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We investigate experimentally and theoretically a new radio-frequency size effect in metal 
samples placed in a magnetic field perpendicular to their surface. The effect is due to the 
"ineffective" electrons moving along a helical path inside the metal. Because of this mo­
tion, a slowly damped field component is produced in the volume of the metal, and leads to 
oscillations of the impedance of a plane-parallel plate. The oscillations are periodic in a 
straight field. The periods b.H are determined by the extremal values of the electron dis­
placements along the magnetic field within one cyclotron period. Two types of electron 
trajectories that can lead to such oscillations are considered. The experiments were 
carried out with single-crystal tin in a magnetic field nearly parallel to the [100) crystal­
lographic axis. 

1. INTRODUCTION 

ALL the known radio-freduency size effects in 
metallic single crystals at low temperatures are 
due to different groups of so-called effective elec­
trons, which move on individual sections of their 
trajectories parallel to the surface of the metal. 
These size effects constitute a manifestation of the 
system of peaks of alternating fields and currents 
existing in the volume of the metal, the depth vari­
ation of thy distance between which is determined 
by the characteristic dimensions of the electron 
trajectories in the magnetic field H. The se­
quence of peaks can be due to chains of trajecto­
ries of electrons having identical momentum pro­
jections along H but situated atdifferentdepths[t-aJ. 
The peaks can also be connected with electrons that 
move along a periodic trajectory from the surface 
inside the metal [4•5]. 

We have investigated experimentally and theo­
retically size effects of another type, due to the 
motion of ineffective electrons inside the metal. 
The trajectories of these electrons are such that 

ment of the electron u in one cyclotron period. In 
the case of the effective electrons, on the other 
hand, the interaction differs from zero also for 
multiple harmonics An= u/n (n = 1, 2, 3, ... ). This 
difference causes the sharp peaks of field within 
the volume of the metal (and the narrow lines of the 
size effect) to give way in the case of the ineffec­
tive electrons to a harmonic distribution of the 
field inside the metal. As usual, the spatial period 
of the oscillations should be determined by the ex­
tremal values u = Uext· 

The extremum of u as a function of the quasi­
momentum component PH along the field must be 
reached at the elliptic limiting point: 

uo = 2:rtc I eHK't. (1) 

(K -value of the Gaussian curvature of the Fermi 
surface at the limiting point ) . In the case of a 
non-ellipsoidal Fermi surface, other extrema of 
the function u(pH) are also possible: 

(2) 

their normal velocity Vz never vanishes (the z where S(pH) is the area of intersection of the Fermi 
axis is directed along the normal n to the surface surface with the plane PH= const. The expansion 
of the metal). The interaction between the elec- of u(pH) - u0 in powers of PH -PH max begins 
tron and the electromagnetic field is therefore ap- with the linear term, while the expansion of u(pH) 
proximately the same along the entire trajectory. -Ut in powers of PH -pH1 begins with the quad-
The average interaction energy differs from zero ratic term. The difference between cases (1) and 
only for that harmonic of the alternating field in (2) is due to the fact that near the limiting point the 
metal, whose wavelength A is equal to the displace- electrons move on spirals of very small radius; on 
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the other hand, the radius of the spiral trajectories 
of the electrons near other sections with extremal 
value of u (PH ) is far from small. 

This effect, unlike the other radio-frequency 
size effects, has an analog in static conductivity. 
It is shown in the theoretical paper of SondheimerC6J, 
and later by V. Gurevich C7J, that the static conduc­
tivity of metallic plates has a term that oscillates 
with the field and is connected with the number of 
electron revolutions on the path from one surface 
of the plate to the other. This effect was first ob­
served by Babiskin and Siebenmann [SJ and by 
others [9, 10]. 

2. THEORY 

In this section we find the distribution of the 
electromagnetic field in a half-space z > 0 occu­
pied by a metal, with H II Oz. For simplicity we 
assume that the Fermi surface is singly -connected 
and is axially-symmetrical with respect to the Oz 
axis. As is well knownC11 • 12 J, the distribution of 
the circularly polarized components of the elec­
tromagnetic field in a metal has the following 
form: 

(3) 

Here E a ( z) -intensity of the alternating electric 
field 

(E (z, t) = E (z) e-i"'1), E±' (0) - aE± (0) I az, 

w and k are the frequency and wave vector of the 
electromagnetic wave, and for circularly polar­
ized waves the Fourier components CT± ( k) of the 
conductivity are 

(j± ( k) 

Pz max 

1 2ne2 m [ ku (p ) J-1 
_ J (2nfi) 3 dpzQ-V_t_2 y=t=i+i~ 

Pz max 

where e and m are the absolute values of the 
charge and of the effective mass of the electron, 
Q = eH/ me the cyclotron frequency, y = vhl, 

(4) 

y the frequency of collision between the electrons 
and the scatterers, v 1 ( pz ) = ( v~ + v} ) 112, and 
the displacement in one period is u = 27rvz/11. 
The ± signs in (4) correspond to electrons; in the 
case of holes they should be reversed. Expression 
(4) can be readily obtained from the kinetic equa­
tion (see [ 12 ]). 

For a spherical Fermi surface we obtain from 
(4) 

(k) - 3i Ne2[ (1-a±2 ) 1 a±-1] 
<r:~: - +~~- a±- n---

- 2 kp 2 a±+ 1 ' 

a± = (Q + iv) I lw, N = p3 I 3n21i3• 

(5) 

(6) 

Formula (3) is exact when the electrons are 
specularly reflected from the interface. In the 
case of diffuse reflection, on the other hand, it de­
scribes correctly the field distribution apart from 
a numerical factor of order unity (see also [l1, 1J). 

As is known from the paper of Reuter and Sond­
heimerC 11 J, in the case of the anomalous skin ef­
fect the expression for the field in the metal con­
tains two terms. One is the contribution from the 
poles of the integrand in (3) and describes the 
sharp decrease in the field near the metal surface. 
The other term is due to the presence of isolated 
branch points of the integrand and yields a small 
but rather slowly damped (over distances on the 
order of the mean free path l of the electrons) 
field component. The isolated branch points of 
the Fourier component of the conductivity u ±( k) 
are due to the contribution made by the electrons 
near the sections with u(pz) = Uext· In a strong 
magnetic field, when y « 1, these branch points 
are located near the real axis on the complex k 
plane. 1> At large distances from the surface of 
the metal, the contribution of the poles to the in­
tegral (3) can be neglected, and the behavior of the 
field will be determined by the behavior of the func­
tion u±( k) near the branch points. 

A. Case of limiting point. The contribution 
made to the conductivity by the electrons situated 
in the vicinity of the limiting point is determined 
by the integral 

[ _ . . ku0 • kuu' J-1 
X V + l + l 21t - l 21t (Pz max - Pz) 

[ ku ku ' J-1\. 
X V + i - i 21t0 + i 2; (Pz + Pz max) _ 1 

l)The anomalous penetration of the field connected with the 
drifting of the effective electrons(•) (field peaks) is due from the 
mathematical point of view to the presence of an infinite se­
quence of equidistant branch points of the function a(k) near the 
real axis. The case of the chain of orbits(•, ') is connected with 
the presence of a periodic sequence of zeros of the function a(k). 
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[( kuo ) ( kuo ) x - iy + 1 + 2n In , - iy + 1 + 2n 

( kuo ) ( kuo ) J + - iy + 1 --- In - iy + 1-- . , 2n , ? .... , 
(7) 

The integration is carried out here in the vicinity 
of the limiting points with I Pz I = Pz max on the 
Fermi surface dp) = EF; the values of these 
quantities are taken at € = EF, Pz = Pz max• and 
u0 = 8u(pzmax)/8pz. 

We see from (7) that near the positive real axis 
the function a+ (k) has a logarithmic branch point 
at k+ = 27T(1+iy)/u0, while the function a_(k) has 
one at k_ = 27T( 1 - iy )/u0• Let us calculate, for 
example, the asymptotic behavior of the function 
E+ ( z ) at very large z, due to the contribution 
made to (3) by the branch point k+. We draw a 
cut in the complex k plane from the point k+ par­
allel to the imaginary axis in the direction of 
Im k > 0. We bend the contour integral towards 
Im k > 0 in the term of (3) containing eikz, and 
towards Im k < 0 in the term with e-ikz. Then 
the expression (3) for E+ ( z ) can be represented 
as the sum of the residues and the integral along 
the edges of the cut (contour C, see Fig. 1 ): 

E+ (z) . s dk eikz 

- n E+'(z) = 2m L Res+ c k2 - i4moc-2a+(k)' (8) 

The sum of the integrals along the imaginary axis 
vanishes identically. The sum of the residues, as 
indicated above, is a rapidly decreasing function 
of z, inasmuch as the roots of the dispersion 
equation 

are essentially complex and are determined by the 
effective electrons: ka = 60 € a• where €~ = i 
(a= 1, 2, 3 ). The quantity 60 is the depth of pene­
tration of the electromagnetic field into the metal 
when H = 0: 

6o-3 = we2c-2fi-3 ~ S dp.mvJ..26(v.), (9) 

where o(vz) is the Dirac delta function; the sum­
mation is over all the bands. 

Taking into account the non-uniqueness of the 
function a+ ( k) on the different edges of the cut, 
we first evaluate the integral in (8) and then rep­
resent E+ ( z ) in the form 

E+(z) Ao (· .n) ---=-exp lk+z-l . 
E+'(O) z2 2 ' 

(10) 

_ c2 e2 'm 1 v. 1 I av J.. 2 1 ( uo ) 2 _ 2 ( 2n ) Ao-- ------ -- . 0'+ • 
(J) (2n/i) 3 Q apz Uo' Uo 

(11) 

For a spherical Fermi surface, using (5), we 

Imk 

FIG. 1 

obtain 

(12) 

To estimate the relative oscillation amplitude 
of (10) in the presence of two different limiting 
points, we can consider a model in which the 
Fermi surface consists of two spheres with radii 
Pt and p2• Using (5) and (11), we obtain 

Ao<1> NtPt a+2 (2n/u0<2>) 
Ao<2>= N2P2 0'+2 (2n/uo<1>) 

= £2[-2-+ln 1- 6 ]2/[~-ln 1-£ --in]2 (13) 
1-6 1+£ 1-6 1+6 ' 

where ~ = ptfp2 < 1. When ~ is small the ratio of 
the amplitudes is -47T-2 ~ 2 • We see from (11) and 
(13) that the oscillations due to different limiting 
points can have different phases, since a~ is 
complex. 

It follows from (10) that at large distances from 
the metal surface 

Ex(z)=IAol e-z/1 
z2 

X [Ex' (O)sin ( 2:: +X)+ Ey' (O)cos( 2:z + x) J, 

Ey(z) =lAo I e-•tl[ -Ex'(O)cos ( 2nz + :x;) 
z2 uo 

+ Ey' (0) sin( 2:z + :x; ) ]. (14) 

where x = arg Ao. 
B. Case of extremal helical trajectory. In the 

vicinity of the corresponding branch point, the 
Fourier component of the conductivity a±(k) is 
given by 
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00 
[ ku k I u " I J-t} +~ dpz y+i-i 23tt +i+(pz-Pzt)2 

-00 

e2 mv J... 2( 21 uti )'" e±in/2 
~4n2/i3 g- l"U('I (1±iy-kutf2n)'f, · (15) 

All quantities are taken at the point I Pz I = Pzi• 
where u(pz) has an extremum, uf = ( 82u/api )p~ 1 • 

Unlike in the case of the limiting point, here 
a±(k) acquires branch points of second order when 
~ = 27Tu:l(1 ± iy). Calculations analogous to those 
made above lead to the following formulas for the 
field: 

) At Ex(z = ---e-z/l, 
Ut'l•z't. 

[ , ( 2nz n) , ( 2nz n \l 
X Ex (O)cos ~+4 -Ey (O)sin .~+"4) 

At [ . ( 2nz n) Ey{z)=---e-zfl, Ex'(O)sm --+-
ut'i• z'h u 1 4 

( 2nz n )] -Ev'(O)cos -;-+t; ; 

All the formulas given above are valid when the 
conditions 60 « u « l, z are satisfied. 

(16) 

(17) 

Comparison of (14) and (16) shows that in the 
case of a helical trajectory the amplitude of the 
oscillations is ( z/u )112 times larger than in the 
case of a limiting point; the amplitude of the oscil­
lations due to the electrons near the limiting point 
is independent of the magnetic field. 

The obtained field distribution is quite peculiar. 
An electron penetrating into the metal carries in­
formation concerning the instantaneous value of 
the electric field E in the skin layer, the vector 
E following a helical path (we recall that w « v ) • 
When the external field is linearly polarizPd, a 
standing helical wave is produced. If the external 
field is circularly polarized, a wave is obtained 
with positive or negative phase velocity, depend­
ing on the relation between the rotation of the po­
larization vector of the external field to the direc­
tion of rotation of the electrons. 

So far we have considered only the simplest 
case of an axially symmetrical Fermi surface, 
when the longitudinal component of the velocity 
v z is independent of T ( T = Qt is the dimension-

less time of motion of the electron along the orbit 
in momentum space), and the transverse compo­
nents Vx and vy contain only the first harmonics 
in T: 

Vx = VJ...COS't", Vy = VJ...Sin't". 

In the general case the fact that v z is a function 
of T and the presence of higher harmonics in the 
Fourier expansions of Vx( T) and vy( T) leads to 
the occurrence of new branch points of the func­
tions a±(k) at k= 27Tu-1(n± iy) (n= 2,3, ... ). 
This in turn leads to the appearance of higher bar­
monies in E ( z ) . In particular, points with v z ( T) 

= 0 can appear on the extremal helical trajectory 
when the longitudinal velocity component Vz has a 
strong dependence on T. The electrons become 
effective, and the interference of a large number 
of higher -order harmonics results in narrow field 
peaks. The strong dependence of v z on T should 
also lead to a dependence of the oscillation ampli­
tude on the polarization of the external field. On 
the other hand, for an elliptical limiting point, the 
degree of ellipticity of the standing helical wave 
(14) coincides with the ellipticity of the limiting 
point itself. 

3. EXPERIMENT 

We employed in the experiments the previously 
used[ 13•(] modulation procedure for measuring the 
dependence of the imaginary part of the surface 
impedance of a metallic sample on the magnetic 
field. The sample was placed inside a tank-circuit 
coil, and the variation of the oscillation frequency 
f with the field was measured. The measured 
quantity was 

of a a f E(O)-Ed J 
an"' - an6eu = aHL Re E' (0) 

a [ Ed J 
=-an Re E'(O) ' (18) 

where Ed is the electric field on the other side of 
the plate, due to the penetration of the wave into the 
metal. Inasmuch as the distribution of the field in 
a plate of thickness d » u should not differ, for 
diffusely scattered €!ectrons, from the distribution 
of the field in a half-space, the experimental curves 
can be directly compared with formulas (14) and 
(16) for Ex( z, H) by putting Ey( 0) = 0 and z = d: 
Ed (H) = Ex( d, H). (The field H enters in (14) and 
(16) as a parameter.) 

The experiments were made with tin samples 
grown in dismountable quartz molds [ 14 ] from 
metal containing "'10-4 % impurities. The sam-
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(OOfj 

~[OfO/ 
(100} 

Sample Z 

[Of OJ 

~(OOf/ 
[100} 
Sample 1 

FIG. 2 

pies were rectangular plates measuring 13 x 3 mm; 
we had to give up the previously employed larger­
diameter discs beoause of the need for modulating 
the field perpendicular to the surface of the sam­
ple, the depth of penetration of the field at 20 cps 
being on the order of 1 mm under our conditions. 
The orientations of the two samples, with which 
we obtained all the main results, are shown in 
Fig. 2 (the angle between the normals to the sur­
face and the [100] axis did not exceed 1.5° ). Sam­
ple 1 had a thickness d1 = 0.46 mm and sample 2 
a thickness d2 = 0.96 mm. 

The sample occupied the greater part of the in­
terior of the tank -circuit coil. The shape of the 
sample was such that it could not be rotated on 
the coil; we therefore used two interchangeable 
coils to obtain different polarizations of the alter­
nating electric field. The axis of one was parallel 
to the long side of the plate, and that of the other 
to the short side (Fig. 2). The oscillation fre­
quency varied from experiment to experiment in 
the interval from 2 to 10 Mcs. The coils were 
glued on a polystyrene plate and encased in a 
copper vacuum -type vessel which was inserted 
into the Dewar. The heat exchange gas was con­
tained in the copper vessel. 

The field produced by the electromagnet was 
horizontal and could be varied from zero to 10 kOe. 
The cryostat could be rotated about the vertical 
axis through any angle and also inclined ± 4 o to 
the magnetic field. The rotating unit was secured 
directly on the electromagnet, so that the latter 
served simultaneously as a massive base tore­
duce the vibrations of the cryostat. The circuit 
was sensitive enough to detect a nuclear-magnetic­
resonance signal produced by protons in the poly­
styrene plate and by copper nuclei in the wire of 
the inductance coil. This produced field markers 
directly on the curves and made it possible to 
monitor the stability of the Hall pickup, whose 
voltage was fed to a two-coordinate automatic 
plotter. 

4. EXPERIMENTAL RESULTS 

We investigated the region of magnetic-field 
directions in the vicinity of the crystallographic 
axis [100]. For convenience in systematization 
and discussion of the results, this vicinity is shown 
in Fig. 3. The smallness of the angle intervals 
made it possible to use a rectangular projection. 
The dashed lines show the planes in which the di­
rection of the magnetic field was varied in definite 
series of experiments. 

Starting with approximately 2 kOe, the plot of 
&f/&H vs. H assumes a sharply nonmonotonic and 
oscillating character (see Figs. 5-7 ) • In weaker 
fields, the oscillations disappear and the mono­
tonic component of &f/&H increases. Simultane­
ously, a change takes place in the phase of the 
frequency modulation compared with the phase of 
the field modulation. This shows, apparently, that 
in weak fields, when the transverse conductivity of 
the metal is still large, the modulating field does 
not fully penetrate into the sample. It is possible 
that this is precisely why we were unable to ob­
serve the size effect in weak fields. 

We established that the oscillations observed 
in fields of 2-10 kOe are periodic in a straight 
field and that the magnitude of the period ~H does 
not depend on the temperature or frequency and is 
inversely proportional to the thickness of the sam­
ple. We have observed several groups of oscilla­
tions. Their interference sometimes makes it dif­
ficult to interpret the curves (for example, the 
lower curve on Fig. 6 below). However, in the 
immediate vicinity of the [100] direction the pic­
ture becomes simpler. This has made it possible 
to investigate in detail the angular dependences of 
the two groups of oscillations, which we shall ar­
bitrarily call a- and {3-oscillations. 

i ~ Ill 
I~ I 

Y( I I 
~·~I I 

a I I 1 a --q" -+--
. I 

I c 
-~---

1 
I 

d I d 
-~---

-t• 

le 
I 
I 
I 
I 
I 
I 
I 
I 
I (OOf) 

FIG. 3. Rectangular projection of the vicinity of the [100] 
axis on the direction sphere. 
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FIG. 4. Variation of the period of the a-oscillations when 
the magnetic field is rotated along the line bb. The numerical 
values of ~H pertain to sample 2. 

A. a-Oscillations. These are seen only for an 
ac electric-field polarization E II [010]. Figure 4 
shows the dependence of the period of oscillations 
on the angle when the field direction varies along 
the line bb (Fig. 3). The value of P, represented 
by the second ordinate scale of Fig. 4, is obtained 
by multiplying ~H by de/21rc, and has the mean­
ing of a characteristic momentum. If the oscilla­
tions are determined by the electrons near the 
limiting point, then P = K- 112, and in the case of 
spiral trajectories P = ( 21r) - 1 ( 8S/8pH )ext· When 
the vector H is rotated in another plane (for ex­
ample along cc or dd) 5° from the (010) plane, 
the period increases only 2.5%. The oscillations 
are almost sinusoidal everywhere except thenar­
row region of angles near the (010) plane (region I 
of Fig. 3 ). As can be seen from the plots on Fig. 5, 
when H lies in this angle region the period of the 
a-oscillations doubles. The change in the period 
is nonmonotonic: the conserved extrema remain 
practically in their previous positions. Nothing 
of this kind is observed for oscillations with other 
periods in region I. 

B. {3-0scillations. These are approximately 
one order of magnitude less intense than the a­
oscillations. The shown plots of the {3-oscillations 
pertain to a polarization E II [001]. However, in 
the field interval 1-2.5 kOe, {3-oscillations are 
seen also for a polarization E II [010], but then 
drop out against the background of the stronger 
a-oscillations. Thus, apparently, the amplitude 
of the oscillations depends less on the polarization. 
The series of plots shown in Fig. 6 corresponds to 
rotation of the vector H along the line bb. As in 
the case of the a-oscillations, the periods are 
practically independent of the angle cp. When 
cp .<:. 4° (line ee ), other periods also appear, so 

that it becomes practically impossible to separate 
the {3 oscillations. The picture becomes more 
complicated also when the angle 1/J increases 
(lower curve of Fig. 6 ). 

C. y-Oscillations. At angles cp ~ 15-20° 
( 1/J ~ oo ) we see again a distinct single period 
(Fig. 7) with p = 0.27 x 10-19 g-em/sec. The y­
oscillations are seen equally well at both po_lari­
zations. 

D. Long-Period oscillations. On sample 2, at 
E II [010] and at small values of the angles cp and 
1/J, we could see quite clearly, besides the a­
oscillations, long-period oscillations correspond­
ing to p = 2.2 x 10- 19 g-em/sec -the same value 
as obtained in [4] for the limiting point I. How­
ever, these oscillations could not be seen with 
thinner samples, and also with a different polar­
ization in sample 2. 

5. DISCUSSION 

The periodicity in the straight field and the har­
monic character of the oscillations at the employed 
experimental geometry give grounds for assuming 
that the observed oscillations are due to the size 
effect produced by ineffective electrons. It is quite 
difficult to distinguish between the electrons at the 
limiting points and the electrons on helical trajec­
tories, because the only practical criterion is the 
character of the dependence of the amplitude of the 
oscillations on the field. By employing this crite­
rion it is possible, for example, to conclude that 
the {3 -oscillations are connected with the limiting 
points and the y-oscillations with the helical tra-

01'/tJfl 

FIG. 5. Plots of the a-oscillations of sample 2 when the 
field is rotated along the line aa; Ell [010], T = 1.3°K, 
f = 5.0 Mcs. The curves are labeled with approximate values of 
the angle cp. (The angles were measured with approximate accu· 
racy 10 ', and the position cp = 0° was determined from the sym­
metry of the effect.) 
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90 O.ff 

FIG. 6. Plots of the oscillations in sample 1, 

with the field rotated along the line bb and with 
polarization Ell [001]; T = 1.3°K, f = 5.1 Mcs. The 
cu!Ves are marked with the values of the angle rjJ. 
In the right side of the lower curve are seen the 
quantum oscillations of the impedance ps]. The 
relative nuclear magnetic resonance amplitudes -J• -z· -t• o• t• z· s· "' 5" 

2 8 

jectories. However, it is difficult to analyze the 
field dependence of the amplitude in our experi­
ments because a slight penetration of the modulat­
ing field into the sample is possible in the case of 
weak fields, while in fields near 8-10 kOe the con­
dition u » 6 no longer holds. Therefore deduc­
tions based on an analysis of the amplitude of the 
oscillations are not very reliable. 

On the other hand, we were unable to observe 
reliably oscillations from limiting points, which, 
according to our earlier data [4], should certainly 
exist in the vicinity of the [100] direction. The 
reason is not quite clear, all the more since the 
radius of curvature of the Fermi surface in the 
vicinity of the limiting point I is larger, and con­
sequently the amplitude of the corresponding os­
cillations should also be large [see (13)]. It is 
possible that the oscillations due to the limiting 
points are generally indistinguishable a,gainst the 
background of oscillations from the helical tra­
jectories the amplitudes of which are larger by 
a factor ( d/u ) 112• 

We must dwell especially on the a-oscillations. 
They can be distinguished from the other groups by 
the very strong dependence of the amplitude on the 
polarization of the high -frequency field, and also by 
the already noted doubling of the period of the os­
cillations in a definite region of magnetic-field di­
rections. The latter is probably due to the fact that 
at these field directions two identical closed orbits 

z ·" 5 

and the amplitudes of the quantum oscillations are 
reduced by several times compared with the ampli­
tude of the oscillations of the size effect, owing to 
a large rate of change of the field during the time of 
recording. 

merge into one, with a narrow neck in the middle. 
In such a case, the doubling of the period would be 
evidence of the presence of saddle points and orbits 
with self-intersection. At the same time, from 
other experiments with tin we know that the follow­
ing takes place: In the same region of directions 
(i) a sharp increase in the amplitude and a narrow­
ing of the lines, as observed by Koch and Kip [ 16 ] 

in cyclotron resonance in the normal field, and (ii) 
open trajectories appear on the Fermi surface of 
the fourth zone[ 1s]. It is possible that some connec­
tion exists between these phenomena. For a final 
answer to the question of what groups of electrons 
cause the observed oscillations, we must know more 
details about the structure of the Fermi surface of 
tin. 

The effect described above gives in principle 
the same information on the electron spectrum as 
the oscillations of the static conductivity of plates 
in a normal magnetic field [6 - 10]. The radio-fre­
quency size effect appears preferable to us be­
cause, according to theory [6• 7], the amplitude of 
the static-conductivity oscillations should decrease 
quite rapidly with increasing magnetic field. We 
note also that when a radio-frequency procedure is 
used, the measurements are carried out by con­
tactless methods and samples with large area can 
be employed. However, it is still difficult to com­
pare the possibilities of these two methods, owing 
to the lack of experimental material. 

FIG. 7. Plot of the y-oscillations in sample 2; 
Ell [010]. T = 1.3°K, f = 5.2 Mcs, cp = 17°, 1/J ~ 00. 



1060 V. F. GANTMAKHER and E. A. KANER 

The authors are grateful to P. L. Kapitza for 
affording the opportunity of performing the experi­
mental part at the Institute of Physics Problems 
of the Academy of Sciences, and to Yu. V. Sharvin 
for a discussion of the results. 

1 M. Ya. Azbel', JETP 39, 400 (1960), Soviet 
Phys. JETP 12, 283 (1961). 

2 V. F. Gantmakher, JETP 43, 345 (1962), 
Soviet Phys. JETP 16, 247 (1963). 

3 E. A. Kaner, JETP 44, 1036 (1963), Soviet 
Phys. JETP 17, 700 (1963). 

4 V. F. Gantmakher and E. A. Kaner, JETP 
45, 1430 (1963), Soviet Phys. JETP 18, 988 (1964). 

5 v. F. Gantmakher and I. P. Krylov, JETP 
47, 2111 (1964), Soviet Phys. JETP 20, 1418 (1965). 

6 E. H. Sondheimer, Phys. Rev. 80, 400 (1950). 
7 V. L. Gurevich, JETP 35, 668 (1958), Soviet 

Phys. JETP 8, 464 (1959). 

8 J. Babiskin and P. G. Siebenmann, Phys. Rev. 
107' 1249 (1957). 

9 Zebouni, Hamburg, and Mackey, Phys. Rev. 
Letters 11, 260 (1963). 

10 J. A. Munarin and J. A. Marcus, Paper at 
Ninth International Conference on Low Tempera­
ture Physics, USA, 1964. 

11 G. E. H. Reuter and E. H. Sondheimer, Proc. 
Roy. Soc. 195, 336 (1949). 

12 M. Ya. Azbel' and M. I. Kaganov, DAN SSSR 
95, 41 (1954). 

13 V. F. Gantmakher, JETP 44, 811 (1963), 
Soviet Phys. JETP 17, 549 (1963). 

14 Yu. V. Sharvin and V. F. Gantmakher, PTE 
No. 6, 165 (1963). 

15 E. P. Vol' ski!, JETP 46, 123 (1964), Soviet 
Phys. JETP 19, 89 (1964). 

16 J. F. Koch and A. F. Kip, Phys. Rev. Letters 
8, 473 (1962). 

Translated by J. G. Adashko 
226 


