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Single-phonon electronic-vibrational transitions in ionic crystals containing impurity ions of 
transition-group elements are considered. The vibrational structure of the luminescence spec­
trum of the CaF2:Tu2• crystal is calculated theoretically. Comparison with experiment con­
firms the presence of a vibrational structure in the lines due to quasi-local vibrations. The 
possibility of studying the dynamics of a crystal containing impurities by means of optical 
spectroscopy is discussed. 

BEsiDES the narrow lines of phononless transi­
tions, one observes in the luminescence and absorp­
tion spectra of ionic crystals containing transition­
group ions as impurities, a large number of com­
paratively narrow lines corresponding to electronic­
vibrational transitions. The vibrational structure of 
the line spectra carries information both about the 
spectrum of the ion and about the spectrum of the 
crystal vibrations. [t] 

This paper gives a theoretical calculation of the 
vibrational structure of the optical spectrum of a 
crystal with a small concentration of paramagnetic 
impurities. The problem is divided into two parts: 
it is necessary first of all to find the spectrum of 
vibrations of a crystal with an isolated impurity 
center by the method of I. Lifshitz, [2] and then, with 
the aid of the partial distribution of the energy of 
the crystalline lattice so obtained, to calculate the 
intensity of the electronic-vibrational transitions. 

Narrow electronic-vibrational lines arise when 
the energy of the lattice vibrations is partially 
localized in a small frequency interval. In a regu­
lar crystal this localization of the energy can take 
place close to the limiting frequencies of the vibra­
tional branches, where the density of the vibrational 
states is a maximum, and also if the dispersion 
curves have flat portions. [a, 4J In the optical spec­
tra of crystals with impurities, intense electronic­
vibrational lines can be observed also as a result 

vibrations with discrete frequencies appear. We 
are principally interested in the question of the 
appearance of quasi -local and local vibrations [SJ 

in the vibrational structure of the optical lumines­
cence and absorption spectra of paramagnetic crys­
tals containing as impurities, ions of the iron and 
rare-earth groups. 

1. INTENSITY OF THE ELECTRONIC-VIBRA­
TIONAL LINES 

We shall treat the interaction of the impurity ion 
with the crystalline lattice in the harmonic approxi­
mation. The Hamiltonian of the ion + lattice system 
will be written in the form 

.if= :fei + je 1 + jeem + jeev• (1) 
~ 

where JCi is the Hamiltonian of the ion in the static 
crystal field, the eigenvalues E(r) and eigenfunc­
tions of which are assumed known, and :fcem is the 
Hamiltonian of the interaction of the ion with the 
electromagnetic field. The lattice Hamiltonian 

(2) 

where a{ and af are respectively the creation and 

annihilation operators of phonons of frequency w(f), 
the subscript f taking on the values from 1 to 3sN, 
if the crystal consists of N unit cells and has s 
atoms in each cell. 

The Hamiltonian of the electronic-vibrational 
of the redistribution of the energy in the spectrum 
of the lattice vibrations occurring when the impur-

interaction is 
ity ion is introduced. With a significant change in 
mass and force constants, vibrations are excited in iiev= ~ V1..Q1.., 
narrow intervals of frequencies of the quasi-con- 1.. 

tinuous spectrum (quasi-local vibrations), and local where VA. is a function of the coordinates of the 
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electrons of the impurity ion, and Q A. are the sym­
metrical vibrations of the complex containing the 
impurity ion, represented as linear orthogonal com­
binations of the displacements of the ions from 
their equilibrium positions: 

Q~ = ~ a~..a.ua.. 
a. 

The displacements ua are expanded in the 
normal coordinates of the crystal 

Ua. = Ma.-'1• ~'!Ja.{f}d{j), 
f 

d(f) = [li/2w(f)]'h(a1+ + a1), (3) 

where Ma is the mass of the corresponding ion. We 
also write the symmetrical vibrations in the form 
of an expansion in the normal coordinates: 

Q~ = ~ -r~..{f)d{f), (4) 

(5) 

In the electronic-vibrational band we shall con­
sider only the part due to single-phonon transitions. 
The intensity of the electronic-vibrational band is 
calculated by second-order perturbation theory, [s] 

the perturbation being kern + fcev· 
The vibrational structure in luminescence and 

absorption spectra can be investigated in exactly 
the same way; hence, we consider only lumines­
cence spectra. We shall mainly be interested in the 
frequencies of the narrow electronic-vibrational 
lines and their relative intensities. Experimentally, 
these quantities depend weakly on temperature, so 
that we limit the study to the vibrational structure 
at T = 0, when only transitions with the emission of 
phonons are excited. 

The greatest contribution to the intensity of the 
electronic-vibrational band Iev(w) comes from 
forced electric dipole transitions. Using an ex­
pression we derived earlier for Iev(w), [G] we obtain 
for T = 0 for transitions between energy levels of 
the ion rand r', with degeneracies g(r) and g(r') 
and difference in energy E(r) - E(r') = fiw 0: 

4 ~ dro{f) 
lev(w)= :3flc3g(f) 7 ~ 

(roo- w (f)) 3 A (f) 
X [w - roo+ w {f) ]2 + [~w {f) /2f ' (6) 

where ~w(f) is the total width of the levels r and 

r' the vibration of frequency w(f), and pis the elec­
tric dipole moment operator for the ion. The occu­
pation number nf is zero at T = 0. 

We shall assume that the point group of the crys­
tal symmetry at the impurity site includes the 
inversion operation. In considering transitions 
between ionic levels of the same parity belonging 
to the same electronic configuration, it is necessary 
to take into account in fcev only those symmetrical 
vibrations that transform according to the odd ir­
reducible representations of the point group of the 
crystal, since the electric dipole moment operator 
changes sign on inversion. The levels r" must 
belong to another configuration, and the energy 
E(r") is then significantly greater than E(r) and 
E(r') and the phonon energies fiw(f) in the denom­
inators of Eq. (7) can be neglected. 

Making use of the inequality w 0 » w(f) and the 
expansion (4), we find 

g(I') ,g(I'') I 12 n 
A(f)= a.~1~~ ~cr~a.fl,;~{f) 2w(/)' (8) 

a.~=~ { V~(fa.;fv'')~(fv'';fll') 
cr~ ;-:. E(f)-E(f") , 

+ ~(fa.; fv") V~(fv''; fa') } 
E (f')- E (f") . (9) 

In the case of the vibrations in the quasicontin­
uous spectrum, we can neglect the width of the 
vibrational levels; if we neglect also the width of 
the electronic levels, we obtain 

2wo3 

/ev(ro) = 3c3g(f) 

X ~ t'l(w- roo+ ro(f)) ~ I ~ cr~a.fl-r~..(!) !a (10) 
t 00 {f) a., II ~ ' 

It follows from Eq. (10) that the dependence of 
the intensity of the electronic-vibrational transi­
tions on the frequency of the phonons is determined 
to a great extent by the quantities Tt..(f), i.e., in 
accordance with Eq. (5), with the reduced ampli­
tudes 1/Ja(f). For vibrations of a regular crystal 

(11) 

where Ra is the radius vector of the corresponding 
lattice site, W a(f) are the components of the polar­
ization vector of the vibration f with wave vector 
kf, normalized over an elementary cell. In this 
case sharp maxima in the function Iev(w) can arise 
only because of extrema in the distribution function 
for the vibrational states over the quasi -continuous 
spectrum. In a crystal containing impurities, new 
vibrations appear, and the reduced amplitudes of 
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these vibrations are normalized by functions that 
have under certain conditions sharp maxima, [5] 

which leads to the appearance of additional lines in 
the vibrational structure. 

The intensity distribution in the electronic­
vibrational lines excited by local vibrations with 
discrete frequencies wn is given by the equation 

2wo3 

lev(w) = 3c3g(r) 

~ I ~ <JA"~1).(wv) 12 
X L\wv a.,~ A (12) 

2:rt wv { ( w- Wo + wv) 2 + (L\wv/2)2] ' 

where ~WD is the width of the discrete vibrational 
energy level of the crystal. 

We shall examine further the shape of the elec­
tronic-vibrational bands and the question of the 
emergence of narrow electronic-vibrational lines 
in the example of CaF2:Tu2+, for which there exists 
the possibility of comparing the results of the 
theoretical calculation with experiment. [T] 

2. THE VIBRATIONAL STRUCTURE OF THE OP­
TICAL SPECTRA OF DIVALENT RARE-EARTH 
IONS IN FLUORITE 

Impurity divalent rare-earth ions replace the 
Ca2+ ion in the fluorite lattice. The mass at the 
lattice site is greatly changed (by about a factor of 
four); the change in the force constants can thereby 
be left out of account, since the valency is con­
served. The change in the force constants can be 
neglected only for transitions within the limits of 
the internal 4f shell, which interacts weakly with 
the crystal field. In reality the force constants are 
different in different states even of the same ion. 
This means that the Stokes and anti-Stokes com­
ponents of the vibrational structure of the same 
phononless line have different frequencies: in 
luminescence the frequencies of the absorbed 
phonons pertain to the upper level of the transition, 
the frequencies of the emitted phonons, to the lower 
level of the transition. 

In the vibrational structure of the luminescence 
spectrum of a crystal of CaF2 :Tu2+ the frequencies 
of corresponding Stokes and anti -Stokes components 
differ on the average by about 10 cm- 1• This ap­
proximation, which takes into account only the 
change in mass, limits the accuracy of the calcula­
tion by this amount. But mainly the accuracy of the 
calculation is determined by how well the vibra­
tional spectrum of a regular crystal is known, in 
particular the limiting values of the frequencies of 
the vibrational branches. 

The unit cell of fluorite consists of one Ca2+ ion 

Table I. Limits of the vibrational branches in 
the CaF2 crystal 

1 
2,3 
4 
5 
6 
7 
8 
9 

Type of vibration 

acoustical longitudinal 
acoustical transverse 
optical longitudinal 
optical transverse 
optical transverse 
Raman longitudinal 
Raman transverse 
Raman transverse 

"'i (k), in cm-1 

0 
0 

463 
257 
257 
321.5 
321.5 
321.5 

318 
175 
327 
190 
314 
152 
212 
346 

--N-o-te-s-. -j is the number of the branch, and kmax =·(617 2/v0)'!,, 
where v0 = 2r03 is the volume of a unit cell 

and two nonequivalent F- ions and is represented by 
a rhombohedron with edge r 0 = 2. 7 45 A (point group 
Oh)· The quasi-continuous spectrum of the lattice 
vibrations consists of nine partially overlapping 
bands (see Table I). The optically active frequencies 
of the vibrations were measured by Kaiser et al. [B]; 

the dispersion curves were calculated theoretically 
by Ganesan and Srinivasan. [s] Using the data of 
these authors, we were able to make an approximate 
calculation of the spectrum of vibrations of CaF2 
crystal with a heavy impurity center. We neglected 
the anisotropy of the crystal and approximated the 
dispersion curves by straight lines, while main­
taining the values of the frequencies at the band 
limits. In the calculations we did not take into ac­
count the dependence of the polarization factors 
w&(k) on wave vector; their values fork= 0 were 
used. 

When one Ca2+ ion is replaced by a Tu2+ ion, a 
three-fold degenerate normal vibration splits off 
from each vibrational level of the regular crystal 
with degeneracy (J = 48 (the number of operations 
in the Oh group); this vibration has a frequency 
w(r) falling in the interval between two neighboring 
values of the frequencies of the regular crystal. [to] 

The frequencies w(r) satisfy the equation 

1 +11M w2(r)N-1 ~ IW~ea(k) 12 = 0. (13) 
Mea k . Wj2(k)- w2 (r) 

,J 

where ~M =Mea- MTu· 
In our approximation the Ca2+ ions do not parti­

cipate in Raman vibrations; hence in the interval 
318-327 cm- 1 a local vibration appears with fre­
quency 326 cm- 1• The reduced amplitudes of the 
vibrations of the impurity ion with frequencies of 
the quasi -continuous spectrum are normalized by 
the condition [5] 

~ I ( ) 12- Mea F 
LJ W<~TU r - L\Mw2(r) r 

a=.x,y,z 
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Vo flM "" r F(w2)=----w2 LJ J 
(2n) 3 Mea i "'·'(k)="'' 

J 

IWx:ca(k) 12 dS 
ldwl(k)/dkl · 

The integral in (15) is taken over the surface 

(15) 

w~(k) = w2 ink space; the function Fr is defined by 
J 

the equation 

~ cp(w2(r) )Fr = 3 ~ cp(f..I.)F(f..l.)df..t., (16) 

where ~ signifies a sum over all vibrations with 
r 

shifted frequencies. 
The displacements of the Tu2+ ion from its 

equilibrium position are expanded only in the new 
normal coordinates with the split-off frequencies. 
The rest of the ions can vibrate both with the old 
frequencies and with the new in accordance with the 
equation [5] 

¢a.(r) =- llM w2(r) ~ ga.11 (w(r) )¢!1Tu(r), (17) 
Mea !l=x, y, z 

where gaf3(w) is the Green's function of the equa­
tions of motion of the crystal lattice and equals 

( ) - "" 'ljla.i (k) ¢11j• (k) (18) 
ga.!l (i) - LJ .2(k)- 2 • 

k, j w, (i) 

The reduced amplitudes of the vibrations with fre­
quencies of the regular crystal Wj (k) will be linear 
combinations of 1/Jj (k) [see Eq. (11 )] , which go to 

Ol 
zero at the impurity ion. [to] 

The induced electrical dipole transitions between 
the Stark sublevels of the terms 2F5; 2 and 2F7 ; 2 of 
the Tu2+ ion are excited by the symmetrical vibra­
tions of the cube of F- ions surrounding the para­
magnetic ion, which transform according to the odd 
irreducible representations of the group Oh: r2u• 
rau• du, d~. r5u (we do not consider translation 
of the complex as a whole). In Jeev we leave only 
those terms that include the symmetrical vibra­
tions QA <du) and QA <rla), which are expanded in 
the normal coordinates of the crystal with the 

split-off frequencies w(r). Thi13 permits the study 
of the characteristics of the vibrational structure 
that arise as a result of the re~istribution of vibra­
tional energy when a heavy imPurity ion is intro­
duced into a crystal, without go~ng through a de­
tailed calculation of the quantiti_~s a~f3 from Eq. (9). 

The symmetrical vibrations Q A <du) were 
chosen as the following: 

4 1 8 

Q,(f4u1)= --=UATu+--~UAF. (f.=x,y,z). (19) 
3 1"2 6l'2 i=1 • 

The vibrations Q A <d~) are orthogonal to Q A <du)· 
The expansions (4), with account taken of (17), take 
the form 

Q,(f,ui)=- 4_ ~ [w2(r) L1Ma(w(r)) + 11 
3l'2 r l/McaMF .J 

'ljJATu(r) d( ) 
X-- r, 

l'Mca 

where 

a(w) 

b(w) 

(20) 

We find, in accordance with (10), that the contri­
bution to the intensity of the electronic-vibrational 
band within the limits of the quasi -continuous spec­
trum due to vibrations with new frequencies is 
proportional to 

0 ~ ~ = Wo - (i) :::;;; 463 cm-1 • (24) 

The quantities a(w) and b(w) are calculated from 
the formulas 
~ cp' (k) 
k, j (i)j2 (k)- (i)2 

- C cp (f.l) df.l - cp (w2) (1 + C F (f.l) df.l) 
- j f.l _ w2 Jl ( w') j f.l _ w2 • (25) 

where 

Vo "" C cpJ (k) dS 
cp(w2) = (2n)3N LJ "'/(kr="'' ldwi2(k)/dkl . 

As a consequence of the orthogonality of the 
symmetrical vibrations Q A• the contribution to 

(26) 



THE OPTICAL SPECTRA OF PARAMAGNETIC CRYSTALS 1105 

FIG. 1 

Iev(w) from vibrations of the regular crystal can 
be represented in the form 

lev( w) oo cr2 (r~u1 ) 81 (w) + cr2 (r~un) 8n (ffi). (27) 

The functions 8I(w) and en(w) were calculated in 
accordance with Eq. (10). 

Figures 1 and 2 show the electronic-vibrational 
bands calculated by Eqs. (24) and (27) for the values 

a(r~un) I a(r;.u1) = 0, a(r~un) I cr(I\u1) = -1 I l'3, 
respectively. 

From the shape of the curves shown in the fig­
ures, it follows that for different phononless lines 
the number and relative intensities of the elec­
tronic-vibrational satellites depend essentially on 
the relations between the corresponding matrix 
elements. The arrows in the figures point out lines 
due to quasi -local vibrations; the broken lines 
show the shape of the electron -vibrational band 
without any account taken of the distortion of the 

FIG. 2 

Table II. Frequencies of the elec­
tronic-vibrational lines (in cm-1) 

in the luminescence spectrum of 
a crystal of CaF2 : Tu2+ at 4.2°K 

"'• = 8969.5 em=: 
<lo> = 0.41 em 

"'• = 8410,4 em=: 
<lo> = 12 em 

Experiment I 
['] Theory Experiment \ 

['] Theory 

97* 85* 95* 85* 
180 156 173 152 
221* 185* 
257 205 253 212 
348 346 339* 346* 

*The asterisks denote the most intense lines 

vibrational spectrum when an impurity is intro­
duced. 

Two intense phononless lines accompanied by 
vibrational structure are observed in the lumines­
cence spectrum of the Tu2+ ion in CaF2. We present 
in Table II the experimental and theoretical values 
of the frequencies of the electronic-vibrational lines 
that correspond to the sharp maxima of the func­
tions (24) and (27). [7] The expressions we have 
obtained for the intensity of the electron-vibrational 
band accurately determine the number of the most 
intense lines in the vibrational structure. The 
theoretical values of the frequencies agree rather 
well with the experimental data, in spite of the 
crude approximation to the spectrum of vibrations 
of the regular crystal. Taking into account the finite 
width of the electronic levels ~w the form of the ob­
served electronic -vibrational band should, in ac­
cordance with (6), be described by the integral from 
functions (24) and (27) with weight 

[(w- Wo + ro) 2 + (~w I 2)2]-1• 

In this case the narrow maxima are lowered 
considerably more than the wide ones, and, as can 
be seen from the figures, the most significant line 
in the vibrational structure turns out to be the one 
with frequency 85 em - 1, due to quasi-local vibra­
tions, in complete agreement with experiment. Our 
calculations show that there could be a line at 
326 cm-1 excited by local vibration. The intensity 
of this line is determined by the width ~wD of the 
discrete vibrational level, which depends on the 
decay time of this level and the concentration of 
impurity ions. It is very probable in the example 
we are considering that the width ~wD is large 
(the vibration frequency is close to the boundaries 
of the quasi -continuous spectrum), and the corre­
sponding line is not observed. 

The relative difference of the masses of rare­
earth ions is not great, and our results for Tu2+ 

should describe the vibrational structure of the 
optical spectra of fluorite containing other !'are­
earth ions as impurities. Wood and Kaiser LttJ 
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describe the vibrational structure of the lumines­
cence spectrum of Sm2+ in CaF2• The luminescence 
is observed as a result of transitions between 
energy levels of the Sm2+ ion that belong to differ­
ent electronic configurations (4f5d- 4f); hence 
there should not be any lines in the vibrational 
spectrum that are due to quasi -local vibrations 
with frequency ~ 90 cm- 1 (single-phonon electric 
dipole transitions between levels of different parity 
are excited only by even symmetrical vibrations). 
Actually, the lowest frequency of the observed 
electronic-vibrational lines is 184 cm- 1, possibly 
because of two-phonon processes. 

CONCLUSION 

Our results refute the ideas of Axe and Sorokin[12] 

about the nature of the vibrational structure. They 
suggested that the narrow electronic-vibrational 
lines are excited by vibrations of the complex con­
taining the impurity ion. The vibrational structure 
of the optical spectra of paramagnetic ionic crys­
tals are always due to vibrations of the entire crys­
tal as a whole, so that the change in the vibrational 
spectrum upon the introduction of impurities is very 
substantial. The vibrational spectra of crystals 
containing impurity centers have recently been 
studied intensively by means of the Mossbauer 
effect and neutron scattering. It should be noted 
that no less valuable information can also be ob­
tained by means of more simple optical investiga­
tions, in particular by the study of the concentration 
dependence of the width of the local vibrations, the 
distributioo of the energy of the crystal over the 
quasi -continuous spectrum, and the determination 
of the frequencies of the local and quasi -local 
vibrations. [13] The investigation of vibrational 
structure opens up the possibility of studying not 

only the motion of the impurity atom itself, as in 
the Mossbauer effect, but also the vibrations of its 
immediate surroundings, which modulate the Stark 
splitting of the energy levels in the crystalline field. 

In conclusion the author expresses his deep 
gratitude to Prof. S. A. Al'tshuler for his interest 
in the work, valuable advice, and a discussion of the 
results. 
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