~ l~oo ]zZ(a) (WLeW~i:wo)Z }. (2.6) 

In particular, when w0 » wLe we obtain the 
oscillations spectrum given in [2]. 

The relations in (2 .3)-(2 .5) indicate that 
nonresonance approximation can become poor 
near certain critical points 

Wo = ±WLr In (n = 1,2, ... ) , (2. 7) 
(l)o = ±c•lLe I (n + 1/z) (n = 0, 1, 2, ... ) . (2 .8) 

It is evident that taking account of the higher ap­
proximations in powers of E will require a care­
ful investigation of the higher subharmonics if the 
thermal motion is taken into account: 

C•lo = ±wu I (n + 1 I l) (n = 0, 1, 2, ... ; l = 3, 4, ... ) . 

(2 .9) 

The investigation of resonance cases is of special 
interest for the theory of stability of plasma with 
respect to perturbations induced by an external 
high-frequency electric field. It will be shown 
below that the highest growth rates arise in the 
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vicinity of harmonic resonances of the external 
frequency (2.7). 

It should be emphasized that the method of ob­
taining the solution in the form (2 .2) used here is 
completely unsuitable for solutions which do not 
contain high -frequency harmonics. However, 
before considering this case, which is qualitatively 
different, we shall consider the possibility of 
subharmonic resonances. Specifically, in accord­
ance with (2.8) it is necessary to study the possi­
bility of resonances when 

(n + 1/z)wo = WLe(t + e~), (2.10) 

where t. is small compared with E -t. As in the 
nonresonance case, the solution of (1.5) can be 
written in the form [3] 

0 •• ' 

vi(t) =ew<1l+ ... , (2 .11) 

where u_ and u+ are slowly varying functions of 
time. 

Since (2 .3) does not exhibit any singularities 
in the region of the point (2 .8) it is obvious that 
w(t) will be given by 

1 2 +oo -
w<!J=(n+---) L: ]z(a)eilw,t{ u_ .e-i(n+1!2)w,t 

2 I i=-oo (l- n- 1/z)" 

(2 .12) 

Using the principle of harm<;mic balance it is easy 
to show that 

( 1 \ 4 ~ ~ ___ lz(a) __ 
u(1J = n + . . l LJ LJ 

2 ) s*O, 2n+1 1=-oo S ( S - 2n - 1) 

X { u_]z-s (a) ei(s-n-1/Zlwot 

(l-n- 1/z)2 

+ [-1 ( n + 1 )z ~ ]z]l+Zn+1 T}'/')}. (2.16) 
2 2 l=-oo(l+n+1/2)2J 

We then see that oscillations are not excited in 
this approximation. In the limit t. » 1 (2.16) 
with the minus sign becomes (2.6). With the plus 
sign the right side of (2 .16) becomes (2n + 1 )w0 

- w where w is determined by (2.6). 
In the vicinity of the higher subharmonics (2 .9) 

it is possible that frequency corrections of order 
WLeE(Z-t) will arise. In particular, when 
( n + % )w 0 ""' WLe the order of this correction is 
smaller than wLeE2 = wuo/wLe3. In other words, 
the time in which the subharmonic resonances 
can develop is six orders of magnitude greater 
than the period of the electron Langmuir oscilla­
tions. 

We wish to emphasize again that the analysis 
in this section refers, as is obvious from (2.2)­
(2.4) and (2.11)-(2.13), to the case in which the 
solution of (1.5) does not contain the zeroth har­
monic of the external field. Or, to put the matter 
more precisely, the harmonic expansion of the 
solutions does not contain a term which varies 
slightly in a period of the external field. In the 
following section we consider the opposite limit, 
in which it is necessary to take account of the 
zeroth harmonic of the external field in forming 
the solutions of (1.5). 

3. RESONANCE AT HARMONICS OF THE 
EXTERNAL FREQUENCY; LOW-FREQUENCY 
OSCILLATIONS AND NONRESONANCE 

(2.13) EXCITATION OF OSCILLATIONS 

and 

du_ ( 1 ) ie ( 1 ) 3 dt = ie~w0 n + 2- u_- -2 Wo n + 2-

du+ . ( 1 \ ie ( 1 \ 3 
--- = - ie~w0 n + 1 u+ + -- Wo n + · 1 

dt 2 ' 2 2 ' 

(2 .15) 

The system (2 .14) and (2 .15) has a solution 
~ e-iowt. Hence 

We first consider the harmonic resonance 
case wLe 2 ""' ( nw0 )2 (resonance at a harmonic of 
the external frequency). The solution of (1.5) is 
written in the form 

'Ve = evt { U+n e-inwot + u:.n einwot + L:, u 1e-ilwot }, ( 3 .1 ) 
l*±n 

Vi= evt { w0 + ~ w1eilwot }. (3.2) 
l*O 

The necessity for taking account of the funda­
mental is obvious in this case because the coef­
ficients in (1.5) contain all harmonics of the ex­
ternal field. In this connection substitution of the 
solution of the form (3.2) even without the funda­
mental will give rise to a fundamental term. 
Substituting these expansions in (1.5) and using 
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the principle of harmonic balance, we find 

+ ~ uzlm+Z = 0 (m =I= 0), (3.3) 

l*±n 

Um { 1 + ( - imwo + v \2 } ~ 
___ ..:__:_

1 
I + Wol m + LJ Wz]z+m 

WLe 1.,..0 

= 0 (m =I= +n), (3.4) 

{ ( - inw0 + '\' )2 } U+n 1 + ------ + Woln + ~ wzll+n = 0, (3.5) 
UJLe l*O 

{ ( inwo+v ) 2 } U-n 1 + UJ + WoLn + ~ wzlz-n = 0, 
Le l*O 

(3.6) 

wo{ 1 + ( .Y_S} + Unl n + U-n'-n + Wz]z = 0. 
'WLi '} 

l*±n 

(3.7) 

The relations in (3.3) and (3.4) yield the follow­
ing approximate expressions for Urn (for 
m >" ±n ) and Wm ( for m >" 0 ) : 

(3.9) 

Substituting the last two expressions in (3.5)­
(3.7) we have 

un{ 1+( -i:::+v Y-eAn }-u-neBn 

+ Wo {ln + e.Cn} = 0, (3.10) 

{ ( inw0 + '\' )2 } 
U-n 1 + ffiLe - eA-n - UneBn 

+ Wo{Ln + eCn} = 0, (3.11) 

wo{ 1 +( (J):; r -Dn + eEn} + Un {ln + eCn} 

(3.12) 

where 

2 
A - ~ f,_ a ffiLe 
n-LJ l+n( )(.l + )2+ 2 

l*O l UJO '\' UJLi 
(3.13) 

2 
"" UJLe J J J X LJ 2 + ( . + ) 2 n+l r r+Z, 

'*±n ffiLe -zrwo '\' 
(3.15) 

2 
D = ~ ]2. UJLe 

n LJ l ( ·z + ) 2 + 2 ' l*±n l Wo '\' WL• 
(3.16) 

E:n = - ~ ~ ~ UJLe6 

l*±n r*±n s*O 

lz(a) J, (a) ll+s (a) lr+s (a) 

X [(ilwo + v) 2 + UJLe2H (irwo + v)2 + UJLe2H (iswo + '\') 2 + UJL;2]" 

(3.17) 

The solutions of the system in (3.10)-(3.12) 
will be nontrivial when 

{[ ( - i::: + '\' r + 1 - eAn] [ ( 

+ 1- eA-n] 

inwo + '\' )2 

UJLe 

- e2Bn2 }1{1 + ~- Dn + eEn}- [/ n + eCn]2 
8UJLe 

X [( in::;'\' Y+ 1- eA-n ]- [Ln + eC-nf 

X [( -i:::+V r 
+ 1- eAn l- 2eBn [ln + eCn][/-n + eC-n] = 0. (3.18) 

Assuming that h' I « w 0, WLe and I WLe 2 

- n2w5 I « w Le 2, we obtain the following expres­
sion from (3.18): 

Here 

AnD= n2 ~l-2/~n. 
l*O 

Bn° =- n 2 ~ l-2 /z+nll-n, 
;,eo 

(3.19) 
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DnO = n2 ] (n2- l2) -1 ]z2. 
l*±n 

The roots of the biquadratic equation (3.19) 
represent the answer to the problem. We shall 
consider a number of simple limiting cases, 
which are actually sufficient for understanding the 
behavior of the plasma at resonances of har­
monics of the external frequency. In the strong 
field limit, where the electron excursion in the 
external field is much greater than the wave­
length of the plasma oscillations, the solutions of 
(3.19) can be written 

VI WLe = +1lzi(1- n'l.wo2 I WLe2), 

VI WLe = ±ie'l• = +iwLi I WLe· 

(3.20) 
(3.21) 

It is evident that oscillations are not excited in 
this limit. These formulas correspond to inde­
pendent oscillations of the electrons and ions. 

In the opposite limit, the weak field case, the 
solution can be written by employing an expansion 
in powers of a, the ratio of the electron excur­
sion to the wavelength of the plasma oscillations. 
In this case, when n = 1 

___t__=_1_{-(1- wo2z+e \2 -~ea2+[[( 1- Wo: +eY 
WLe2 8 \ WLe } 2 WLe 

- -~ ea2 J + Sea ( 1 - :::2 + e) r} . 
If the following inequality is satisfied 

(ea2) '!a~J1- wo2 I WLe2 + eJ~ea2, 

(3.22) is simplified, and assumes the form 

(3.22) 

(3.23) 

'\'2 ( ea2 [ wo2 ])';, WLia 2 --= + -- 1---+e = + (WLe 
CiJLe2 - 8 WLe2 2f2 WLe2 

(3.24) 

It then follows that oscillations can be excited, 
1) when WLe2 + wLi2 < wt and 2) when the plus 

· . d . 2 + 2 > w2 s1gn 1s use m wLe wLi o· 
If (3.23) is violated, then (3.22) indicates the 

possibility of two roots, one of which is appreci­
ably greater than the other. The larger root is of 
the form 

(3.25) 

It is evident that this root does not correspond to 
a growing wave. The small roots are given by the 
following: 

2 ;r wo2] l = eaz 2 . 1 + e - --2 for 
WLe2 L WLe 

(3.26) 

1 1-~~+ e\ <.eaz. 
WLc 

(3.27) 

According to the last two expressions, excita­
tion is possible when wLe2 + wL/ > wt. It is 
evident that for a given a2 « 1 the growth rate is 
a maximum when 

1- wo2 I WLe2 + e = (ea2) '''TJ, (3.28) 

where 11 is of order unity. In this case 

V2 I wLi = 1ls(ea2)''•{-Tj2 + (TJ' + 8Tj) 'h}. (3.29) 

In particular, for the plus sign the maximum 
growth rate obtains when 11 = + 1. On the other 
hand, for the minus sign excitation is possible if 
-2 < 11 < ( Ea )2/ 3 and the maximum growth rate 
obtains when 11 = 2- 113 • 

We now turn our attention to the intermediate 
case, in which the electron excursion is compar­
able with the wavelength of the plasma oscillation. 
We assume that Jn, A~, D~ and B~ are of order 
unity. In this case 

(3.30) 

This expression assumes a simple form in sev­
eral limiting cases: 

_r_=-_!__( 1 _n2w02)·2~. (3.31) 
w2 4 w2 I 2 2

1
a 

Le Le for 1 ~ 1- n Wo ~ e 
2 / ( 2 2) 002 ' w~ = 2efn2 1- nw~o Le (3.32) 

Le Le 

(3.33) 

(3.34) 

The highest growth rate is found in the region 

1- (nwoiWLe)2 = (eln2)'1•~. 

In this case 

y I wd = -11s(eln2)''•{~2 + (~" + 32~) 'h}. (3.35) 

For the minus sign the maximum growth rate is 
obtained when ?; = 22/ 3• For the plus sign excita­
tion is possible if -2513 < ?; < 0. 
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The expressions (3.21), (3.26) and (3.32), which 
we have obtained for the vicinity of resonances at 
harmonics of the external frequency, are also 
suitable (as is evident from the conditions for 
their application) at remote distances from the 
resonance point (2.7). This fact indicates the need 
for analyzing the solutions of (3.18) without as­
suming that II- (nw 0/wLe)2 1 is small. Since 
the case of large '}' is actually considered in Sec. 
2, the quantity )' can be regarded as small as 
compared with both the electron-Langmuir fre­
quency and the frequency of the external field. It 
is evident that in this case (3.18) becomes 

[ 1 WLe2 { - n2wo2 \2 y2 J 
-4-- 2 2 1 --2 I +--2 

n Wo \ ()) Le • ()) Le 

whence 
+oo 

y2 { WLe2lz2(a) I 
-~=-e 1- '5', ~ 
WLi z~.._.oo WLc2 - (lwo) 2 J 

=- e{ 1- . JtWLe/Wo l (a)! (a)). 
Sln(ltWLe/wo) wLelwo -w,jwo _f 

(3.36) 

In the strong field limit this expression becomes 
(3.21). When the wavelength of the oscillations is 
comparable with the electron excursion in the 
external field (3.36) yields (3.32). Finally, in the 
weak-field limit (3.26) follows from (3.36). 

It is important to note that if the frequency of 
the external field is appreciably greater than the 
electron Langmuir frequency (3.36) assumes the 
form ·l = -wLi2 [ 1 - J~ (a)], corresponding to 
the spectrum of low-frequency oscillations found 
earlier for the case w0 » wLe·[2J 

The results of this section indicate that far 
from harmonic resonances the possible growth 
rate given by (3.36) is of the order of the ion­
Langmuir frequency if the wavelength of the 
plasma oscillations is comparable with the elec­
tron excursion in the external field. At long 
wavelengths, (3.36) yields 

In other words, oscillations can be excited if the 
frequency of the external field is smaller than the 
electron-Langmuir frequency. In this case the 
growth rate is of the order of the ion-Langmuir 
frequency multiplied by the ratio of the electron 
excursion to the oscillation wavelength. 

Finally, in accordance with considerations 
given above, it is found that a marked increase in 
the growth rates occurs at resonances on har-

monies of the external frequency. In the long­
wave (or weak-field) case, (3.9) indicates that the 
maximum growth rate is of the order of the elec­
tron-Langmuir frequency multiplied by the cube 
root of the electron -ion mass ratio and the ratio 
of the electron excursion to the oscillation wave­
length to the two-thirds power. This same esti­
mate holds for the case in which the electron 
excursion in the external field is comparable with 
the oscillation wavelength. 

4. KINETIC THEORY OF PARAMETRIC 
RESONANCE 

In describing the parametric resonance effect 
above we have used a simple plasma model, 
neglecting the thermal motion of the particles. 
Below we present the basis for a corresponding 
kinetic theory; this analysis can be used to intro­
duce the thermal motion of the plasma particles 
and to delineate the range of applicability of the 
hydrodynamic analysis. 

We use as a basis for the theory of irrotational 
oscillations of a plasma the kinetic equation with 
a self-consistent field and consider small devia­
tions from a spatially uniform particle distribu­
tion fa 0; for a plasma in a uniform high-frequency 
electric field E = E0 sin w0t it is then convenient 
to write the nonequilibrium correction to the 
particle distribution function in the form (cf. [2]) 

{ eaEok } Of.x(P, r, t) = exp ikr +---sin w0t 
mawo2 

+oo 
X evt ~ e-ilwot 1jJa, z { p - ~."' Eo cos wot ) . ( 4.1) 

l:;::_oo \ Wo 

The function if!a,l is described by the following 
equations: 

fJje0 4ne2 1 { 
{y-i(swo-kv)}1jJc,s(P)-ikapkz J dp' 1Jle,s(P') 

+oo 
e; ~ l ' ) +~ .::J r(a)1Jli,s-r(P) r=O, 
e . 

r=-oo 

af-o 4ne 2 \ { 
{y-i(swo-kv)}1JJ;,s(P)-ik 0~ k 2' Jdp' 1jJ;,s(P') 

+oo 
e ~ l ' ) +- .. L.i r(a)1Jle, s+r(P) f.= 0. 

e· 
tr=-oo 

(4.2) 

It is evident that the infinite system of integral 
equations ( 4.2) allows us to obtain for the func­
tions 

Un = e ~ dp 1Jle, n (p), Wn=ei~ dp1Jli,-n(P) (4.3) 

the following system of linear algebraic equa­
tions: 
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Us {1 + 6ee(swo + iy, k)} 

+co 
+ ~ lz+s(a)wz6e.(swo + iy, k) = 0, 

l=-oo 

Ws {1 + 6ei(- sw0 + iy, k)} 

TOO 

+ ~ Jl+s(a)uz6ei(-swo+iy,k)=0. (4.4) 
l=-oo 

Here, 
4nec.2 (' dp 

6ea(w+ty,k)=~ J w+iy-kv 
k O/ao (4.5) 

i)p ' 

while fao (p) can be a Maxwellian distribution. 
We shall be interested in obtaining results 

which apply in the vicinity of resonances of har­
monics of the external frequency (2.7); we are 
also interested in a small parameter me/mi so 
that all the functions Us and w s can be expressed 
approximately in terms of the three functions w0 

and u±n. The kinetic analogs for the hydrodynamic 
expressions (3.8) and (3.9) are of the form 

Wm = -[ 1-1 + bei(- ~(t)o + iy, k) ]{ Unlm+n(a) 

+ u_nlm-n(a) - Wo ~ ]z+m(a)lz(a) 
l*±n 

x[ 1 - 1+6e.(l~o+iy,k) ]}. m=FO, <4 ·6 ) 

Um =- [ 1- 1 + bee(m~o + iy, k) J { wolm -~~ lz+m 
*0 

X [ 1 - 1 + bei( _ ~Wo + iy, k) ][ Unll+n + U-nll-n 

- Wor~n lrlr+l( 1--1-+-be-.-(r-~-o-+_i_y_, k-)-)]}, 

m=;b ±n. (4.7) 

It is evident that (4.6) and (4.7) allow us to ob­
tain by means of (4.4) a system of three equations 
for three functions. The compatibility condition 
for this system of equations, which is the disper­
sion relation we see, becomes (3.18) in the limit 
of zero temperature for the electrons and ions. 

It is evident from (4.4) that the hydrodynamic 
theory of parametric resonance will not apply if 
the wavelength of the oscillations is comparable 
with the Debye radius. The hydrodynamic theory 
is actually limited by another condition. This 
condition is easily seen, for example, from an 
analysis of the spectrum of low-frequency oscil­
lations far from harmonic resonances. For this 
case we obtain the following dispersion equation 

1 +oo 1 J 
1+----= ~ N a 1- . 

68i(iy, k) !=~ ( ) [ 1 + 6f-e(lwo + iy, k) 

(4.8) 

It is obvious that when h' I » kvTe ( VTe is the 
electron thermal velocity) (4.8) yields the hydro­
dynamic result (3.36). Hence, we can write (4.8) 
when y ~ kvTe· Then, under the assumption that 
the Debye radius is small compared with the 
wavelength of the plasma oscillations, we find 

{ 1- J+(iy/h•Te) 
y2 = WLi2 -1 + lo2(a)---_:__ :-:c~:----:­

(krDe)2 + 1- l+(iy/kVTe) 

+ ~ wdN(a)}. 
WL 2 - Z2wo2 ' 

1*0 • 
~ 

J+(~) = ~e-~'12 ~ dt e1'12, 
+ioo 

2 _ xTe 
rDe --4 2 o· ne ne 

(4.9) 

(4.10) 

It is clear that the transition from (4.9) to (3.36) 
requires that the Debye radius rne be small 
compared with the electron excursion in the ex­
ternal field. 

It is easy to see that this same requirement 
leads to (3.36) when lyl « kvTe· Actually, it is 
precisely this requirement that allows us to 
satisfy the inequality I vi » kvTi, which was 
found to be sufficient to obtain (3.36) in an iso­
thermal plasma. Inasmuch as the growth rates 
are larger in the vicinity of a resonance of a 
harmonic of the external frequency then in the 
nonresonance region, under actual conditions the 
applicability of the hydrodynamic analysis is 
generally less stringent. However, in this case 
as well, if the hydrodynamic theory of parametric 
resonance is to apply we require that the Debye 
radius be small compared with the electron ex­
cursion. In the case being considered, in which 
the frequency of the external field is close to the 
electron-Langmuir frequency, it is convenient to 
write this condition in the form 

One of the mechanisms which limits possible 
exponential growth of the amplitudes is heating of 
the plasma, which leads to violation of the in­
equality that has been written and leads to dissi­
pative effects due to thermal motion. In this case, 
considering the nonlinear effects of the oscilla­
tions on the spatially uniform velocity distribution 
function it is evident that this function will have a 
rapidly varying part in addition to the slowly 
varying part 

/a(P, t) = ~ e-ilwot /a,l(P, t). 

For example, for the electron function we find 

( - iswo + ·!__) / •.• ~- f!_Dnm" at •. o at opn opm 
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The function w0 includes the slow dependence on 
time ( ~ e '}'t). It then follows that 

l1(a(-k) )ls-l(a(k)) 
-- 1---------------~------ --
[1 + <'IEe(lwo + iy( -k), -k)][1 +<'lEe( (s -l) roo+ iy(k), k)] 

( . iJ) 1 p2 ·~ ~[lwo+iy(-k)]<'IEe(lwo+iy(-k),-k)lV0 (k)l1 (a(-_k_)_)ls-l(a(k)) 
- -lSWo + ·- J dp-fes =-! dk L..i 
1 iJt 2m' !=-oo[1+<'1ee(lwo+iy(-k),-k)][1+11ee((s-l)roo+iy(k),k)]' 

where 

H'o(k) = (4:rt/k2)wo(k)wu(-k)(2:rt) 3/V 

is the spectral density of the wave energy. In the 
vicinity of a resonance on a harmonic of the ex­
ternal frequency 

I dp p2 !e,s::::::: I dk Wo(k) ~ ( mwo2)3 xTe2"1t. 
j 2m j \ eEo N 

It is then evident that for times greater than 

--ln -- --1 [( eE0 ) 3 E02 
] 

2Ymax mroo2 4:rtxT ' 

the hydrodynamic analysis becomes less appli­
cable, as does the linear approximation. The 
rapidly varying anisotropic electron velocity 
distribution that arises at this point can lead to 
the appearance of new instabilities; these can, in 
turn, lead to further heating of the plasma. 

In conclusion I wish to thank Yu. M. Aliev for 
a number of critical remarks and V. M. Volosov 
for valuable discussions. 
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