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It is shown that two-dimensional vortex lattices in rotating liquid helium are capable of 
rotating along with the vessel. It is also shown that regions of reverse rotation of the super
fluid liquid exist in the intervortex volume (in the rotating reference system). 

1. The basis of the hydrodynamics of rotating 
helium [ t-3] is the concept that the motion of a 
superfluid is brought about by the presence in it 
of Onsager-Feynman vortex filaments. To be 
specific, the rotation of the vortices along with the 
vessel leads causes the superfluid to rotate with 
them, in the mean, like a rigid body with a non
zero curl of the average velocity, although the 
motion around each individual vortex is potential 
(see, for example, Sec. 1,4 and Fig. 1 in the review 
by Andronikashvili et al. [3]) However, a more 
detailed development of these concepts ( determi
nation of the geometric structure of the system of 
vortices, study of the velocity distribution in the 
intervortex regions, etc.) lies beyond the scope 
of such a theory, since all the physical quantities 
in it are averaged over regions containing suffi
ciently many vortices. In the present paper we 
consider such problems on the basis of the pheno
menological theory of liquid helium. [ 4•5] 

2. We consider equilibrium rotation of liquid 
helium in a vessel which is assumed to be suffi
ciently large that the effect of the walls can be 
neglected and the liquid can be considered to be 
infinite in extent. From the expression given by 
Pitaevskil for the dissipation function [ 5] it follows 
that in helium rotation unaccompanied by energy 
dissipation we should have (in dimensionless 
form) 

Yn = (ro0 r], VT =0; (1)* 

(iV + [roo r])2W + (oe/ ops)p, sW = 0. (2) 

Here w0 is the angular velocity, measured in units 
of 2aln ~ 8.6 x 1010 (TA- T) sec-1; the coordi
nates are measured in units of a 0 = 111-J 2ma 
R~ 4.3 x 10-8 ( TA - T)-11 2 em; Ill= fei<P is the wave 
function measured in units of (a I f3) 11 2 

( Ps = f2, Vs = 'V<p ); E is the internal energy per 

*[~or] ='C<lo X r. 

unit volume, measured in units of a 2 I {3; S is the 
entropy, and T is the temperature. In the defini
tion of the units we used the constants a ~ 4.5 
x 10-17 ( T A - T) erg and f3 ~ 4 x 10-40 erg-cm3, 

introduced in [ 4J; m is the mass of the helium 
atom and T A is the temperature of the A transi
tion in motionless helium, in the vicinity of which 
the phenomenological theory is valid. 

If the conditions (1) and (2) are satisfied, the 
complete set of phenomenological equations of 
liquid helium [ 5] reduces to 

2i aw = _ ~ w + [( ae ) + ( ae ) l w, 
dt Ops p,S op p8 ,8-

V (oe/8p)p 8 • s = 2roo2r, 
opn I at+ [roor] V Pn = 0 

and to the continuity equation for the entropy, 
which is unimportant in the following exposition. 
The continuity equation for Ps is the imaginary 
part of Eq. (3). 

(3) 

(4) 

(5) 

Substitution of (4) in (3) (in which the integra
tion constant can be discarded without limiting the 
generality of the presentation) reduces the solu
tion of the entire system to the solution of the 
single equation (2), if only 

aw I at = - [roor] V'W, (6) 

which, together with (5), denotes the stationarity 
of the distribution of the values of Pn• Ps• and v s 
in the rotating reference system. It will be shown 
below that Eq. (2) actually has a solution which de
scribes motions of this type. 

3. We substitute in (2) the expansion of oEiops 
in the form [ 4] 

(ae I aps)p, s = -t + f, (7) 

which gives 

(iV+[roor])2W-W+IWI 21¥=0. (2a) 

It can be shown that Eq. (2a) admits a solution of 
the same type as obtained in the work of Ginzburg 
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and Pitaevski1[ 4J, which describes the vortex fila
ment in a non-rotating liquid (see also [s] ). How
ever, in this case, the presence of the term 
w0 x r in (2a) leads to motion of the vortex fila
ment itself about the axis of rotation of the normal 
component (the vessel). This is to be expected, 
for only in this case is it possible to avoid the 
energy dissipation that is inevitable when there is 
relative motion between the vortex and the normal 
liquid. [ t-3] 

Let us represent f in the vicinity of some point 
rv by a series that is characteristic for the vortex 
point: 

t = ~ A2k+IP2k+1, 
k=O 

where p = r - rv. We set 

I Vcp- [roor]l = ~ Bkpk 

k=-1 

and substitute this series in Eq. (2a). It is not 
difficult to establish the fact that the equation is 
actually satisfied, where 

B_1 = 1, B 0 = 0; 

( Ptl p, Pt = p ), and thereby confirm also the 
presence of rotation of the vortex point. 

4. For the following exposition, it is extremely 
important that Eq. (2a) is analogous to one of the 
equations of the Ginzburg-Landau theory, used by 
AbrikosovC 7J to explain the properties of type II 
superconductors. The well known analogy between 
the vortex filaments formed under the action of a 
magnetic field in such superconductors and the 
vortices in rotating liquid helium has been shown 
to be rather far reaching, permitting us to make 
wide use for our purposes of the methods and re
sults of Abrikosov's paperC 7J, and of some of the 
many investigations stimulated by it on the theory 
of type II superconductors. 

In a later paper we shall describe the limits of 
the region of the w0 - T diagram, occupied by the 
states of the liquid helium, which the Onsager
Feynman filaments penetrate. For the time being 
we limit ourselves to the remark that the vortices 
are formed in the rotating cylinder at very low 
angular velocities[B,S], but their accumulation 
with increase in w 0 leads to a transition to the 
normal state when the distance between the vor
tices becomes comparable with the dimensions of 
their cores. Correspondingly, the value of w0 

(the second critical velocity) is shown to be equal 
to wo2 = 0.5 ( wo2 = 4.3 x 1010 ( T A - T) sec-1, see 
below). 

5. In order to avoid mathematical difficulties 

associated with the solution of the nonlinear equa
tion (2a), we carry out, following Abrikosov[7J, a 
detailed analysis of the geometric structure of the 
system of vortices in the region of the second 
critical velocity w02 = 0.5, although this region is 
but slightly accessible to experimental investiga
tion. The purpose of this analysis is not to obtain 
quantitative data to be compared with experiments, 
but definite conclusions, the qualitative character 
of which is not connected in principle with the 
enormous velocity of rotation or with the unreal
istic closeness of T to T A. 

For w 0 ~ w 02 (in connection with the high 
density of vortices on which I \jf I = 0) one can 
neglect the next term of Eq. (2a) and consider the 
linearized equation 

(2b) 

Its solutions are connected by means of the 
simple formula 

'¥(x, y) = '¥i(x + Xo, y +Yo) exp [-iwo(x + 2xo)y] (8) 

with the solutions '11 1 ( x, y) of the equation 

which, according to C7J, describe a two-dimen
sional vortex lattice. In Eqs. (8) and (9), x0 and 

(9) 

Yo are arbitrary numbers, the presence of which 
causes the lattices just mentioned to be arbitrarily 
shifted relative to the origin of the coordinates; 
this origin is fixed by Eq. (2b) on the axis of rota
tion of the normal component; k is the basis 
vector of the y axis; to convert from the notation 
of AbrikosovC 7J to ours, we must set K = 1, 
H0 = 2w 0• 

Nonzero solutions of Eq. (2b) exist for 

w0 = 1/ 2 (2n + 1) (n = 0, 1, .. . ), 

whence it follows that w0 max= w 02 = 0.5. Solu
tions for intermediate values of w 0 must be sought 
by means of the nonlinear equation. In particular, 
for w0 :S wo2• we use a method of successive 
approximations in which the zeroth approximation 
serves as the solution of the linear equation for 
wo = wo2 (see the case H0 :S K in C7J). 

According to ( 8), f = I '111 = I '111 1. Therefore, 
the lines f = const, shown in the drawing in [ 7] 

and in Fig. 2 in [tO], describe the density distribu
tion of the superfluid component in cases of vertex 
lattices with square and triangle symmetries re
spectively. Then the requirement of the existence 
of solutions found by the method of successive 
approximations (see Eq. (14) in [T] ), and minimi
zation of the free energy, lead in our case to the 
condition 
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/ 4 I cf2)2 = min, 

which contains only f. Therefore, one can directly 
apply to the rotating helium the conclusion of the 
work of Kleiner et al. [ 10] on the preference for 
the case of triangle symmetry (see also [ 11] ). 

The imaginary part of Eq. (2a) (and, conse
quently, of (2b) also), 

(Vj, V<p- [roor]) = 0 ( 10) 

shows that the lines f = const are simultaneously 
lines of flow for the superfluid component in the 
rotating reference system. Considering from this 
viewpoint the drawings we have referred to from 
[ 7J and [ 10], it is impossible not to note the fact 
that, in the vicinity of the points where f is maxi
mized, the superfluid component rotates in a direc
tion opposite to the direction of its rotating about 
the vortex points (where f = 0). This fact de
serves a detailed study. 

We begin with the case of square symmetry. 
Then, according to (8), 

co 

n=-oo 

- 1/ 2 (x + Xo- n l'2n)2], (11) 

where co is a normalizing constant, w0 = w02 , and 
the lattice parameter is equal to J2ir. We consider 
the phase of this function in the vicinity of the vor
tex points 

Xv = (2p + 1)}';tT2- Xo, 

Yv = (2q + 1)l'n I 2- Yo 

and of the maxima 

Xm = p-y2:n: - Xo, 

Ym = qj/2:n: - Yo (p, q = ... -1,0, 1, ... ). 

Expanding 'l! in powers of x - xv, y - Yv and 
consequently in powers of x - xm and y - Ym• 
and making use of the equations 

L (n2 -n)exp[inn-n(0.5-n) 2]=0 
n=-oo 

and 
co 

~ exp [inn- :n:(0.5- n)2] = 0, 
n=-oo 

we get 
-1 Y- Yv+ ij CJlv=tan --- 2Xv(Y-Yv)- 1/2Yv(X-xv)+ ... , 

x-xv 
(12) 

C(lm = 1I2Xm (y- Ym) - 1I2Ym (x- Xm) + . . . (13) 

The first of these equations describes the already 
noticed rotation (with angular velocity w02 = 0.5) 
of the vortex points around the axis of rotation of 

the normal component (the vessel). The second 
describes the analogous motion of the maxima. 
Here, the relative motion of the superfluid adjacent 
to the maxima is a reverse rotation (with velocity 
wo2). In the fixed reference system, the motion is 
a rotation about the axis of the container with a 
constant linear velocity: 1> 

V<j)m ~ [Wol'm] = [roor]- (ro0 , I'- rm]. 

In this connection, it is of interest to recall the 
work of Pellam [ 12] in which he contrasted the 
vortex model of rotating helium with a model of 
domains whose centers rotate together with the 
vessel, while a reverse rotation around these 
centers takes place inside the domains. This 
leads to a constant linear velocity inside the do
main, to the equation curl Vs = 0, and to a mean 
velocity Vs = w0 x r. It is curious that the pres
ence of such domains (near the maxima of the 
wave functions) turned out to be not in contradic
tion, but in close connection with the presence of 
vortices. 

Similar results are also obtained for lattices 
with triangle symmetry, when 

'¥=Co exp [- 1/zi(x + 2x0 ) y] c~~ + i~ 2) exp [in(l'3- n) •;, 

X (y +yo)- 1/z(x + xo- n (l'3 n) 'f,)2], (14) 

where ~ 1 and ~ 2 denote sums over all even and 
odd n, respectively. 

Thus both the considered lattices are ''rigid'' 
in the sense that they possess the property of 
rotating as a unit about an arbitrarily placed axis 
in the lattice, the axis about which the normal 
component is moving. 

6. This property of the lattices of quantum vor
tices, which seemingly is a trivial result of their 
interaction with the normal component rotating as 
a whole (see Fig. 3), turns out to be very signifi
cant, demonstrating a difference in principle be
tween the phase of the wave function <p and the 
velocity potential <p 0 of the vortex lattice in the 
classical ideal incompressible liquid. 

The coincidence of <p and <p 0, which occurs in 
the presence of a single vortex in a fixed unbounded 
liquid (when <p = <p o = tan-1 ( ( y - Yv) I ( x - x0) ], 
could have created the false impression that the 
quantum and classical vortices differ only in the 

1lHere it is essential that, owing to the fact that 

~ (4nn2 - 1) e-nn' = 0, 

there are no terms of second order in x - Xm, and y - Ym in the 
expansion (13). 
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density distribution, but not in the velocity. Ac
tually, in the general case, q; and cp 0 can differ 
strongly from each other. The point is that q; is 
determined by a set of equations which connect 
this quantity with the velocity distribution in the 
normal component. But q; 0 is expressed by the 
equation 

( summed over all vortices), thanks to which the 
velocity distribution is determined only by the 
distribution of the vortices themselves. The re
sultant difference between q; and q; 0 is clearly 
evident in the motion of the just considered un
bounded, two-dimensional lattice vortex formed in 
liquid helium and the lattice of classical point vor
tices which is geometrically identical with it. 

The former, as shown in Sec. 5, rotate with the 
normal component. The situation with the latter is 
as follows. First, it must be noted that they gen
erally do not have a selected point about which they 
could rotate. In obvious connection with this fact, 
the expression 

Vu = {VC(lo- V tan-1 [(y- Yv) / (x- Xv)]}r=rv' 

which should define the velocity of the proper 
motion of the vortices, is not single-valued. One 
could attempt to get around this difficulty by se
lecting in the expression for q; 0 a sequence of sum
mation corresponding to a system of vortices in a 
large, but not infinite, cylindrical vessel. To be 
precise, one of the vortices is considered central; 
then one sums the potentials of four or six of its 
nearest neighbors (depending on the character of 
the lattice), located on one circle, etc. However, 
it is not difficult to verify that such an artificial 
method does not prevent the "spreading apart" of 
the vortex lattice constructed in a classical, ideal 
incompressible liquid, a lattice geometrically iden
tical with the two dimensional lattices considered 
by us in Sec. 5. 2> The rotation of such classical 

2 )The authors are grateful toN. P. Kogoniya, Ts. T. 
Tarkashvili, and 0. B. Maladze, who confirmed this fact by 
direct machine computation. 

lattices can be obtained only by replacement of the 
ambiguous expression for Vv by the analogous 
(but unique) expression connected with the Weier
strass 1; -function (private communication from 
V. K. Tkachenko). 

7. It is evident that statements concerning the 
possibility of an essential difference between the 
phase wave function and the classical velocity po
tential of the geometrically identical systems of 
classical and quantum vortices, of the capacity of 
the quantum vortices to create "rigid" ( relative 
to "spreading apart" during the motion) two
dimensional lattices, and of the presence in the 
intervortex regions of a reverse relative rotation 
of the superfluid, have a rather general character, 
and there is no basis for doubt in their validity at 
much lower velocities and temperatures than those 
for which Eq. (2b) is applicable. 
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