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The probability of charge exchange of multiply charged ions ( A+2 + B- A++ B+) is calcu­
lated, within the framework of the theory of nonstationary perturbations and in the two-level 
and classical nuclear-motion approximations for the case when there is Coulomb interaction 
in one of the channels (A++ B+). The nondiagonal interaction matrix element in the atomic­
function representation is approximated by an exponential function of the interatomic distance. 
The system of time-dependent equations for the complex transition amplitudes, written in the 
representation of molecular electronic functions, is integrated numerically for a wide range 
of variation of the parameters of the problem ( 6 and y). The limits of applicability of the 
Landau-Zener formula are delineated. 

1. FORMULATION OF THE PROBLEM 

THE calculation of the cross section for charge­
exchange in atomic collisions involves two prob­
lems. The first is to find approximate adiabatic 
electronic wave functions of the system of two 
atoms. In those cases when the charge exchange 
( that is, the transition between two adiabatic elec­
tronic states) occurs essentially at large inter­
nuclear distances R and is considere9 as a single­
electron process, the adiabatic functions can be 
approximated with sufficient degree of accuracy by 
a linear combination of atomic orbitals [ 1- 4] , with a 
pre-exponential factor suitably corrected for the 
distortion of the atomic orbitals in the field of the 
other center.C 5J We shall henceforth consider pre­
cisely this case, and the lower bounds of the quan­
tity R will be indicated later on. 

The second problem is to solve the coupled 
Schrodinger equations for the wave functions of the 
relative motion of the nuclei, or a system of time­
dependent equations in which account is taken of the 
interaction induced between the adiabatic electronic 
states by the motion of the nuclei, and of other 
terms left out of the adiabatic electronic Hamil­
tonian. We retain in these equations only two 
terms (between which a transition takes place), 
and assume that the motion of the nuclei is classi­
cal and that the trajectory of motion R = R( t) is 
determined by an adiabatic potential. This imposes 
additional limitations on the splitting t..E of the 
adiabatic terms and on the energy E of relative 
motion of the partners in the collision. 

These limitations can be easily obtained from 

an analysis of the potential curves of the terms 
between which the transition takes place. Let us 
consider for concreteness a reaction of the type 
( 11/20) l): 

A++ B+ +± A+2 + B + L\e. (1) 

We assume (as will be confirmed subsequently) 
that the main contribution to the probability of 
transition between the two terms in question comes 
from a certain region with center R0 and effective 
width t..R. Then, if the condition ( .6.R/R0 ) « 1 is 
satisfied, the system develops in the internal re­
gion ( R ;S R0) adiabatically, so that there are no 
transitions near the turning points. In the region 
of the transition ( R ~ R0 ) we can introduce the 
concept of a trajectory provided t..E ( R0) is much 
less than E 1 or E 2• In addition, the energies E 1 

and E2 are bounded from above; this limitation 
follows from the requirement that the two states 
in question be weakly coupled with all other states, 
and can be approximately formulated in the form 

I ~(Ain/L\Ein)! <1 (i= 1, 2), 
n*' 

where t..Ein is the difference between the ener­
gies of the adiabatic terms i and n while Ain is 
the matrix element of the nonadiabatic interaction 
between these states ( Fig. 1). 

A characteristic feature of the reaction 
( 11/20) is that the difference of the terms ap-

1)The notation is that of Hastead (see[•], page 696). The 
numbers indicate the charges of the two initial and the two 
final ions. 
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FIG. 1. 

proaches the asymptotic splitting DoE = D.E ( oo) 
like 1/R (we are using atomic units throughout). 
This leads to the possibility of crossing of the 
zeroth-approximation terms (that is, the terms 
calculated with atomic functions). At such large 
distances R = R0, so that we can use for the non­
diagonal matrix element of the interaction the 
asymptotic expression 

V(R) ~ CRne-aR, a= l/21, 

I= min(JB, fA+, JB+). 

C and n can be obtained by the method given in 
Smirnov's paper[ 5J (see also [ 1- 3J). 

(2) 

Approximation (2), the form of which is in 
general important only in the region of the transi­
tion, is valid if ( D.R/R0) « 1. In a more rigorous 
approach it would be necessary to use as the pre­
exponential function a polynomial in R of degree 
n, but when aR » 1 the rate of growth of this 
polynomial is determined only by the principal 
term ( aR)n. Since as a rule D.R ~ 1/a, the con­
dition (D.R/Ro) « 1 (which includes the require­
ment a R0 » 1) is satisfied 2> if aR » n. But 
this means that the pre-exponential factor in (2) 
can be regarded in the transition region as con­
stant, that is, we can put in final analysis 

V(R) ~be-aR. 

Thus, if the following conditions are satisfied 

2)0ne might think that the condition L'1R/R 0 « 1 contains 
the velocity of the colliding atoms. This is actually the case 
if L'1R is estimated on the basis of the Landau-Zener model: 
L'1R ~ L'1R, = (tiv I L'1F)'/,. For such an estimate it is assumed, 
however, that the width L'1R, of the transition is much smaller 
than the characteristic interaction radius 1/ a (approximation 
of the matrix element of the interaction by a constant). There­
fore it is necessary to substitute in the criterion L'1R/R 0 « 1 
the value L'1R "'1/a, and not L'1R "'R1• If it turns out formally 
that L'1R, » 1/ a, this means only that the width of the transi­
tion region cannot be estimated within the framework of the 
Landau-Zener approximation. From (5) we see that L'1R a"" "'y% 

';:; 1 u ' 
and when oy 2 2: 1, as follows from the results of the paper, the 
transition probability differs greatly from the value calculated 
by the Landau-Zener formula (see Fig. 3 below). 

L'1R/Ro~ 1, L'1E(Ro)~ E1, ez, 

I~ (Ain/L'1Ein) I ~1 
n¢i 

(3) 

then reaction (1) is described by a system of two 
equations for the amplitudes a 1 and a 2 of the ex­
pansion of the total wave functions in the atomic 
orbitals qJ 1 and cp 2 or for the amplitudes b 1 and 
b2 of the expansion in the molecular functions lj.J 1 

and lj.J 2• Within the framework of the approxima­
tion of the two states, this system of equations can 
be regarded as Hermitian, since the nonhermi­
ticity due to the non-orthogonality of the atomic 
functions is brought about only by the influence of 
the higher electronic states, which are neglected 
here. Without stopping to discuss this question in 
greater detail, we note only that the nonhermiticity 
can be eliminated by using, for example, a single­
center basis, at the expense of formulating the 
initial conditions somewhat inaccurately[ 6]. 

As a model interaction illustrative of the nature 
of the problem, we use the following matrix ele­
ments, calculated in the basis of atomic functions 
(which are orthogonal by definition) 

Hu- Hzz = L'1e- 1 I R ~ (R- Ro) I R 02 + const, 

H12 =a exp (-a(R- Ro) ). (4) 

In the region of the transition we approximate R 
by a linear function of the time, R = R0 + vRd, 
choosing as the origin the point R = R0, where 
H11 = H22· Thus, the parameters of the model are 
as follows: the difference D.F in the strengths of 
the linear terms, the matrix element a of the 
interaction between the states, the resonance de­
fect D.E of reaction ( 1) ( connected with D. F by the 
relation D. F = 1/ Rij = D. E /R0), and the radius of 
action 1/ a of the exchange forces ( all the par am­
eters are taken at the point R = R0). It is con­
venient to define the following dimensionless 
parameters: 

y = twRL'1F I 2a2, o = 2aa I L'1F, 1: = at I fi. (5) 

Turning to [ 1- 3], we can establish that the re­
gions of variation of the parameters are as follows 

6=10-'-10, aR0 =5-20. (6) 

As to y, this parameter changes in an interval 
that contains the point y = rr/ln 2 ~ 4.53 of the 
maximum transition probability, calculated in the 
Landau-Zener approximation ( H12 = const.). 

Finally, the system of equations for the transi­
tion amplitudes takes the form 

ida1,2 I d1: = exp ( -OyT + iy1:2) a2, 1• (7) 

This system describes the shift of the atomic 
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states after a single passage through the transition 
region (approach of the atoms to the turning point). 
No account is taken here, however, of the time de­
pendence of the atomic functions due to the par am­
etric relation I = R ( t) (dynamic coupling). Ne­
glect of dynamic coupling is valid under the con­
dition that the velocity of the nuclei be small com­
pared with the velocity of the atomic electron; this 
ensures that the factor exp (- imevRr/n), which is 
introduced into the atomic weight function to take 
into account the motion of the nucleus [ 7], is close 
to unity. In dimensionless parameters, this condi­
tion is approximately formulated in the form 
yo « I/ a. It must be added to the limitations (3) 
on the velocity of the nuclei. 

An investigation of the system (7) is of interest, 
in particular, because the model on which it is 
based is analogous to the model considered by 
Nikitin[B, 9] and by Demkov[to] in connection with 
a charge exchange reaction of the type ( 01/10). 
The only difference is that for the charge exchange 
( 01/10) it is necessary to put t.E = 6E = const, 
that is, i y 7 2 in ( 7) must be replaced by i y 7. It 
will be shown below that the strong approach of the 
terms in the reaction ( 11/02) can lead to a non­
monotonic dependence of the probability of the 
charge exchange W, and also of the cross section 
a-, on the relative velocity vCJJ of the atom; in this 
connection, the results obtained will be compared 
with the results of some theoretical papers [ 11- 14]. 

2. GENERAL PROPERTIES OF THE TRANSITION 
PROBABILITY 

We assume first that the difference in the ac­
tions along the trajectories from the turning point 
( R 1 or R2 ) to the transition region ( R0 ) is large, 
that is, 

In this case the interference of the transition 
amplitudes, due to the double passage through the 
transition region, can be neglected, and the transi­
tion probability W for the double passage can be 
determined simply by summing the currents: 
W = 2P ( 1 - P). The probability P is determined 
by integrating the system of equations (7) as the 
square of the modulus of the nondiagonal element 
of the scattering matrix that relates the adiabatic 
states on the two sides of the transition region. 
The transformation from the atomic orbitals cpi 
to molecular orbitals 1/Ji is defined in usual 
fashion: 

( 'ljl1 ) = ( c~s f1 sin fl) ( q>1 ) 
1Jl2 -sm f1 COSf1, q>2 ' 

2H12 ( 
tan 21-1 = H H . 9) 

u- 22 

The amplitudes bi (see above) satisfy in this 
case the following system of equations: 

id;~' 2 = ~ exp ( + i ~ t.E d't'') b2 ,1. I bt(+ oo) 12 = 1, 
0 

(lOa) 

~ 

!J.E ('t') = 2 ~ [y2't''2 + exp (- 26y't'') ]'1• d't'', 
0 

A discussion of the general properties of P is 
best carried out in connection with the analytic 
properties of the function t.E, which is regarded 
as a function of the complex variable z = oy 7, in­
asmuch as in the case of small velocities 
(t>Emin/ativ » 1) the main contribution to the 
transition probability P is made by the regions 
near the branch points of t.E ( 7) [ 15]. The zeroes 
of the radicand in (lOb) are determined by the 
points of intersection of the curves 

arg (±izez) = 0, I ±izezl = 6, (11) 

which are shown in Fig. 2. It is easy to determine 
from the figure the character of motion of the 
zeroes in the z plane as c5 is varied. 

When c5 « 1/e, Eq. (11) describes two curves, 
one of which is localized near the origin. On these 
curves lie the two zeroes of t.E ( z 0 and z(j) 
which are closest to the real axis. The second 
curve does not cross the y axis, and all the branch 
points on it ( Zn and z~) lie farther from the y 
axis than z 0 or z(j. In the limit as o - 0, there 
are actually two independent regions of the transi­
tion; the first is situated near x = 0 (point of 
crossing of the zeroth-approximation terms), and 
the second is near x = x0, where x0 is the root of 

FIG. 2. 
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the equation oe-X = X (the point at Which the dif­
ference in the zeroth-approximation terms is 
equal to double the matrix element of the interac­
tion). If the distance between the two indicated 
transition regions is large, then the transition 
probability is obtained by summing the currents, 
that is, 

(12) 

In this case W 1 is given by the Landau-Zener 
formula [ 16] (two branch points), and we can use 
for W2 the result of the calculation of the transi­
tion probabilities of two parallel first-approxima­
tion terms [ 9d 7] (infinite number of branch points, 
located at equal distances from one another and 
lying on a straight line parallel to the imaginary 
axis): 

W1 = 2e-" /V(i- e-n IV); 

Wz = 2e-~(1 + e-~)-2, 

~ = 2:n:xo(6) /v62, xo = 6e-x'. 

(13) 

(14) 

The condition for neglecting interference be­
tween the transition amplitudes reduces to the 
condition of smallness of the effective widths of 
the transition regions compared with the distance 
between them, that is, 

(15) 

It is easy to see that simultaneous satisfaction of 
these relations results in the inequality 

~ liE Xo2 
!!.S ~ - dR ""' - ';};> 1. 

tw 62v 
(16) 

When o » 1, as can be seen from Fig. 2, there 
remains one transition region, and the transition 
probability can be represented asymptotically 
(when x0 » 1) by formula (14), inasmuch as the 
branch points are again located on a line almost 
parallel to the y axis. 

Under conditions (3) it is easy to find the cor­
rect phase factor which must be introduced into 
the expression for the transition probability in the 
limit of large velocities. In this case the probabil­
ity W reaches a maximum value, and the phase 
factor can be obtained within the framework of 
perturbation theory for degenerate states [ 18] by 
assuming that the interaction is turned on in the 
transition region instantaneously [ ( 6-Emin/ aliv) 
« 1] and by joining the adiabatic functions in the 
internal region ( R :S R0 ) to the atomic functions 
in the external region ( R ~ R0) . We thus obtain 

W'=2P(1-P)·2sin2 ( ;n~!!.E(R) d~ ). (17) 

A consequence of (3) is the inequality 

(18) 

and therefore the approximate determination of the 
phase results in a small error if the Massey 
parameters are small ( 6-e/ aliv « 1). In other 
words, we can describe with sufficient accuracy 
the velocity region corresponding to the monotonic 
decrease of the reaction cross section ( limit of 
the Born approximation). In the region of large 
oscillations of the cross section, the method of 
joining gives an incorrect phase shift, but this 
phase shift is immaterial, since the observed 
cross section is a quantity averaged over the os­
cillations. 

3. NUMERICAL INTEGRATION OF THE FUNDA­
MENTAL SYSTEM OF EQUATIONS 

In the intermediate region of the parameter 
o ( o ~ 1), the system of four differential equations 
for the real and the imaginary parts of the transi­
tion amplitudes was integrated numerically. The 
presence of rapidly oscillating coefficients in the 
system makes the numerical integration most 
difficult. This is precisely why the initial system 
(7) cannot be integrated at all in practice. In fact, 
with increasing 7 > 0, both the amplitude ea' 7 

and the phase {3 1 7 2 increase rapidly in the coeffi­
cients of the type ea' 7 sin {3' 7 2 (a' > 0). There­
fore, in order to maintain the required accuracy 
of integration ( ~0.01 in each of the integrated 
functions) during each step, in the presence of 
accelerating oscillations of the increasing ampli­
tude, it is necessary to integrate with smaller 
and smaller intervals. Then the integration time 
necessary to obtain the asymptotic value of P 
(as 7- -oo) becomes very large. The advan­
tages of the adiabatic representation of (10) lie in 
the presence of the amplitude ji., which exponen­
tially decreases [see (lOb)] on both ends of the 
integration interval 3l (+A, -A), in front of the 
rapidly oscillating factor 

" 
exp ( i ~ !!.E dT' ) . 

0 

By virtue of this, the time connected with the need 
for calculating the integral 

3 lThe limits of integration were determined by trial and 
error, starting from the requirement that there be no transitions 
at r = ±A, accurate to "' 10-6 • 
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during each n-th step is compensated by the expo­
nentially rapid approach of the solution to the 
asymptotic value. The numerical integration was 
by the Runge-Kutta method, with automatic se­
lection of the interval such as to ensure a speci­
fied integration accuracy (see above). The re­
gion of variation of the parameters 6 and y, and 
also the results of the calculations, are shown in 
Fig. 3. 

!=tje 

!=(} 

~0 60 a, r. 
wo ~5o taoor 

FIG. 3. 

The compiled program solves the problem of 
numerical integration of the system of equations 
for the two-level model if the electronic matrix 
elements H11 - H22 and H12 of the interaction are 
known. By printing-out the values of I b2 ( T) 12 

at the intermediate values of T we were able to 
follow directly the positions of the transition re­
gions and their dependences on the collision 
parameters and on the form of the interaction 
matrix element. To monitor the correctness of 
the solution, we used the normalization conserva­
tion condition lb 1 j2 + I b2 j2 = 1; in addition, in the 
case of o = 0, the numerically obtained solution 
(that is, the transition probability) coincided 
within 0.5% with the analytically known result 
(the Landau-Zener formula). 

The cross section of reaction (1) was calcu­
lated by numerically averaging the probabilities 
W (p, Voo) over all the impact parameters p: 

p voo 
1 2n Ro2 1 

a(voo) = 2n J W(p, Voo)P dp = --2- J W(y)'vdy, 
0 Voo 0 

V = Voo(i- p2/Ro2) 'h, Voo = fivoo !J.E/2a2• (19) 

4. DISCUSSION OF RESULTS 

Let us compare the calculated transition proba­
bility with the deductions of some theoretical 
papers devoted to charge-exchange reactions. It 
is expedient to consider separately two ways of 
improving on the initial Landau-Zener formulation. 

1. Account of two transition regions. The prob­
lem of calculating the transition probability in this 
case was discussed by Mordvinov and Firsov[ 13] 

and Kozhushner and Sayasov[ 14]. In the first of 

these papers, account was taken of both the static 
and the dynamic coupling of the atomic orbitals of 
two atoms. Inasmuch as no dynamic coupling is 
considered in the present paper, direct compari­
son of the result of the two papers is impossible. 

We note, however, that even if this condition is 
satisfied the plot of the probability (or cross sec­
tion) vs. Voo can have a second maximum-a situa­
tion formally analogous to the results of Mordvinov 
and Firsov. The critical remarks made by Dykhne 
and Chaplik[ 15] with regards to the inconsistency 
of the model employed in [ 13 ] cannot pertain to the 
present case, since the analytic properties of the 
function b.E differ greatly here from the proper­
ties of the function b.E of the Landau-Zener model 
( two branch points). 

Kozhushner and Sayasov[ 14] considered only 
the static coupling between the atomic functions, 
and calculated the interference between the transi­
tion amplitudes within the framework of the Stueck­
elberg method, with account of only the branch 
points closest to the real axis (two branch points 
for each region; we recall that we are dealing with 
interference in a single passage through two tran­
sition regions; the interference between the inci­
dent and scattered waves was not considered in [ 13 ] 

and [ 14] ) • The errors due to neglecting in [ 14] the 
branch points of b.E that are far from the real 
axis were discussed by one of the authors[ 17J. We 
note here only that the oscillating addition to the 
transition probability obtained in [ 14], as can be 
seen from the calculation results, is practically 
nonexistent for the interaction of the type consid­
ered here (the crossing of the zeroth-approxima­
tion terms in one region and the quasi-crossing in 
the other). 

2. Account of the dependence of the nondiagonal 
matrix element H12 of the interaction between the 
atomic states on R. This dependence is manifest 
in the difference between the transition probability 
W and the quantity W1 calculated in the Landau-
Z ener approximation. An approximate account of 
this dependence is the subject of papers by Dubrov­
ski'l [ 11 • 12], in which the method of standard equa­
tions was used. The formula obtained in these 
papers for the probability of the charge exchange 
( 1) and proposed for the calculation of the cross 
section [formula ( 14) of [11]] differs from the 
Landau-Zener formula only in the pre-exponential 
factor F = [1 + (av 00 /b.E) 2 r 1, which leads to a 
decrease of the probability in the region beyond 
the maximum as compared with W1• From the 
results of the numerical calculation given above 
and from general considerations it follows that an 
account of the dependence of H12 on R leads to an 
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increase in the probability on both sides of the 
maximum. A numerical analysis of the rate at 
which the transition probability reaches the asymp­
totic value shows that this result does not change 
if account is taken of the relatively weak pre­
exponential dependence of H12, or if the expansion 
of the difference of the zero-order terms near the 
crossing point is made more precise by adding the 
nonlinear terms. This difference in the results is 
connected apparently with the fact that the stand­
ard equations used by Dubrovskil correspond to an 
oversimplified picture of the ion interaction. 

Inasmuch as formula (14) of[!!J is in better 
agreement with the majority of the experimental 
data cited in[ 12] than the Landau-Zener formula, 
the discrepancy between the present results and 
the experimental data in the region of large veloc­
ities is greater than in the case of the Landau­
Zener formula. It is quite probable that the 
charge-exchange reactions cited in C 12] do not 
satisfy the limitations of the two-level model, 
since we are dealing with reactions accompanied 
by transfer of a p-electron, and consequently all 
the terms which result from the configurations 
( p) N will be close to one another. Exceptions in 
this respect are the reactions ( 11/02) and ( 02/11) 
for the systems HeLi and AlH. It is to be expected 
that the assumptions that the width of the transition 
region is small, C~R/R0 ) « 1, and that the coupling 
of the two channels in question to all the other 
channels is weak, I 6 A in I!:::. Ein I « 1, are best 

n>"i 
satisfied near the reaction threshold. In this 
sense, interest is attached to the reaction ( 11/20) 
for the system AlH, for which the cross section 
near threshold is known C 12]. The parameters of 
this reaction are !:::.E = 5.29 eV, 2a = 1.54 eV, 
a = 1, and o = 1.45. It is seen from Fig. 3 that 
when 6 R:: 1 the cross section increases more 
strongly with increasing y than in the Landau-
Z ener approximation. This is in qualitative agree­
ment with the experimental data cited in [ 12]. 
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