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We investigate the excitation of low-frequency electromagnetic waves in a weakly ionized 
electron-ion plasma and electron-hole solid-state plasma in the presence of an external 
electric field. By solving the kinetic equation with the collision integral obtained by 
Davydov[ta], we derive an expression for the dielectric tensor of the plasma medium. A 
detailed analysis is presented of the dispersion equation for small oscillations. We show 
that longitudinal oscillations are excited in a plasma only at electron drift velocities ex­
ceeding the phase velocity of the wave along the drift. The buildup of oscillations is connec­
ted in this case with a change in the sign of the high-frequency conductivity of the plasma 
under the conditions of the anomalous Doppler effect. The transverse electromagnetic waves, 
on the other hand, are excited practically at arbitrarily small electron-drift velocities, i.e., 
for arbitrarily small currents in the plasma. In an electron-hole solid-state plasma, under 
the conditions considered below, only transverse oscillations can build up. The frequencies 
and the growth increments of the oscillations are obtained and the conditions under which their 
buildup takes place are indicated. 

1. INTRODUCTION between the electrons and the lattice, while the con­
ductivity of the collisionless plasma is due to the 
Cerenkov mechanism of absorption of waves by the 

THE recent literature includes many theoretical plasma electrons. An essentially similar mechan-
and experimental papers devoted to the buildup of ism of sound buildup in a nonpiezoelectric crystal 
low-frequency sound oscillations in a solid state is discussed also by Konstantinov et al. [2], who as-
plasma under the influence of an external electric sume that the coupling between the lattice vibrations 
field. The strongest buildup of ultrasound occurs in and the conduction electrons is via the contact po-
piezoelectric semiconductors [t]. In nonpiezoelec- tential difference produced on the p-n junction 
tric crystals the effect of sound buildup is much less boundary. 
pronounced [ 2] • Therefore principal attention is In most of the cited theoretical papers [ 2- 5], only 
paid in the theoretical papers (see[a-s]) to the buildup longitudinal oscillations of the electromagnetic field 
of sound in piezoelectric crystals. are considered. Such a limitation, however, is rigor-

In such crystals, in the absence of an electric ously valid only for isotropic media and for crystals 
field, the attenuation of the sound or lattice vibra- with cubic symmetry. PustovortCsJ dispenses with 
tions is due to the conduction electrons. In the pres- this limitation and does not assume that the elec­
ence of an external electric field, the high-frequency tromagnetic field in the crystal is potential. In cal­
electron conductivity of the crystal can reverse sign culating the electric conductivity of the crystal, 
and become negative if the electron-drift velocity however, he neglects the magnetic field of the wave, 
exceeds the phase velocity of the wave, i.e., the and obtains quantitatively incorrect results. The 
velocity of sound. As a result, the sound builds up point is that it is incorrect to neglect the magnetic 
instead of attenuating. Such a buildup of sound os- field in the frequency region of the anomalous 
cillations in a crystal is analogous to the kinetic Doppler effect, which is of greatest interest and in 
buildup of ion sound in a collisionless nonisothermal which the electron-drift velocity exceeds the phase 
plasma with current if all the electrons move rela- velocity of the wave along the drift and the conduc-
tive to the ions [ 7J. The only difference is that the tivity-tensor components reverse sign. Thus Pus to-
conductivity of the crystal is due to the collisions volt's formulas[s] likewise apply only to potential 

1113 
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field oscillations in a plasma. 1l 

We shall show below that allowance for the mag­
netic field of the wave does not change the deduction 
that oscillations can build up when the waves propa­
gate at an acute angle to the drift direction if the 
drift velocity of the electrons exceeds the phase 
velocity of the wave. This is the result of the fact 
that such waves are practically longitudinal. Such a 
statement is no longer true for the waves propagat­
ing at a large angle to the drift direction. We shall 
show below that such waves can build up in practice 
at arbitrarily small directional velocities of the 
carrier drift in a solid-state electron-hole plasma 
even if the lattice vibrations are completely neglec­
ted. The buildup of the oscillations occurs in the 
region of frequencies of the normal Doppler effect 
(i.e., the carrier drift velocities are smaller than 
the phase velocity of the wave along the drift), and 
is not connected with the change in the sign of the 
plasma conductivity. Such a buildup is analogous 
to that occurring at normal Doppler-effect frequen­
cies in a collisionless current-carrying plasma [S], 

and is due to the plasma anisotropy caused by the 
relative drift of the carriers in the electric field. 

In Sec. 4 of this paper, unlike in earlier 
papers [ 2-s] in which principal attention was paid to 
the buildup of sound oscillations of the lattice, we 
consider arbitrary low-frequency oscillations of an 
electron-hole solid state plasma in an external elec­
tric field, neglecting the lattice vibrations com­
pletely. An analogous formulation of the problem 
is contained in the paper of Pines and Schrieffer[ 9], 

who investigated high-frequency longitudinal oscil­
lations of an electron-hole plasma in an electric 
field (with oscillation frequencies considerably ex­
ceeding the frequencies of the collisions between 
the carriers and the lattice) neglecting the sound 
oscillations of the lattice. The theory developed 
in [ 9] does not differ at all from the theory of os­
cillations of a collisionless plasma with current 
(seeC 7J). Moreover, it seems to us that the buildup 
of such high-frequency oscillations in a real crys­
tal, where the carrier collision frequencies are on 
the order of 10 11-10 13 sec-1, it is quite doubtful. As 
to the work of Pustovolt[s], who, in particular, con­
sidered also low frequency oscillations of an elec­
tron-hole plasma in an external electric field, his 
main deduction, namely that oscillations cannot 
build up in such a plasma, holds true only for longi­
tudinal oscillations, this being the consequence of 
the already indicated neglect of the magnetic field 
of the wave. 

1 lThis means that in all formulas of this paper we must put 

ky = kz = 0. 

Finally, we note that low-frequency oscillations 
of an electron-hole plasma in an external electric 
field should be similar to oscillations of a weakly­
ionized electron-ion plasma if the collisions between 
the charged particles can be neglected. The longi­
tudinal oscillations of a field in such a plasma were 
investigated by several workers[ 10- 12]. Akhiezer 
and Sitenko[ 1o] and Stepanov and Tkalich[tt] neglec­
ted the ion motion completely. As expected, the 
vibrations of a purely electronic plasma were 
damped in this case. Liperovskil [ 12] took into 
account the ion motion and indicated that such 
plasma oscillations can build up. However, a 
numerical solution of the dispersion equation for 
the oscillations, undertaken in[ 12], could not dis­
close the physical mechanism whereby the oscilla­
tions build up and did not yield an instability cri­
terion. 

As far as we know, general non-potential oscilla­
tions of a weakly-ionized plasma in an external 
electric field have not been investigated before. 
We therefore examine separately in Sec. 3 the spec­
trum of arbitrary low-frequency oscillations of a 
weakly-ionized electron-ion plasma. Unlike elec­
tron-hole plasma, in an electron-ion plasma the 
mass of the ions (positive carriers) is of the order 
of the mass of the neutral particles, and this leads 
the oscillations of such a plasma to differ apprec­
iably from those of a solid-state plasma. The main 
difference is that low-frequency longitudinal oscil­
lations can build up in a weakly-ionized electron­
ion plasma, in the approximation considered, as 
will be shown below, whereas in a solid state plasma 
such oscillations are always damped. 

2. ELECTRON CONDUCTIVITY AND DIELECTRIC 
CONSTANT OF A PLASMA IN AN EXTERNAL 
FIELD 

To investigate small oscillations of a plasma 
medium, we start, as usual, from the dispersion 
equation 

lk21lii- kiki- w2c-2e;i(w, k) I= 0, (1) 

where Eij(w ,k) is the complex dielectric constant 
of the medium. In a weakly-ionized plasma, as in 
an electron-hole solid-state plasma, under condi­
tions when the collisions of the charged particles 
with one another can be neglected, the dielectric 
constant is an additive function of the densities of 
the different species of particles. This means that 
the tensor E ij (w ,k) can be represented in the form 

Eij((J), k) =.e;/0l(w, k) + 4:rti(J)-1a;/el((J), k), (2) 

where u ~~) (w ,k) is the electron conductivity of the 
lJ 
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plasma (i.e., the conductivity due to the negative 
carriers), and <f (w ,k) is the contribution made to 

the dielectric constant of the plasma by the remain­
ing species of particles (ions, or positive carriers 
and neutral particles). Concrete expressions for 
E~~l(w ,k) are given in the next two sections. In the 

lJ 
present section, we obtain only an expression for 
the electron conductivity of the plasma. 

Following Davydov[ 13] (see alsoC 14J), we expand 
the electron distribution function in a series of 
Legendre polynomials, confining ourselves to the 
first two terms of the expansion: 

v 
f(v) = fo(v) + -- ft(v). 

v 
(3) 

(The conditions for the applicability of such an ex­
pansion will be indicated below.) As a result, the 
kinetic equation for the electrons reduces to a sys­
tem of two equations[t3,i4]: 

ato v . e a 
- +-- d1v f1 + ---(v2Ef1) + 80 {!0) = 0, at 3 3mv2 av 

aft e ato 
-+vgrad fo+-E-ot r m av 

e 
+-[Bft] + v(v)ft = 0, 

me 
(4)* 

where S0(f0) and v(v)f1 are the zeroth and first 
moments of the complete integral for the collisions 
between electrons and neutral particles: 

So (to) = ~ I dQ S 
4n J 

=- _i __ !__{ v26v( !_ ofo + vfo)}, 
2v2 av m av 

St=v(z,•)ft=~l dQScos'l't 
4n J 

(5) 

(6 = 2m/M-ratio of the electron mass to the neu­
tral-particle mass 2), v(v) the frequency of the 
collisions between the electron and the neutral 
particle, and T the temperature of the neutral par­
ticles). 

For a spatially homogeneous and stationary 
equilibrium state of the plasma, with equilibrium 
fields EQ. and B 0, we obtain from ( 4) the following 
solution L 14J: 

joo =A exp{- r mv dv [ T + ~e22E02 ]-!}, 
~ 3mi'J v + Q2) 

fto = -voofoo I av, (6) 

*[Br,] , B x r,. 

2 )The letter M will henceforth denote also the mass of the 
ions in a weakly-ionized plasma, assuming for simplicity that 

where Q = eB0/mc is the Larmor frequency of the 
electrons, 

Vo = _:_ __ 1_{Eo+E._ [ [EoBol+ Q Bo(BoEo) ]} (7) 
mv 1 + Q2/v2 v Bo v Bo2 

is the drift velocity of the electrons in fields E0 and 
B0, and A is a normalizing multiplier determined 
from the normalization condition 

~ dpfoo =No 

(N 0 is the electron density). 

(8) 

It follows from (6) that the plasma electrons be­
come heated in an electric field, and a stationary 
temperature is established, the order of magnitude 
of which is 

where v is some effective electron collision fre­
quency. As shown by Ginzburg and Gurevich [!4 J, 
the electron temperature of a weakly-ionized plasma 
in a sufficiently strong electric field can greatly 
exceed the neutral-particle temperature. On the 
other hand, the ion temperature remains of the same 
order as the neutral-particle temperature, i.e., 
Ti ~ T butTe » T. For such a strongly heated 
plasma state, the solutions (6) hold true for all 
values of the field E0, since the main condition for 
the applicability of the approximate solution, viz., 
smallness of the directed electron drift velocity v0 

compared with their thermal velocity VTe 
= (Te/m1 112 , is always satisfied because of the 
small mass ratio 6 « 1. 

We now consider a small deviation of the plasma 
from the equilibrium state, induced by alternating 
fields E and B. In accordance with (3), we repre­
sent the non-equilibrium addition to the distribution 
function (6) in the form 

v 
ilf=cpo(v)+viJlt(v). (10) 

Linearizing the systems (4) and assuming that all 
the non-equilibrium quantities depend on the time 
and on the coordinates like exp(-iwt + i), we obtain 

. . v e iJ 
-~wcpo + '3k«pt + 3mv2 ov (v2Eo«pt) 

e a 
+ So(cpo) =---- (v2Efto) 

3mv2 ov ' 
(11) 

. +"k+eEocpo e[ -~Wipt W (jlo - o -- + -- Bo«pt] 
m av me 

e afoo 
+v«p1 = --E1--· 

m av' 

{( kvo) k·vo·) 
Eu = y;;E; = 1---;-- il;; + 7 fE;. (12) 

this mass coincides with the mass of the neutral particle. In the derivation of the system (11) we took Max-
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well's equations into account. 
Equations (11) go over into the system investi­

gated by Pustovolt [6] if we substitute Yij - Oij, 
which is equivalent to neglecting the magnetic field 
of the wave and, strictly speaking, is valid only for 
potential oscillations of the field, when E 1 = E 
= -V'<I>. 

Determining the function cpf(v) from the second 
equation of (11) and substituting oo in the formula 
for the density of the current induced in the plasma 
by the electrons, we obtain after simple transforma­
tions 

j = e ) dp vbf = ; ~ dp V((Jt 

ieZ(w+iv) { (' (' 
= m[(w + iv) 2 _ QZ] Et.) dp foo +Eo .l dp !po 

im ~ iQ [ [EtBo] ~ --k dp vz~po + --.- --- dp foo 
3e w + £V Bo 

+ [EoBol \ dp !po - ..!:!!!:.__, [kBo] l' dp v2cpo l 
Bo .l 3e Bo .l 

Q 2 Bo [ EtBo ~ EoBo ~ d ----. --- -- dpfoo+ -- pcpo 
(w + £V) 2 Bo Bo Bo 

- im kBo \ dp v2cpol} . 
3e B0 .l (13) 

Here and throughout we neglect for simplicity the 
velocity dependence of the electron collision fre­
quency. An account of this dependence greatly 
complicates the calculations but, as shown in [6], 

does not affect the results essentially. We there­
fore assume below that v = v(Te) = const. 

Relation (13) connects the electron current den­
sity with the unknown function cp 0, which in turn is 
determined by the solution of the system (11 ). In our 
case of weak spatial dispersion, when expansion (10) 

is valid, there is no need for an exact solution of 
this system. The expansion (10) is valid if lw + iv I 
» kvTe or kv0• If, in addition, the following inequal­
ity is satisfied [6] 

lw- kvol ~ (kVTe)Z I v, 

then the terms containing the integral 

) dp vzcpo ,..._. VT2 ~ dp !po, 

(14) 

can be neglected in Eq. (13) 3'. Using further the 
continuity equation 

3 lAn analysis of the opposite limit, under conditions of 
weak spatial dispersion, seems unjustified to us. A published 
investigation of such a limit[•] contains an unfortunate arith­
metic error that leads to incorrect deductions. 

ew ~ dpcpo = kj, (15) 

we obtain from (13) the density of the electron cur­
rent induced in the plasma, and an expression for 
the electron conductivity: 

j; = a;l•lEi; 

cr··<•l= ie2N0 (w+iv) {~· + ie(w+iv) 
'l m [ ( w + iv) 2 - QZ] '" mw [ ( w + iv) 2 - Q2] 

( ie ( w + iv) k"~"vEov )-! } 
X 1- mw[(w+iv)2-Q2] ~isEoskv~"" Ylli• (16) 

iQ [ Bov iQ Bo;Boj J 
~;/'"'=b;j+--+. eijv-B +-+. -B2 • 

(J) !V 0 (J) !V 0 
(17) 

Here eij vis a unit completely antisymmetrical ten­
sor of third rank. 

Expression (16) becomes much simpler in the 
low-frequency limit, when w « v. Indeed, accord­
ing to (7) 

Vo; = ev P. · ·<0lE · ( 17') 
m(vZ+QZ) 1-''J OJ, 

where {3.<~l is the limit of the tensor f3iJ. when 
lJ 

w « v. Taking this into account, we can rewrite 
(16) in the form 

Vo;ki 
Uij = b;j + k . 

w- vo 
(19) 

To conclude this section we present for com­
parison an expression for the electron conductivity 
of a weakly ionized plasma, obtained from the equa­
tion of hydrodynamics for cold electrons 

fJv e { 1 } - -+(vV)v=- E+-[vB] -vv, ot m c 

on I at + div nv = 0. (20) 

By determining the stationary equilibrium state of 
the plasma in external fields E0 and B0, and then 
using the usual linearization procedure, we can ob­
tain from (20) the following hydrodynamic expression 
for the electron conductivity of the plasma: 

ie2No(w- kvo + iv) 
rJ;j= m[(w-kvo+iv) 2 -Q2]aiJ.L~J.L"(w-kvo)Yvi, (21) 

where the quantities v0, aij• f3ij• and Yij were de­
fined above. 

It follows from a comparison of formulas (16), 
(18), and (21) that the results of the kinetic and 
hydrodynamic approaches coincide if: (a) we assume 
that lw + iv I » k · v0 in the hydrodynamic expression 
(21), and (b) if we put in the kinetic expression (16) 
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w « v (in addition, naturally, we assume that in­
equalities (14) are satisfied). Taking this circum­
stance into account, we investigate below the plasma 
oscillation spectra when both conditions are satis­
fied, i.e., in the overlapping region of validity of 
both the kinetic and hydrodynamic approaches, when 
expression (18) is applicable. 

3. SPECTRUM OF OSCILLATIONS OF AN ELEC­
TRON-ION PLASMA IN AN EXTERNAL ELEC­
TRIC FIELD IN THE ABSENCE OF A MAGNETIC 
FIELD 

The electromagnetic oscillations of a spatially 
homogeneous electron -ion plasma in an external 
constant electric field, under conditions when the 
particle collisions can be neglected, were investi­
gated in detail by several workers [T,l5]. We con­
sider here plasma oscillations in the opposite 
limiting case, when the particle collisions play the 
decisive role. Namely, we analyze with the aid of 
the formulas derived in the preceding section the 
oscillations of a weakly-ionized electron-ion plasma 
in the frequency region w « "e in the absence of 
an external magnetic field. The latter denotes that 
we assume that "e » ne (the subscripts denote the 
particles to which the particular quantities pertain). 

For the ion contribution to the dielectric constant 
of the plasma, we make use of a hydrodynamic ex­
pression of the type (21 ), neglecting completely the 
ion drift in the electric field 4 >. The dielectric 
constant of the plasma can then be written in the 
form 

(22) 

where v0 = eE0/mve. Substituting this expression 
into the dispersion equation (1), we obtain two equa­
tions: 

kZ _ ro2 ( 1 _ WLi2 + iWLe2(w- kvo) ) = 0 
c2 ro(ro+ivi) roZve ' (23) 

[ kZ-(J):( 1 - WLi~ +iWLe2 (~-kVo)l] 
c ro(w+wi) .rove 1 

X ( 1 - OlLiz + i WLez l 
w(w+h•i) 'Ve(w-kvo) J 

k.L2Vo2 WL 2WL ·2 
+i--- e ' =0 

c2 rove(ro + ivi) (w- kvo) ' 

the first of which describes purely transverse 

4 >we note that such a neglect is valid for a weakly ionized 
plasma when mve(T e) « Mvi(T), i.e., T efT « M/m. 

plasma oscillations, which attenuate in time. The 
second equation, on the other hand, describing the 
oscillations of the electric field in the (E0, k) plane, 
admits also of unstable solutions. Thus, in the fre­
quency region "i « w « k · v0 we get from this 
equation 

X 1-i--6 k2c2 + OJLi2 + i--e- . ( 
WL 2 )-1( OlL Z kv )-1 

'Vekvo Ve • 
(24) 

For waves propagating at an acute angle to the 
field E0, i.e., when kf1 » k~, this expression sim­
plifies to 

w2= WLi2 (1+i OlLe2) (25) 
1 + WLe4/ve2 (kvo)2 VekVo I • 

We see therefore that the oscillations in question 
always increase with increasing time, and in the 
long-wave region, w~e » vek · v0, the instability 

of the plasma is aperiodic: 

( mvekvo)''• 
w=±(1+i) ~ . (26) 

On the other hand, in the region of short waves, 
wi_e « vek · v0, periodic oscillations build up with 

a small growth increment: 

(27) 

The maximum increment corresponds to oscilla­
tions with wavelength vek · v0 = wie• and is equal to 

'Ymax = 1/2wLi ( 1 + l'2) '/• ~ 0.8roLi. 

The buildup of these oscillations is due to the 
change of the sign of the imaginary part of the longi­
tudinal dielectric constant of the plasma in the 
region of the anomalous Doppler-effect frequencies, 
w < k · v0, owing to the electron drift (when ki1 

» k~ these oscillations become almost longitudinal). 

Finally, starting from the conditions for the ap­
plicability of the formulas derived above, let us 
indicate when the buildup of such oscillations is 
possible in a plasma. From the conditions 

it follows that the oscillations in question are possi­
ble in a plasma in which WLi » "i and "e 
» [M/m]t12"i• i.e., Te » T ~ Ti, with the buildup 
of the oscillations occurring only in fields E0 in 
which v0 = eE0/mv » VTi· This condition, in turn, 
ensures heating of the electrons and the required 
non-isothermal behavior of the plasma [see formula 
(9)]. 
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Let us investigate now the solution of the second 
equation of (23) in the frequency region 

kc~ co ~kvo, V; 

(the waves are almost transverse to the field E0). 

In this frequency region, Eq. (23) reduces to the 
cubic equation 

Aws + Bco2 + Ceo + D = 0, 
A = 'Ve(k2c2 + WLi2) + C0Le4 / 'Ve, 

B = iWLe2 (k2c2 + 2wLi2), (28) 

C = -VeWL;2 (k2c2 + WLi2), 

(29) 

In the absence of an external electric field, i.e., 
when v0 = 0, D = 0, and Eq. (28), as expected, has 
two damped solutions (since C < 0 and B is pure 
imaginary): 

2Awt, 2 = -B ± (BZ- 4AC) ''• (30) 

and one zero solution w3 = 0. A small nonzero drift 
velocity v0 (i.e., a small field E0) has little effect 
on the large roots (30), but exerts a very strong 
influence on the zero root w 3• Namely, the small 
root of (29) becomes equal to 

D . k.L2Vo2WLi . Vo2 WLe2 
cos=-··-= Z·-------:s;;; z---. (31) 

C Ve(k2c2 + WLi2) C2 Ve 

at frequencies in the region of the normal Doppler 
effect [B] (the signs of the electronic conductivity 
tensor components do not change here), and is con­
nected with the anisotropy of the plasma. 

To conclude this section, let us consider the os­
cillations of a weakly ionized electron-ion plasma 
in the region of the lowest frequencies, when 
w « vi. We note that in this frequency region the 
hydrodynamic expression for the ionic part of the 
dielectric constant is, generally speaking, no longer 
valid. Qualitatively, however, this expression 
reflects correctly the character of the oscillations 
of a weakly ionized electron-ion plasma even when 
w « vi. We shall therefore use formula (22) in 
this frequency region, too. We note immediately 
that an investigation of such oscillations of an 
electron-ion plasma in an external electric field 
makes it possible to establish an analogy between 
such oscillations and low-frequency oscillations of 
an electron-hole solid state plasma, the analysis of 
which is valid also quantitatively. 

The first expression of (23) (together with the 
second equation in the frequency region w « k · v0) 

has for w « vi only solutions that correspond to 
damped plasma oscillations. On the other hand, in 
the frequency region vi » w » k · v0 the second 
equation of (23) reduces to the quadratic equation 

It is easy to see that this root corresponds to 002 (k2c2 + COLe4 )+ icok2c2 COLe2 + k.l.2v02COLe2COLi~ = O. ( 32 ) 
unstable aperiodically increasing plasma oscilla- vez ve vev; 

tions, with w 3 representing the growth increment of . . 
th ·11 t· F th d't' f 1. b'l't One of the two roots w1 2 of this equatwn, as can be e osci awns. rom e con I wns o app wa I I y . • . . 

f f l (31 ) ( t t k . t t h 1 readily seen, corresponds to plasma osmllatwns 
o ormu a we mus a e m o accoun ere a so . . . . . . . . 
th · 1.t. AD2 ca d BD c2) •t b that mcrease m time. This mstabihty, hke the pre-e mequa I Ies « an « I can e . . 

h th t h .11 t· l'k th .d cedmg one, IS due to the anisotropy of the plasma s own a sue osci a wns, I e e ones consi - . . . 
d b "bl 1 . . th 1 m an external electric field. Indeed, when v0 = 0 we ere a ove, are possi e on y m a non-Iso erma h 

plasma, in which Te » T but wLi »vi. It might ave 
seem that the instability takes place at arbitrarily co1 = -ik2c2coLive 1 (k2c2ve2 + roLe~), wz = 0, (33) 
small drift velocities v0, i.e., for arbitrarily small 
fields E0• Actually, however, the condition for 
non-isothermy of the plasma, in accordance with 
formula (9), imposes a limitation on E0, namely, 
for the plasma to build up it is necessary that 
v0 = eE0/mve »vTi· From a comparison of (26) 
and ( 31) we see that the growth increment of the 
transverse plasma oscillations in question is con­
siderably smaller than the growth increment of the 
longitudinal oscillations. Therefore, under real 
conditions, such oscillations may likewise not be 
observed. The point is that before they have a 
chance to grow appreciably, the unstable longi­
tudinal oscillations can greatly change the proper­
ties of the plasma. 

i.e., the plasma oscillations attenuate in time. 
A nonzero but small drift velocity v0 ""0 has 

little effect on the first large root wt> but greatly 
disturbs the second: 

(34) 

We note that the conditions for the applicability 
of formulas (32)-(34) impose in practice no lower 
limit on the drift velocity v0 at which the instability 
in question arises. The limitation imposed by the 
condition (14): 

vo kVTeVVe ->-- --, 
C WLi 'V; 

Such an instability is analogous in its nature to is readily satisfied in a dense plasma at essentially 
the instability of a collisionless plasma with current arbitrarily small velocities v0• This denotes in turn 



EXCITATION OF ELECTROMAGNETIC WAVES IN PLASMAS 1119 

that there is no need to heat the plasma electrons 
for such low frequency oscillations to build up, and 
the oscillations can build up also in an isothermal 
plasma, i.e., when v0 < VTi· Thus, a weakly ionized 
dense electron -ion plasma is unstable in the absence 
of an external magnetic field at practically arbitrar­
ily small fields E 0• 

4. LOW FREQUENCY OSCILLATIONS OF AN 
ELECTRON-HOLE SOLID-STATE PLASMA IN 
AN EXTERNAL ELECTRIC FIELD 

field. 
Using (16), we can write for the dielectric con­

stant of the electron-ion plasma in a crystal, in the 
absence of a magnetic field, 

ffiL2 
e;i = e;/0)- ~ ---­

ro (ro + iv) 

Here E_l?l is the dielectric constant of the crystal 
lJ 

In an electron-hole solid-state plasma, unlike an lattice itself, and the summation in the second term 
electron-ion plasma, the mass of the neutral parti- extends over the positive and negative carriers in 
cles (lattice) is much greater than the mass of either the plasma. For simplicity we confine ourselves to 
the negative or the positive carriers. This causes a crystal with cubic symmetry, where E~?l = EoOij• 
all the relations derived in Sec. 2 to be valid for and we assume that Eo ~ 1. IJ 
carriers of both signs. It follows hence, in par- In the region of high frequencies w » v±, ex-
ticular, that both negative and positive carriers pression (36) reduces to the relation (we recall that 
are heated in an electron -hole plasma situated in lw + i vI » kv0) 

an external electric field, and that according to (9) 

(35) 

where T is the lattice temperature, O± = 2m±/M is 
the ratio of the carrier mass to the lattice mass, 
and V± are the effective carrier collision frequen­
cies 5>. For simplicity we shall neglect their veloc­
ity dependence, assuming that v± = v±(T±) = const. 

We note that in real crystals v± ~ 10 11-10 13• 

Therefore, up to magnetic fields B0 :S 104 Oe (taking 
into account the fact that in crystals the carrier 
masses are of the order of 0.1-1 of the mass of a 
real electron) we can neglect its influence on either 
the ground state or the perturbed state ofthe 
electron-hole plasma in the crystal. From (35) it 
follows in this case that the ratio of the carrier 
temperature varies with increasing electric field 
within the limits 

1 ~ T-1 1'+ ~ (m+l m_)'l'; 

On the other hand, the ratio of the directed drift 
velocities Vo± = e±Eo/m±V± varies within the limits 

(m+ / m_) 'h? uo- I uo+? (m+ I m_) 'I•. 

In real crystals m jm_ ~ 10-30. Therefore the 
drift velocities of the positive and negative carriers 
turn out to be of the same order in any electric 
field. We shall show below that this circumstance 
limits the spectrum of the possible growing oscilla­
tions of an electron-hole plasma in an external 

5lWe note that actually we are dealing with the scattering 
of electrons by phonons and the presence of the small parameter 
8± is due to the small momentum transferred in such a scatter­
ing. 

ei.i = {eo- ~ :;;2 
( 1- i ~ )}6;j, (37) 

which does not contain the electric drift at all, and 
when substituted in the dispersion equation (1) leads 
only to damped plasma oscillations. 

An analogous situation takes place also in the 
region of intermediate frequencies, when v_ » w 
» v+. Indeed, it follows from the latter inequality 
that w »kv0+, and since v0 + ~v0 _, we get 
w » k · v0_; taking this into account, we obtain 
from (37) 

(38) 

This expression, like (37 ), does not contain the 
electric drift and, naturally, does not lead to any 
buildup of oscillations. 

To the contrary, in the region of low frequen­
cies, in which w « v±, it is possible for oscillations 
to build up in an electron -hole solid -state plasma, 
as well as in an electron-ion plasma, in analogy 
with the buildup considered above at the end of the 
preceding section. Expression (36) is written in 
this frequency region in the form [cf. (22)] 

f k 2Uo;Uoj J XL ( w - kvo) O;j + k;Uoj + Uoikj + ------- . 
w-kvo 

Substituting this expression into the dispersion 
equation (1) and neglecting terms of order 

(39) 

w2 I E0k 2c 2, we find that in the region of frequencies 
of the normal Doppler effect this equation has the 
following solutions: 
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(40) 

where v0 = v0_ - v0 + is the relative velocity of the 
electric carrier drift. Exactly as in the case of an 
electron-ion plasma, one of the roots, w2, tends to 
zero in the absence of an electric field, while the 
second root, w1, corresponds to damped plasma 
oscillations. 

A nonzero but small carrier drift leads to a 
strong change in the zero root w2, without essen­
tially influencing the large root w 1• Namely, 

(41) 

Thus, low-frequency (w « V±) electromagnetic 
oscillations build up in an electron-hole solid -state 
plasma situated in an external electric field at 
practically arbitrarily small fields E0• The only 
limitation imposed by condition (14), w » k(VT±)2 I v± 

(where vT± are the thermal velocities of the car­
riers in the plasma) 1 is more likely to limit from 
below the wavelength of the excited oscillations (or 
the transverse dimensions of the crystal) rather 
than the magnitude of the field E0• The fact that 
Pustovo'it [6] has made just the opposite statement, 
is a consequence of the fact that the result of his 
investigations, as noted above, is valid only for 
longitudinal field oscillations. 

For longitudinal field oscillations, the dispersion 
equation, taking (39) into account, is written in the 
form 

k·k· WL2 

-'-3 Eij = Eo + i ~ = 0. ( 42) 
k2 v(w- kvo) 

It is easy to show that this equation has only solu­
tions that correspond to damped longitudinal plasma 
oscillations. This result indicates, in particular, 
that growing oscillations, described by relation ( 41 ), 
are not longitudinal. 

In conclusion, the authors thank L. E. Chernyshev 
for checking many calculations and also V. P. Silin 
and V. B. Brodskil for a discussion of the work and 
valuable remarks. 
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