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The electromagnetic field in an optically transparent nonmagnetic anisotropic medium is 
quantized, and a solution is obtained for the problem of atomic radiation. Dipole, magnetic 
dipole, and quadrupole radiation are considered. The angular distribution of radiation and the 
total probability of emission per unit time of a quantum with polarization corresponding to 
either the ordinary or extraordinary wave are determined for the particular case of a uniaxial 
crystal. The polarization of radiation from a uniaxial ruby laser is discussed. 

RAniA TION in an anisotropic medium has been 
considered previously in connection with Cerenkov 
radiation (see the review [1]) and with the investi­
gation of electromagnetic phenomena in a magneto­
active plasma. [2] Each study was based on classi­
cal electrodynamics. We present here a procedure 
for solving problems concerning radiation from 
quantum objects. Our formulas will describe par­
ticularly Cerenkov radiation in any optically trans­
parent anisotropic medium taking into account the 
spin and recoil of an emitting particle. 

A quantum theory of radiation in a medium was 
first proposed by Ginzburg [3] and Sokolov [4] in 
connection with an investigation of light emitted by 
an electron moving within an isotropic medium. 
Their phenomenological method of taking the med­
ium into account in quantum electrodynamics will 
be extended to anisotropic media. For this purpose 
we shall quantize the macroscopic electromagnetic 
field within an anisotropic medium in a general 
form that is suitable for application to various 
electrodynamic problems and specifically to atomic 
radiation. 

Atomic radiation in an anisotropic medium is of 
great practical as well as theoretical interest. We 
know that the emission from some luminescent 
crystals is partially polarized, [S] and that the 
emission from some solid state lasers is very 
highly polarized. For example, the light beam from 
a ruby laser is completely polarized when the 
direction of the beam does not coincide with the 
optic axis of the crystal. [SJ A quantum -mechanical 
study of the radiation from impurity atoms in an 
anisotropic medium is therefore required as a 
basis for explaining the foregoing experimental 
observations. 

In connection with emission from an impurity 

atom it is absolutely necessary to take the sur­
rounding medium into account when a large number 
of molecules of the medium are contained within a 
volume equal to about the cube of the emitted wave­
length. Since in this case the wavelengths are much 
greater than the intermolecular spacing the medium 
can be treated macroscopicall~, as is frequently 
done in isotropic cases, [3•4•7- 9 by introducing the 
dielectric constant tensor Eaf3· In the problem of 
radiation from impurity atoms the important nar­
row frequency interval is of the order of the radia­
tion width of the atomic line; therefore Eaf3 can be 
considered constant in this frequency band if the 
medium is not resonant to the atomic radiation. 
The dielectric constant at the frequency of the im­
purity line is taken as the constant value of Eaf3· 
The magnetic permeability of the medium will be 
taken as unity in the interest of simplicity. 

1. QUANTIZATION OF A FREE ELECTROMAG­
NETIC FIELD IN AN ANISOTROPIC MEDIUM 

In the absence of sources and absorption the 
macroscopic electromagnetic field in a nonmagnetic 
anisotropic medium satisfies Maxwell's equations 

rotE = -c-rli:, div H = 0; (1 )* 

rotH = c-1D, div D = 0, (2) 

where Da = Eaf3Ef3. il The electromagnetic poten­
tials will be introduced in the conventional manner 
on the basis of (1), and in view of their nonunique­
ness will be defined in a gauge where the scalar 
potential vanishes identically. The electric field 

*rot= curl. 
!)Repeated indices always denote summation from 1 to 3. 
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E and the magnetic field H then depend only on the 
vector potential A: 

E =-e-tA, H =rotA. (3) 

Let the medium occupy a limited volume V hav­
ing the form of a rectangular parallelepiped of much 
larger linear dimensions than the characteristic 
wavelengths in the present problem. In this case 
the free macroscopic electromagnetic field in the 
medium can be expanded conveniently in running 
plane waves, so that 

A (x, t) = v-'1• ~[a (k, /..; t) cikx +a· (k, /..; t) e-ikX]lk\ 
), 

where the amplitude a(k, A.; t) is time-dependent 
through the factor exp(-iWkA.t), and the direction 
of the unit polarization vector 1kA. as well as the 
dependence of Wk.\ on k, in accordance with (2), is 
determined by solving the algebraic equations 

[c2 (kak~- k26a~) + Wk1.2Ba~]l~k1. = 0. (4) 

When the determinant of (4) is set equal to zero, 
we obtain for each fixed value of k a Fresnel equa­
tion that gives WkA. as a function of k. The solution 
of the homogeneous equations (4) determines two 
independent directions of the polarization vector 
1kA. corresponding to two possible values of WkA. 
with A. =1, 2, It should be noted that in virtue of 
the chosen gauge the polarization vectors in the 
general case satisfy the conditions 

Ba.[lka.ll), = 0, Ba.[ll/"lilk).' = Ba.[ll/"lp,k).fj).).' (5) 

instead of the usual conditions of transversality 
k ·lkA. = 0 and orthogonality 1kA.1kA' = oA.A.' that 
pertain to isotropic media and the vacuum. [to] 

Moreover, the Poynting vector of a monochromatic 
wave is not parallel, as a general rule, to the wave 
vector kin an anisotropic medium. [H] 

When Eaf3 is a real tensor it is convenient to 
write the solution of (4) for the general case in 
the form 

where ykA. is a unit vector perpendicular to k. The 
transverse vector ykA. is easily determined by 
transforming to a coordinate system in which the 
z axis is along k. In this system of coordinates 
rk1 and rk2 are mutually orthogonal and are orien­
ted along the principal axes of the reciprocal two­
dimensional dielectric constant tensor E;~. in 

which the indices a and f3 assume two values corre­
sponding to projections on the x and y axes. [11] By 

means of an inverse coordinate transformation rkA. 
can be obtained in any coordinate system. 

The total field energy is represented as a sum 
of energies belonging to each individual plane wave 
having a wave vector k and polarization }A: 

S~~ (Ba.~EaEs + H2 )dV 

1 "' = 9-2 L.J Wki.2BaBlak).[Bk).a (k, /..; t) a* (k, /..; t). 
~nc H 

(6) 

We can thus introduce the canonical variables QkA. 
and PkA.. where Qk,\ is the generalized coordinate 
and Pk7l. is the generalized momentum: 

Qk.1.= [a(k,/,;t) + a*(k,/..;t)](Ba~Zak 1·lr,k).l4rtc2)'", 

Pk1. = --i(l)ki.[a(k, /..; t)- a*(k, 1.; t)] (BaBZakl.[~kl. I 1rtc2)'1•. 

When the total energy (6) is expressed in terms of 
the generalized coordinates Qk,\ and generalized 
momenta Pk7l. we obtain the Hamiltonian of a macro­
scopic field in an anisotropic medium: 

Hv = ~ 1l2 (Pu2 + wk'-2QI<,2), 

and Maxwell's equations (1) and (2) become Hamil­
ton's equations of motion: 

Qkl. = 8Hv I 8P1<.1. = P1<.1., 
PH = -8Hv I 8Qk1. = -w2k'-Qk1.· 

The field is now quantized conventionally by intro­
ducing the commutation relations 

Qki.Qk'l.'- Qk')'Qk). = [QI<A, Qk').'] = 0, 

[P~<'-• Pk'1.'] = 0, [QH, P~<''-'] = i!UJkk.fJ'-'-'· 

The creation operator ckA. and absorption operator 
CkA. of a quantum with the wave vector k and polar­
ization 1.\ are defined as follows: 

c+k). = -i (Pu + iwk1.Qk,) I (21iwu) 'lz, 

ck.'- = i (Pu- iwuQk,) I (2/iwk'-) 'lz, 

[ck'-• c+k'i.'] = 6kk'61.1.'· 

As a result, the Hamiltonian Hy of a macroscopic 
free electromagnetic field in an anisotropic med­
ium and the vector potential operator A(x) in the 
Schrodinger representation become 

Hy = .2] liwk" (ci:"Ack" + 1/2), 
kA 

(7) 

A (x) = .2] (2n!ic2fwk)..Ca.fJZ/" zfJkAv)'lz (ckAeikx + C~),e-ikx) lk\ 
k). (8) 

where the direction }kA. for a given k and the depen­
dence of WkA. on k are determined by solving the 
algebraic equations (4). 

In quantizing the macroscopic free field in a 
medium no special assumption was made regarding 
the constant tensor Eaf3· Therefore all of the fore-
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going procedure can easily be extended to the case 
of a nonabsorbing gyrotropic medium in which the 
dielectric constant tensor E01f3 is Hermitian: 
E01 {3 = E~01 • Also, a nondispersive medium has thus 
far been assumed for the sake of simplicity. How­
ever, the final equations can also be used for a 
dispersive medium if we remember the conclusion 
reached in several investigations [10•12 •13] that for 
a transparent medium dispersion can be ignored in 
intermediate calculations and a frequency-depen­
dent refractive index can be assumed in the final 
result. This procedure yields the correct result, 
agreeing with that obtained when dispersion is taken 
into account rigorously. 

The interaction Hamiltonian of any quantum sys­
tem with a macroscopic field (8) is based on the 
laws of quantum mechanic$. Thus (7) and (8) enable 
us to solve all problems regarding the interaction 
of an electromagnetic field with quantum objects in 
an optically transparent nonmagnetic anisotropic 
medium, with the possible exception of questions 
(such as radiation corrections) that are associated 
with the covariant formulation of field quantization 
in a medium. 

2. ATOMIC RADIATION IN AN ANISOTROPIC 
MEDIUM 

Let us consider long-wave atomic radiation as 
an example. The Hamiltonian H of the system in 
the Schrodinger representation is 

H = Ho + Hv + H'; (9) 

Ho = \ ¢+(x) [__t+ U(x) ]¢(x)dV, (9') 
~ 2m 

H' = - 2~c ~ '\j.1+(x) (pA + Ap + 2s rot A)¢ (x) dV, (9 ") 

where Ho and Hy are the Hamiltonians of an impur­
ity atom and of the macroscopic free field (7), 
respectively, and H' is the interaction operator of 
the given quantum-mechanical systems. U(x) is 
the external unquantized potential field in which an 
atomic electron moves with chargee, mass m, and 
spin s. This potential field includes the self-consis­
tent field of the impurity atom and the potential 
field of the medium (such as a crystalline lattice). 
Because of the chosen gauge the momentum opera­
tor p of the electron does not commute with A. In 
(9 ") the quadratic term in the vector potential ( 8) 
has been dropped, because it makes no contribution 
in the present problem. The operators of the elec­
tronic field are written as a superposition of terms 
pertaining to stationary states of the impurity atom, 
characterized by a complete set of quantum num­
hers nand energies S'n: 

¢(x)= ~cn¢n(x), ¢+(x)= ~cn+¢n+(x), 
n n 

[p2 l2m + U(x)]¢n(x) = tWn¢n{x). 

Here c~ and cn are the creation and annihilation 
operators of an electron in the n-th atomic state: 

The temporal evolution of the system is des­
cribed by an S matrix, which is formulated ac­
cording to familiar methods of quantum electro­
dynamics. [14] In the interaction representation 
the S matrix element describing an atomic tran­
sition from an excited state n2, tWn2 to a lower 
state nt> tWn1 accompanied by the simultaneous 
emission of a quantum with the wave vector k and 
polarization 1k, is written 

Sk?..n 1; on,= {2:n: I liwk?..Eaplakhlak"'V) '/, 

(10) 

Here M 12 is the matrix element of the atomic tran­
sition (n2, tWn2 - nt> «ll'n1): 

Ma12 = w21da + c[~-tk]a.- iw21Qa.pkp I 2, 

where d, f..L, and Q 01{3 are, respectively, the matrix 
elements of the dipole, magnetic-dipole, and quad­
rupole moments of the atom, and w21 
= ( «ll' n2 - «ll'n1 )/n · 

We note that, unlike the case of radiation in an 
isotropic medium, the trace of the tensor Q 01{3 

representing the atomic quadrupole moment, 

Qa.a = ~ ¢n,+(x)xa.xa¢n,(x)dV 

does not vanish. This is associated with the fact 
that in an anisotropic medium divA ~ 0; this 
follows from (4) and (5). 

We can in principle replace Qa{3 by a different 
tensor for the atomic quadrupole moment: 

Qa.a' = ~ 'i'n,+(x) (3xa.xa- 3.:z:2ea:p ) ¢n,(x)dV, 
Eyy 

which in an isotropic medium assumes a canonical 
form [15] with zero trace. There is no accompany­
ing change of the matrix element (10), in accord­
ance with (5). However, the tensor Q~{3 contains 
E 01f3. which is a material property of the medium, 
so that it is introduced somewhat artificially, es­
pecially for a highly rarefied medium in which 
neighboring molecules do not influence the motion 
of impurity-atom electrons, and the emitted wave­
length is, as previously, larger than the intermole­
cular spacing. Therefore we shall hereafter take 
Q 01{3 to be the quadrupole moment tensor of an im­
purity atom. 

Equation (10) leads to the unusual conclusion 



1124 A. I. ALEKSEEV and Yu. P. NIKITIN 

that the quadrupole transition 0 - 0 is allowed in an 
anisotropic medium. The probability of this tran­
sition is, of course, reduced by the additional fac­
tor 

which is, as a rule, considerably smaller than 
unity (see below) and vanishes in an isotropic med­
ium. The possibility of the quadrupole transition 
0 - 0 results from the fact that a quantum of a 
macroscopic electromagnetic field in an aniso­
tropic medium can exist in a state with zero total 
moment, unlike the case of an isotropic medium 
or vacuum. The existence of the 0 - 0 transition 
indicates that the long-wave emission from an im­
purity atom is accompanied by a macroscopic 
quantum. More exactly, the impurity atom inter­
acts with the zero-point vibrations of the macro­
scopic field and macroscopic emission occurs even 
in the virtual quantum stage preceding real emis­
sion. In other words, the long-wave radiation from 
an impurity atom is macroscopic even before the 
emitted field has reached the wave zone. 

utilizing (10), we obtain the probability dWkA. 
that in unit time a quantum with the wave vector k 
and polarization 1kA. is emitted within the solid 
angle dO by an atom located in an optically trans­
parent nonmagnetic anisotropic medium: 

jik1. Mtzl 2k3 dQ 
dWu=-

2nnwzt2ea~ laki.Z~kl. 
(11) 

where the numerical value of k is obtained in terms 
of w21 from the energy conservation law 
WkA_(k; k/k) = w21· 

Let us consider the angular distribution of 
atomic radiation. We shall assume for simplicity 
that the initial and final atomic states are unpolar­
ized; therefore all spatial polarizations of the 
complex vectors d and J.L and of the Qa{3 axes are 
equally probable. Then, averaging the radiation 
probability (11) over all directions of d and J.L and 
of the axes of Qa{3• for the general case in an 
anisotropic medium we obtain 

dWk1. = [w212jdl2 + c2(k2 _ (kJk1.)2) l!-tlz 

+ Wzt2 (k2 + 2(klk'")2) IQaBI 2 /20]k 3dQ 

X [ 6:rtllWzt2Ba~la kf.Z~kf.] -I. 

3. UNIAXIAL CRYSTALS 

We shall now apply the derived relations to 
atomic radiation in a uniaxial crystal having its 
optic axis parallel to the z axis. Then, E11 = E22 

(12) 

= q and E33 = EJJ. The solution of (4) for a given 
k yields two values of the polarization vector 1kA.. 
for the ordinary wave (A. = 1) in the crystal we have 

11' 1 = [isk] I k sine, (13)* 

and for the extraordinary wave (A. = 2) we have 

Jk:l = ( [[i3k]k] -1- k_ ( e11 -_ e.L) sin 8 cos 8 ) 
k2 sin 8 k e.1. + ( e11 - e.1.) cos2 8 

e.1. + ( e11 - e.L) cos2 8 X ____ , _____ ----
[e.Lz + (ellz- ~'.!. 2)cos2 8]'/, 

X Wkz2 = c2 [(kt2 + kz2)e.L + k32e11J I ~'IIB.L, (14) 

where e is the angle between k and the unit vector 
i 3 of the z axis which is along the optic axis. The 
foregoing formulas show that the electric vector 
of the ordinary wave emitted by impurity atoms is 
always perpendicular to the optic axis and to the 
direction of wave propagation, whereas the electric 
vector of the extraordinary wave always lies in the 
plane defined by the optic axis and k. When the 
direction of k coincides with the optic axis, the 
difference between the ordinary and extraordinary 
waves disappears, the aforementioned orientation 
of the electric vector is completely disrupted, and 
waves propagating in the direction of the optic axis 
are depolarized. The polarization vectors (13) and 
(14) are mutually orthogonal and satisfy (5). 

The multiplication of the tensor Eaf3 by the 
polarization vectors in a uniaxial crystal yields 
the following result for the ordinary wave (A. = 1): 

t'a~Zaki[B kt = 1:\_L 

and for the extraordinary wave (A.= 2): 

As a result, the total probability (integrated 
over the angles of k) that a quantum is emitted in 
unit time with the polarization 1k1 corresponding 
to an ordinary wave will coincide with the proba­
bility that a quantum is emitted with a fixed polar­
ization in an isotropic medium having the dielectric 
constant El· At the same time, the probability that 
in unit time a quantum is emitted with the polar­
ization 1k2 corresponding to an extraordinary wave 
is (with W2d for dipole, W2J.L for magnetic-dipole, 
and W2Q for quadrupole radiation) 

Wzd = Wa0 (eu + 2e.L) I 6e_L'h, Wzll = Wl!0eue.L'/, I 2, 

W 2Q = W Qo (Ze112 + BJIB.L + 2e.L2) I 10e.L'Iz, 

where Wd, W~ , and WQ are the total probabilities 

of dipole, magnetic-dipole, and quadrupole radia­
tion, respectively, per unit time, of quanta having 
both polarizations in a vacuum: 

Wd0 = 4Wzt3 ldl 2/ 3nc3, JiVIlO = 4lllz13 I~J-I 2 /3fic3 , 

W Qo = Wzt5 l QaB 12 I 15nc5• 

* [i ,k] "' i 3 X k. 
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Here the numerical coefficient preceding 1Qajjl2 

differs from the customary coefficient because the 
tensor Qajj of the atomic quadrupole moment has 
not been reduced to a canonical form with a vanish­
ing trace. 

The total probabilities Wd (dipole), W f.L (mag­
netic-dipole), and WQ (quadrupole) of radiation per 
unit time of quanta having both polarizations in an 
anisotropic medium are, from (11 ), 

wd = Wd0 (eu + 5e.L) /6e_L'I•, wll = Wll0 (eu + e.L)e.L'f, I 2, 

W Q = W Q0 {2eu2 + eue.L + 7e.L2) I 10e.L'h. 

One or more of the quantities wd_, W~, and WQ may 
vanish because of the selection rules. 

The application of (12) to atomic radiation in a 
uniaxial crystal shows that quanta with the polar­
ization 1k1 have the same angular distribution as in 
an isotropic medium. However, the angular distri­
bution of quanta with the polarization 1k2 corre­
sponding to an extraordinary wave has the compli­
cated form 

where dW2d, dW2 f.L• and dW2Q are the respective 
probabilities of dipole, magnetic-dipole, and quad­
rupole emission of a quantum with the wave vector 
k and polarization 1k2 in a solid angle dQ. 

Equations (15)-(17) show that anisotropy of the 
extraordinary wave in a uniaxial crystal exists 
even when the orientations of d, JJ., and the axes of 
Qajj are not specified, so that (15)-(17) are aver­
aged over all these directions. We also emphasize 
that the angular distribution of radiation is correct 
everywhere only for the given anisotropic medium. 
Upon emerging from this medium the rays will be 
refracted in accordance with the laws of geometric 
optics; this refraction can be determined easily 
for any given direction. 

If, in accordance with external conditions, d, JJ., 
and the axes of the impurity-atom quadrupole 
moment Qajj have definite orientations with res­
pect to the optic axis of the crystal, both the inten­
sities and angular distributions of the ordinary and 
extraordinary waves will be strongly dependent on 
the orientations of d, JJ., and the axes of Qajj. 
Indeed, if the selection rules permit only dipole 

radiation and this should be emitted with no change 
(.t.m = 0) in the projection m of the total atomic 
mechanical moment, then d could be assumed to be 
real (here m is the projection of the moment in 
some chosen direction). 

Let us assume that d forms the angle 0d with 
the optic axis and that all azimuthal angles are 
equally probable, thus permitting us to average 
over the latter. Then, in accordance with (11), for 
the ordinary wave the probability per unit time that 
a quantum is emitted within the solid angle dQ 
= 27!" sin e de is 

(18) 

while the angular dependence for the extraordinary 
wave is much more complicated in general. How­
ever, if we assume ( E 11 - E1 )2/ El « 1 and drop 
terms of the order (E 11 - E1 )2/ Ej_, then in the case 
of the extraordinary wave we obtain 

dW2d = 3Wd0e.L'i•(sin2 sd cos2 8 + 2 cos2 sd sin2 S)dQ I 16n. 

(19) 

The total probability of dipole radiation, W1d 
for the ordinary wave and W2d for the extraordinary 
wave, depends strongly on the angle between d and 
the optic axis: 

Wtd = 3/4Wd0e.L'I• sin2 Sd, 

W2d= 1/4Wd0e.L'I•( 1+ 3cos2 8d). 

(20) 

(21) 

Specifically, at small values of 0d the intensity of 
the ordinary dipole wave is considerably reduced 
compared with the extraordinary wave. Therefore 
the dipole emission is partially polarized in this 
case. This is one reason for the experimental ob­
servation of polarized light from some luminescent 
crystals. 

For magnetic-dipole radiation the substitutions 
d- 1J. and E1/ 2 - E312 in (18)-(21) along with an 
exchange of the indices for the ordinary and extra­
ordinary waves are required. The character of the 
polarization is then the opposite of the dipole case. 

It is easy to derive the explicit dependences of 
atomic radiation intensity and angular distribution 
on the orientations of d, J.l., and the axes of Qajj in 
all other cases. By investigating the angular dis­
tribution and polarization we can arrive at definite 
conclusions concerning the character of optical 
atomic transitions and the orientations of matrix 
elements ford, JJ., and Qajj transitions in the case 
of an impurity atom within an anisotropic medium. 
This investigation of radiation from impurity atoms 
can also obtain additional information regarding 
the dielectric properties of crystals, particularly 
the dielectric constant in specified directions. 
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4. DISCUSSION OF THE POLARIZATION OF RUBY 
RADIATION 

It has been found experimentally [6] that the R1 

line of ruby fluorescence consists of two compon­
ents, corresponding to the ordinary and extra­
ordinary waves of the crystal; the latter is rela­
tively weak, so that the radiation is partially 
polarized as a whole. When a ruby is used as the 
working material of a laser, the R1 line is genera­
ted under certain specific conditions. The electric 
vector of the generated light beam is perpendicular 
to the optic axis of the ruby crystal and to the 
direction of the beam. The beam is completely 
depolarized if its direction coincides with the optic 
axis. [6] According to (3), (8), (13), and (14), this 
indicates that a uniaxial ruby laser emits only the 
ordinary wave. The evident explanation is that the 
wave vector of standing waves in the cavity resona­
tor is perpendicular to the two parallel reflecting 
mirrors. However, the direction of energy flow in 
the extraordinary wave does not coincide with the 
direction of the wave vector; therefore some angle 
is formed with the cavity axis that is perpendicular 
to the two mirrors. Consequently, extraordinary 
wave quanta moving at some angle to the cavity 
axis must escape through the sides of the latter 
following a few reflections from the parallel mir­
rors. On the other hand, the energy flow vector of 
the ordinary wave coincides with the wave vector 
and is therefore perpendicular to the two cavity 
mirrors. Successive reflections of the ordinary 
wave from these parallel mirrors do not disrupt 
the parallelism between the wave vector and the 
cavity axis; therefore ordinary wave quanta are 
confined within the volume between the mirrors. 
Thus the cavity has a higher Q for the electromag­
netic oscillations of the ordinary wave and an in­
duced coherent process is set up for the ordinary 
wave, which suffers considerably smaller energy 
loss. 

The Poynting vector Sofa monochromatic extra­
ordinary wave is, according to (14), proportional 
to a vector given by 

(22) 

where e is the angle between k and the unit vector 
i3 along the z axis, which is oriented along the optic 
axis of a uniaxial crystal. This equation is used to 
determine the tangent of the angle es between s 
and k: 

tan e. = ( 811- 8j_) cos 8 sin u 
Bj_ +(ell- 8j_) cos2 8 · 

(23) 

If the wave vector k of the monochromatic extra-

ordinary wave coincides with the cavity axis, then 
in each specific case (23) enables the calculation of 
the energy loss resulting from the escape of the 
extraordinary wave through the sides of the cavity 
following reflections from the parallel mirrors. 

The authors are indebted to V. M. Galitskil for 
critical comments that led to the refinement of 
certain conclusions, and to V. I. Kogan and M. I. 
Ryazanov for discussions of the results. 
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