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The cross section for diffraction scattering of particles by a black nucleus is obtained by 
the method of complex angular momenta. The expression for the cross section takes into 
account the smearing of the nuclear boundary and some other features which are neglected 
in the usual diffraction theory. Comparison with the experiments on the scattering of a 
particles by Mg24 lends support to the theory. 

1. The diffraction theory of the scattering of par
ticles by complex nuclei leads to the well known 
expression for the cross section 

a(tt) = [ ~ Ji(kR{}) r. (1) 

which asymptotically (for kRJ. » 1) goes over into 

2R ( :n:) a({})= :n:ktt3 cos2 kR{} + 4 . (2) 

Comparison with experiment (for example, a
nucleus scattering) shows that expression (2) de
scribes the oscillations of the cross section cor
rectly, although it has two important defects. First, 
the amplitude of the oscillations decreases, accord
ing to (2), like r 3 as the scattering angle is in
creased, whereas the experimental data show an 
exponential decrease. Second, the cross section 
(2) vanishes at the minima, which is also in con
tradiction with experiment. 

2. Let us consider the starting point of elemen
tary diffraction theory, which leads to the expres
sions (1) and (2). This is the assumption that the 
S matrix is given by 

f 0 for l < lo = kR- 1/2, 
81= 1 

l 1 for l > lo. 

It is, of course, also assumed that 

kR~1. 

(3) 

(4) 

Expression (3) evidently has the important 
shortcoming that it does not take account of the 
transitional boundary layer of the nucleus, which 
should lead to a gradual change of Sz from zero 
(complete absorption) to unity (absence of inter
action ) in some interval of angular momenta cor
responding to impact parameters ~ equal in 

order of magnitude to the magnitude of the diffuse
ness of the nucleus. 

As a simple model of an S matrix which takes 
account of the nuclear boundary, we may consider 
instead of (3) the following expression: 

[ ( l-l0 )J-1 
81= 1- i+exp\-'},- , (5) 

which goes over into (3) for A.- 0. Defining the 
size of the transition layer D..l as the interval in 
which Sz changes from ( 1 +e2 ) - 1 to 1 - ( 1 +e2 ) - 1 

(with l changing from 11 = 10 - D..l to l 2 = 10 + D..l ), 
we obtain 

'}, = ij2J).l. (6) 

The quantity D..l = k~ will, under the condition (4), 
be equal to several units, if we assume that D..R/R 
~ 0.1 to 0.2. 

3. Let us now consider the quantity Sz defined 
by (5) as a function of the complex variable l. It 
is clear that the only singularities of this function 
are simple poles at the points 

ln = lo + '},:n;ni (n = '1, 3, 5, ... ) (7) 

with the residues 

(8) 

The distance between neighboring poles is equal to 
27TA., i.e., of order 10 in situations met in a real 
nucleus. The transition to expression (3) consid
ered in the elementary diffraction theory corre
sponds to the case 27TA. « 1, where the Regge poles 
defined by (7) approach each other so closely that 
they form a continuous line of poles, i.e., a cut in 
the complex l plane. 

We see, therefore, that the consideration of the 
analytic properties of the matrix Sz reveals a 
sharp qualitative distinction between the case con-
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sidered in the elementary diffraction theory and 
the real situation arising from the presence of a 
transition region at the nuclear boundary. 

4. Let us use the Watson-Sommerfeld transfor
mation [ 1] for the calculation of the scattering am
plitude from Sz given by (5). Then the scattering 
amplitude is expressed through an integral over 
the contour B along the infinite straight line Re l 
= - % and over the contour C along a semi -circle 
of infinite radius closing the contour B from the 
right, and the sum of the residues of the Regge 
poles defined by (7) and (8). It is easily seen that 
the integral along the contour C vanishes. The 
contribution from the integral along the contour 
B can also be neglected if 

1- [1 + exp (-kRIA.)]-1 <1. (9) 

This condition, which implies that the probabil
ity for absorption of a particle passing through the 
center of the nucleus is practically unity, is usu
ally well satisfied. If this is the case, we can set 
Sz = 0 on the contour B. Then the resulting inte
gral is equal to zero (cf. [ 1]) in virtue of the known 
relation between Legendre polynomials: 

which is valid for arbitrary (also complex) index l. 
We have thus arrived at the result that the am

plitude is determined only by the contributions 
from the poles of Sz in the half-plane Re l > -%. 
Since 

(10) 

for all n, we can use the asymptotic form of the 
Legendre polynomials and obtain directly the con
tribution from the n-th pole to the scattering am
plitude in the form 

( ) _ _ i:rtA ( 2ln T 1 ;_) ----,-,-
fn it - k sin(ln:rt) (2:nl,.. sin itrh 

(11) 

If we use the condition 

(12) 

which, in view of the preceding remarks, will be 
well satisfied for not too small angles iJ, the 
main contribution to the amplitude will come only 
from the pair of complex conjugate poles closest 
to the real axis. As a result we obtain 

8~2R ( :rt 1 ~ ) 
a (it) = :rtk sin it e-z~v cos2 kRit + 4 + 2 kii. , (13) 

where {3 = rrA., i.e., the imaginary part of Z1• 

5. The expression (13) for the cross section 
is evidently in agreement with the experimentally 
observed exponential dependence of the amplitude 
of the oscillations on the scattering angle. How
ever, an essential defect of formula (13) is the 
fact that it gives a cross section which vanishes 
in the minima, as in elementary diffraction theory. 
This is connected with the circumstance that the 
formula (5) chosen by us for Sz is purely real 
(here we are, of course, speaking of real values 
of l ). Actually, the matrix Sz must be complex. 
Writing it in the form 

Sz = Y) ( l) eziO(l), 

where YIU) and o(Z) are real functions, we can, 
in generalization of the preceding discussion, for
mulate the following hypothesis, which is very 
natural in the present context. 

This hypothesis is that the main contribution 
to the cross section comes from a pair of complex 
conjugate Regge poles. These poles are contained 
in the function YIU ), which can be regarded as be
ing qualitatively similar to Sz as defined in (5). 
The real part of these poles is a = kR- ?'2, i.e., 
equal to Z0, the angular momentum of the par
ticle on the grazing trajectory. The imaginary 
parts ±{3 are equal in order of magnitude to ± kAR, 
where tlR is the size of the diffuseness region of 
the nucleus. 

Denoting the residues at these poles by a and 
a*, we obtain in the same way as before the final 
expression for the elastic diffraction scattering 
cross section: 

a(it) 

8:rtR 
= -.-lal2e-2~tt {sh2(~8o)+ cos2(kRit + y)}, (14)* 

ksmit 

So= 2~-! Im ll (lo + i~), 
V = :rt I 4 + arg a+~ I 2kR. (15) 

It is easy to see that the parameter 80 has a 
simple physical meaning: it is approximately equal 
to the classical scattering angle for a particle on 
the grazing trajectory. Indeed, assuming that the 
phase o ( l ) can be sufficiently well represented by 
two terms of a Taylor series in a circle of radius 
p l';:j {3 and with center at the point Z0, we obtain 

(16) 

i.e., 

Im ll(lo + i~) = ~ ( ~~) 10, 
(17) 

*sh =sinh. 
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and recalling that in the quasi-classical case 

d6z e = ± 2&, (18) 

where e is the scattering angle of a particle with 
angular momentum Z, we arrive at the desired 10 

FIG. l. Differential cross 
section (in millibarns per 
steradian) for the elastic scat
tering of a particles with en
ergy 31.5 MeV by Mg24 nuclei. 

result. 
6. Formula (14) is the final result of the present 

paper. It is valid only if the conditions 

kR ';;?;> 1, (19) 

are fulfilled. A rigorous foundation of our basic 
hypothesis that only two complex conjugate Regge 
poles contribute to the amplitude requires, of 
course, further work. However, this hypothesis is 
completely natural and plausible, and it leads to a 
formula, (14), which is in complete agreement with 
the principal experimental facts. Indeed, formula 
(14) reproduces the characteristic oscillations of 
the cross section, it does not vanish at the minima, 
and the amplitude of the oscillations decreases ex
ponentially with increasing scattering angle. 

We add a few remarks on the parameters en
tering in (14). The angle e0 should, for charged 
particle scattering, essentially be given by the 
purely Coulomb scattering angle ec for the graz
ing trajectory, which is given by 

(20) 

where B is the Coulomb barrier and E is the en
ergy of the particle in the center of mass system. 
One should expect, however, that e0 is somewhat 
smaller than ec owing to the nuclear attraction 
at the boundary of the nucleus. 

The absolute value of the residue, I a I, can be 
estimated on the basis of the model for Sz repre
sented by expression (5), which implies 

JaJ = f3 I :n:. (21) 

The quantity arg a, i.e., the phase of the residue, 
vanishes in this model. We note that the vanishing 
of the phase of the residue is a consequence of the 
symmetry of the derivative d1]/dl under the re
placement l ~ 10, i.e., it will take place for a wide 
class of functions whose derivative belongs to the 
type of a smeared-out o function which is sym
metric in the argument l -10• 

7. Postponing a detailed comparison of the 
present theory with experiment, we restrict our 

J(J 50 70 90 
zt, de!! 

analysis to the data on the elastic scattering of 
a particles with energy 31.5 MeV by Mg24 nuclei, 
obtained by Watters. [ 2] The figure shows the ex
perimental points and the theoretical curve cal
culated by (14) with the following parameters: 
kR == 12.15, {3 == 2.61, e0 == 7°, I a I == 1.14, y == 0.85. 
We see that theory and experiment are in good 
agreement for scattering angles ,J > 200, in ac
cordance with condition (19). For the interaction 
radius we obtain R == 5.75 x 10-13 em, and for the 
Coulomb scattering angle on the grazing trajec
tory, ec == 14 o. As we see, the value obtained, e0 

== 7°, satisfies the inequality eo< ec, which fol
lows from the physical considerations made above. 
The absolute value of the residue, I a I == 1.14, 
is rather close to the value I a I == 0.83 calculated 
by (21), which was obtained on the basis of the 
simple model (5). For the phase of the residue, 
arg a, we obtain - 0.04, which is also in good 
agreement with the value zero which follows from 
the model (5). Thus, the preliminary comparison 
of our theory with experiment shows that formula 
(14) describes the experimental data well, and 
reasonable values are obtained for the parameters 
contained in it. 
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