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A closed system of equations is obtained for relaxation relativistic hydrodynamics under the 
assumption that the resultant nonequilibrium states can be described thermodynamically. 
Both limiting cases-relativistic and ultrarelativistic-in which the relaxation process is due 
to the chemical reaction rate, on the one hand, and the rate of creation and annihilation of 
pairs, on the other, are considered. A study is made of the propagation of small perturba­
tions in a relaxing medium. For small relaxation times, a limiting transition is made to 
equilibrium relativistic hydrodynamics. The structure of a weak relativistic shock wave is 
considered with account of relaxation. The equations of two-component relativistic hydro­
dynamics are generalized to cover multicomponent systems and are applied to multiple par­
ticle production. 

1. FUNDAMENTAL EQUATIONS OF RELAXATION 
RELATIVISTIC HYDRODYNAMICS 

To formulate the equations of relaxation hydro­
dynamics we introduce, as in nonrelativistic hydro­
dynamics, [t] an additional parameter ~ (in the 
general case, several such parameters), charac­
terizing the deviation of the system from complete 
thermodynamic equilibrium. This parameter may 
be, for example, the concentration of one of the 
mixture components. We assume further that the 
resultant nonequilibrium states can be described 
thermodynamically, i.e., the following thermo­
dynamic identities hold: 

1 
dw = -dp + Tda + w6ds, de= nTda + wdn + e;ds,(1.1) 

n 

where w and a are the heat function and the entropy 
per particle; E and n are the density of the internal 
energy and the number of particles per unit volume. 
In the state of equilibrium, when ~ = ~ 0 (n, a), we 
have 

wG(p, a, so) = 0, e<;(n, a, so) = 0, 

w~ == (aw I as) p, a, e~ = (ae I as) n, a· (1.2) 

We shall assume that ~ characterizes the con­
centration of one of the components of the mixture. 
Let ~ be constant, and then the supplementary 
equation can be written in the form 

ds/ ds = 0. 

Using the equation of continuity as a whole 

8(nuk) avk 
---=---, 

axk axk 
(1.3) 

where IIi is a certain four-vector, connected with 
the heat conduction and the relaxation process, we 
obtain 

8(nuks) =- s avk 
axk axk 

(1.4) 

In the general case, however, one of the mixture 
components reacts with the other and the concen­
tration ~ does not remain constant; therefore Eq. 
(1.4) should be written in the form 

a(nuks + ik) =- s avk' 
axk axk 

where fi is the diffusion four-current. 
The spatial component j has the meaning of the 

ordinary diffusion current, while the temporal com­
ponent j 4 determines either the dissociation rate 
in the relativistic case or the rate of pair produc­
tion and annihilation in the ultrarelativistic case. 
Again using Eq. (1.3), we ultimately obtain the re­
laxation equation 

d6 8jk 
n-=---. 

ds axk 
(1.5) 

The equation of motion and the entropy balance 
equation are 

n d(wu;) + 8p = _ 8i;k + WU; 8Vk 
ds ax; axk axk ' 

(1.6) 

T da 8-rzk + avk + ajk n - = uz-- w-- ws--· 
ds axk axk axk (1.7) 

We define the velocity by means of the same condi­
tion as in the book by Landau and Lifshitz. [2] 

Inasmuch as the particle current nui + vi should 
give the particle density n in the proper system, 
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the four-vectors 11i and ji, as well as the four­
tensor T ik• should satisfy the additional conditions 

Uh_Vk = 0, Uk'tik = 0, Unj,_ = -jo, (1.8) 

where j0 is the temporal component of h· taken in 
the proper system. By virtue of these conditions, 
Eq. (1. 7) can be represented in the form 

{)( !L w;.\ {)("") 
8xk Sauk-r""--r'"' )= -v,. fJxk -T 

- !-TzR. {}uz -h.._!_ (~) = ~. 
T ox,_ OXk T ' (1.9) 

where f.l is the chemical potential and Se is the en­
tropy per unit volume. The right side of (1.9) 
corresponds to the production of entropy in a unit 
volume as a result of the irreversible processes 
occurring in it. The quantity ~ should be positive. 

According to the Onsager principle, the currents 
11 i> ji, and T ik should be linear functions of the 
forces 

The coefficients in the expansions are determined 
under the following conditions: 

a) The medium is assumed isotropic. b) The 
expressions for the currents, when substituted in 
(1.9) should ensure the positiveness of the right 
side. c) The currents should satisfy identically the 
conditions (1.8). d) In the nonrelativistic limit, the 
corresponding nonrelativistic expression should be 
obtained for the currents. e) The principle of sym­
metry of the kinetic coefficients applies. f) In the 
absence of relaxation, the equations should go over 
into the known relativistic equations with account of 
viscosity and thermal conductivity. 

The last of these conditions is satisfied by vir­
tue of (1.2) automatically if the preceding conditions 
are satisfied. We note that the foregoing conditions 
are completely analogous to the conditions imposed 
by Dolch [3] for a unique determination of the coeffi­
cients in the expansions for the currents in relati­
vistic magnetohydrodynamics. 

As a result we obtain the following expressions 
for the currents: 

'Vi = -x ( ~ r { O~i ( : ) + U;Uk a!,. ( : )} 
-n(!-)2{_!_( w; )+ u;u,._!_( w; ~}, (1.10) 

w OXi T OXk T J 

j; = -D f !'._ ~2{_!_ ( ~) + U;UR. -0° ( Til )} -Do 
w) OX; T Xk I 

X ( ~ Y{ ~; ( i )+ uiuk a:k ( j )} + u;jo, (1.11) 

where K is the known thermal conductivity coeffi-

cient and D and D0 are the diffusion coefficients, 
with c = 1. The viscosity tensor T ik has the same 
form as in [2]. 

Separating the pure diffusion part in (1.11), we 
can rewrite the relaxation equation (1.5) in the form 

ds oj,.<D) 
n-=----r, 

ds ax,. (1.12) 

where 
a(u,.jo) 

r=---. ax,. (1.13) 

The meaning of (1.13) becomes clear if we go over 
to the proper system, where noUot = -aj 0/8t, i.e., 
the variation of the relaxation parameter ~ is de­
termined by the variation of j0 with time in the 
same volume element. 

In Eqs. (1.3), (1.6), (1.7), the relaxation equation 
(1.12), together with Eqs. (1.10) and (1.11) and the 
equations of state form the closed system of equa­
tions for relaxation relativistic hydrodynamics. 

We consider below the most important particular 
case, when we can neglect viscosity and thermal 
conductivity of the medium, and also diffusion 
(D = Do = 0). In this case the system of equations 
takes the form 

n d(wui) + ap = 0, a(nuk) = 0, 
ds axi ax,. 

dcr ds 
nT ds = w;r, n ds = -r. (1.14) 

We consider small deviations from the state of 
local thermodynamic equilibrium. 

For small deviations, the quantities w and r can 
be expanded in powers of~ - ~ 0 • It is obvious, that 
in the state of equilibrium r I~ _ ~ 0 = 0. Confining 

ourselves to first-order terms, we get 

dS s- so 
ds=---T- (1.15) 

where T = n/r~ is the relaxation time. From (1.14) 
we see that the change in entropy, for small devia­
tions from the equilibrium state, is of second order 
of smallness. 

2. PROPAGATION OF SMALL DISTURBANCES IN 
A RELAXING MEDIUM AND TRANSITION TO 
EQUILffiRIUM HYDRODYNAMICS 

We consider the propagation of small disturban­
ces, such as sound waves, in a relaxing medium. 
For small deviations from the equilibriwn state, 
confining ourselves to first-order terms, we obtain 

r = r~bs + rn6n, 6p = p~66 + pnbn, (2 .1) 

since the change in entropy is of second order of 



SOME PROBLEMS OF RELATIVISTIC HYDRODYNAMICS 1109 

smallness. 
According to (2.1), we write (1.14) in the form 

oon + n OOVf> = 0, 
at OXf> 

n 86vo. + Coo2 ~ + p; 866 = O 
at axa. w axa. ' 

ao; =-~(os+rnon) 
at .. r; ' (2.2) 

where 

Coo2 = (n I w)aw I on 

determines the rate of propagation of the sound 
vibrations with frequency w » 1/ T (a, {3 = 1, 2, 3). 

The solution of the last equation in (2.2) we seek 
in the form 

rn 
66 = --A-1on, 

r; 

{) 
A=1+-r-. 

{)t 

Eliminating the derivative of on, we obtain 

A{ {)26va.- coo2 {)26vv} + p;rn {)2ovv = 0. (2.3) 
ot2 OXvOXa. wr; oxvaxa. 

It can be shown that in this approximation the mo­
tion is potential, i.e., curl v = 0. This denotes that 

o26vv I oxvaxa. = ~<'lva.. 

Thus, Eq. (2.3) can be rewritten as 

a { a2ova. } azova. 
'r.0t ~- Coo2Ma. + fii2- c02Mva. = 0, (2.4) 

where 

(2.5) 

Equation (2.4) is formally identical with the corre­
sponding equation (see [1]) in nonrelativistic hydro­
dynamics, while (2.5) determines the equilibrium 
speed of sound c0• 

We see from (2 .4) that absorption of sound 
waves takes place. Indeed, let us represent a 
small velocity disturbance in the form of a plane 
wave; then we can readily arrive at the well-known 
relation between the frequency and the wave vector 

( 1- iw't' )''• k=w , 
Co2 - Coo2iw't' 

i.e., the propagation of sound is accompanied by 
dispersion. 

Let us now consider the question of the transi­
tion to equilibrium hydrodynamics. The equations 
of the characteristics of the system (1.14) for one­
dimensional flow are of the form 

dz V± Coo dz 
dt = 1 + VCoo ' dt = V. 

(2 .6) 

We see therefore that as T tends to zero the char-

acteristics of the relaxation hydrodynamics do not 
go over into the characteristics of equilibrium 
hydrodynamics, which are determined by the speed 
co. 

A direct series expansion of all the hydrodynamic 
quantities in powers of the small parameter T does 
not lead to the desired results, since the next higher 
approximations give expressions that diverge in 
time. Therefore, to go over to equilibrium rela­
tivistic hydrodynamics we must consider the flow 
starting from the instant when the relaxation proc­
ess in the zeroth approximation in the parameter 
60 = c0T/L (60 « 1}, where Lis the characteristic 
macroscopic length, has already been completed. 
Under these conditions, the following expansions 
will be valid at subsequent instants of time 

6 = so + Oos<1> + 6o2s<2> + ... , 
a n 

Tt ( 1 - v2) 'I• = OoN<Il + 6o2N<2> + ... ' 

(1 - v2)-'/,!_ WVa. -" V (!) +" 2V (2) + 
at ( 1 - v2) "" - uo a. uo a. .•.. 

(2. 7) 

where ~ <1, 2>, N, Va, and 2:: are functions of the 
variables n, v a. and a, and ~ depends also on x. 

Explicit expressions for the coefficients N, V a• 
and 2:: can be readily obtained by comparing (2. 7) 
with the system (1.14) and by recognizing that the 
spatial derivatives increase the order of smallness 
of the quantities by unity. Just as in the paper of 
Stakhanov and Stupochenko, [1] we obtain 

~S(I) = aso n a Vp 
't' an axp (1- v2) .,, 

In addition, taking into consideration the expansions 

w = wo(n, a) + Oo2W66s<2> + ... , 
p = Po(n, a) + <'lo(Psh=sos(l> + · · ·, 

where w0 and Po are the equilibrium values of the 
heat function and of the pressure, we ultimately ob­
tain the equations of motion in first approximation, 
in the form 

{ d ow } fJ ( a ) 
n ds (wua.) + oxa. =- oxa. 6 axa. up ' (2.8) 

where t = Tnwc~ plays the role of the viscosity 
coefficient. 

To go over to the ultrarelativistic case, when 
the chemical potential in the zeroth approximation 
is 1-t = 0, it is necessary to make in (2.8) a substi­
tution n- S, w- T. [4] The latter case is of inter­
est in the hydrodynamic theory of multiple particle 
production. 
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3. WIDTH OF SHOCK WAVES WITH ACCOUNT OF 
RELAXATION 

To determine the distribution of the thermo­
dynamic quantities over the width of a shock wave, 
we make use of the ordinary hydrodynamic conser­
vation laws for the mass, energy, and momentum 
flux with account of the fluxes brought about by the 
irreversible terms. The corresponding conserva­
tion laws for a stationary discontinuity are of the 
form (see [5]) 1l: 

nUx - (~ r ( 1 + Ux2) {X :X ( ~-) + D ddx ( ;s)} 
(3.1) 

( 4 ) dux 
nwui + p - 3 TJ + ~ ( 1 + ui) dx 

(3.2) 

(3.3) 

(3.4) 

(the shock wave moves from right to left, the state 
ahead of the shock wave is designated by a zero 
index). 

For shock waves of low intensity, all the quan­
tities in the shock wave can be expanded in powers 
of the entropy discontinuities t:.a = u - u 0, the 
pressure discontinuities ~P = p - Po and the con­
centration discontinuities ~~ = ~ - ~ 0 • Taking into 
account the thermodynamic equations (1.1) we get, 
as in [5] 

w- wo = -~t'l.p + Tt'l.a + w~;tl.£ + .1 _a_(-~) f'l.p2, 
no 2 apcr, £, n 

n- no= - no2 _a_ ( -~-) t'l.p- no2 !_( !..) t'l.cr 
apa, ~ n au n p, 6 

- no2_!_( 1) tl.£ 
asp, cr n 

-no2 [-~~-(_!_)-no(-a ( 1 J) 2 J t'l.p2• (3.5) 
2 ap~, 0 n apcr, 6 n 1 

Let us express the derivatives in (3.1) in terms 
of derivatives of p, u, and ~. It must be borne in 
mind here that differentiation with respect to x in­
creases the order of smallness of the quantities by 
unity (since the width of the shock wave is inversely 
proportional to the amplitude of the wave). There­
fore the derivative dp/dx is a quantity of second 
order of smallness, whereas the derivatives 
du/dx and dUdx are of third order. Thus, on the 

l)The earlier paper by the author['] contains an error: the 
time derivatives should be omitted. 

whole, the mass flux due to the thermal conductivity 
and diffusion is of second order of smallness. As 
a result we obtain (3.1) in the form 

nux = ( ~ r ( 1 + ui) 

X{~(.!!!!___-.!!!___!!'__)+ D !_( w; )} dp + i 
T apcr, r;, T apcr, s ap T dx . 

From this we get the expansions for ux and u4• 

Substituting the obtained expansions in (3.2) and 
(3.3), we get two equations relating the jumps in 
pressure, entropy, and concentration. Subtracting 
one equation from the other, we obtain the follow­
ing relation between the discontinuities of the 
entropy and concentration: 

{ 1 + ux02) ( T )2 
n0T t'l.a + now;t'l.£ = - 0 Wo -

u., Wo 

{ x ( aw w aT ) a ( w6 )} dp 
x T apcr-:;,-r apa.r;, +D ap T dx· 

We took account here of the fact that 

is a quantity of first order of smallness and tends 
to zero as ~p - 0. In the acoustic approximation 
v- C 00 and 

To determine the discontinuity of the concentra­
tion, we make use of (3.4). Integrating directly, we 
obtain 

if'l.£ = -j., + SoVx. 

Further, inasmuch as j 0 = (8j 0/80.6.~ (the first term 
of the expansion in the equilibrium state is 
jJ0 = 0), we ultimately find the following equations 
for the concentration and entropy discontinuities: 

t'l.£ = P(1 + i2/no2) dp 
i(1 + ios/no) dx' 

Ttl.a = [o- ---~] 1 + i2lno2 dp 
1 + ios/n i dx' (3 ' 6 ) 

where 

P=.!__!_T_{w(1- T )<x£0 -D) 
w2 ap nwoTiap 

( Taws/ap ) } + BTiap - wr;, (Do-Dso) , 

Q = :~ { x ( 1 - nw :T I ap) 

D ( T aw.;ap )) - w aT I ap - w; f · (3.7) 

Now, in exactly the same manner as in [5], we 
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can easily find the following differential equation 

i2f 111 112 1} -, 3- --+ nowo-{) 2 - (p- Po) (p- pi) 
2n0 ~ {)p n p n 

. ( i2 ) dp a 1 = a1l 1 +- -----, 
n 02 dx Dp n 

(3.8) 

where the coefficient a 1 depends not only on the vis­
cosity and thermal conductivity coefficients but also 
on the diffusion coefficients; Po and p1 are the pres­
sures at large distances on both sides of the dis­
continuity surface. Integrating (3.8), we can easily 
find an expression for the width of the shock wave 
Ox, and also expressions for the variation of the 
entropy and concentration inside the discontinuity. 
Inasmuch as the width of the shock wave is inversely 
proportional to the amplitude of the wave, it turns 
out, as expected, that the changes in entropy and 
concentration on the shock wave are quantities of 
second order of smallness in .0-p. 

4. EQUATIONS OF MULTICOMPONENT RELA­
TIVISTIC HYDRODYNAMICS AND THEIR AP­
PLICATION TO MULTIPLE PARTICLE PRO­
DUCTION 

To describe multicomponent systems it is neces­
sary to introduce several additional parameters ~. 
The thermodynamic equations are then of the form 

1 
dw = -dp + T da + L w~;mdsm, 

n 
m 

de= nT da + w dn + ""e; d£m, (4.1) L.i m 
m 

where m runs through values whose number is one 
less than the total number of components. As be­
fore, in the state of equilibrium, when ~m = ~om(n,a), 

we have 

w;m(P, a, som) = 0, e6m (n, a, som) = 0. (4.2) 

It is obvious that for multicomponent systems 
we shall have several relaxation equations 

d£m Ohm 
n--=---

ds ax" . 
(4.3) 

The additional conditions (1.8) will take the form 

Further, to determine the coefficients in the expan­
sions for the fluxes, we impose the same conditions 
as in Sec. 1. As a result we have 

'V; =-X (!__)2 {'_!_ (l:__,) + U·U"· _!_ ( l:_)} w OX; T . t OXk T 

""D ( T ) 2 
{ a (wam) a ( w~m )} -~ m w axi T +u;ukaxk -----r' ,(4.5) 

hm =-D (.'!_)2 {_!__ (l:__,) + U;Uk _!_ (~)} 
w OXi T axk T 

_"" D' ( 1' ) 2 
{ a ( w~m' ) a (' w;m' )} L.i m' - - -- +u·Uk-- --

m' w OX; , T ' &xk T 

(4.6) 

Some of the coefficients Dm· D, and D{n' may be 
equal to one another by virtue of the Onsager prin­
ciple. 

Let us write out the complete system of equa­
tions of the multicomponent system, neglecting 
viscosity and thermal conductivity of the medium, 
and also omitting the diffusion terms. For small 
relaxation times this system becomes 

{ d aw } a ( , a ) n -(wua)+- = -- ~ --u~ , 
ds ax.. ax.. ax~ 

da 
nT ds = 0, 

d£m Sm- SOm 
--=-----

ds 'tm 
(4.7) 

where ?;' is the analog of the viscosity coefficient 
and Tm are the relaxation times. 

In the ultrarelativistic case the number of de­
grees of freedom of this system decreases by unity, 
and Eqs. (4.7) take the form 

s{~(Tua)+ aT}=-_!__(~'~u~). 
ds OXa OXa OX13 

a(Suh) = 0 dsm =- Sm- SOm 
OXh ' ds 't'm 

(4.8) 

In the zeroth approximation, which we shall con­
sider for simplicity in what follows, the right side 
of the equation of motion can be neglected; then, 
using the usual procedure, [G] we can readily obtain 
the characteristic relations on a simple wave. On 
the characteristic of the sound wave, as before, we 
have 

CooZ = +Tj, z = ln(S /So), Tj = Arth u. (4,9)* 

In addition, on the characteristic of the particle 
current line, there is one more relation: 

dt 
dln(£,.- som) = -:;:- (1- u2)'f2, (4.10) 

•m 

which obviously is connected with the presence of 
the relaxation equation. Conditions (4.8) and con­
ditions (4.9) constitute the initial system of equa­
tions when solving the problem of multiple particle 
production. 

From Landau's hydrodynamic theory [T] it is 

*Arth = tanh -•. 
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known that the total multiplicity is given by the ex­
pression 

N = K(E I 2M)'I•, (4.11) 

where E is the energy of the colliding nucleons in 
the laboratory frame. However, in multicomponent 
hydrodynamics we can also specify the multiplicity 
of individual species of secondary particles, which 
is obviously expressed by the formula 

N; = ~o;N, (4.12) 

where ~oi are the equilibrium values of the com­
ponent concentrations. The calculation is carried 
out for the stage of free scattering of the system, 
when the temperature of the system decreases to 
the critical value kTk f>:! m1r. During this stage we 
can employ, as is customary, the formulas of sta­
tistics. As shown by Belen'kil, [8] the percentage of 
heavy particles is small compared with the number 
of produced pions. 

Formula (4.12) contains the equilibrium values 
of the concentration. It can be shown that at large 
distances from the collision plane ~ i approaches 
exponentially the equilibrium value. Indeed, at 
large distances, when inertial scattering takes 
place, the relaxatioq equation can be written in the 
one-dimensional case in the form 

a~ ' a~ ' ~ ' 
x--i + t-'-· + ~ (t2 - x2 )'1, = 0 

£1,..,. iJt Ti ' 

where 

~;' = ~i - ~Oi, v = X I t. 

It is easy to see that (4.13) has a solution 

~i- ~oi = C; exp [- (t2 - x2 ) 'f, I 1:;], 

(4.13) 

(4.14) 

which decreases exponentially with time. It can be 
shown that at the start of the three dimensional 
scattering stage, at relaxation times Ti f>:! 10-23 sec, 
the right side of (4.14) decreases by a factor e, 
i.e., ~ f>:! ~oi · 

In a multicomponent system we consider also 
the angular distributions of individual species of 
particles. Inasmuch as at high temperatures the 
densities of the particles are proportional to the 
entropy, we have 

where T and 11 are the Landau variables. Thus, the 
angular distributions of both the pions and the heavy 
particles will be represented with corresponding 
weights ~i. As to the energy distribution of the 
secondary particles, it is determined by the same 
already known expression. The same pertains to 
the number of particles carried away by the travel­
ing wave (see [9J). 

It must be noted that all formulas now contain 
not the equilibrium speed of sound c 0, but the speed 
of sound Coo, which in the ultrarelativistic case is 
equal to 1//3". 

Thus, summarizing the foregoing, we can state 
that, compared with ordinary hydrodynamic theory 
of multiple particle production, it is possible in the 
analysis of multicomponent systems to effect a 
more detailed judgement of the character of the 
secondary particles and their angular distribution. 
On the whole, the quantitative relations remain 
unchanged. 

In conclusion the author thanks K. P. Stanyuko­
vich for interest in the work and Zh. S. Takibaev 
for many valuable hints and advice. 
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