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It is shown that the interaction between the proper-field of a uniformly moving charge and 
excited atoms of matter leads to the emission of radiation of a frequency which differs from 
the excitation energy of the atom. The radiation intensity depends on the velocity of the par­
ticle, on the angle of emission of the quantum and on the excitation energy of the atoms in 
such a manner that if the material contains atoms with one excited state it is possible to 
measure the energy of the particle in terms of the angle of emission of the quantum. 

1. INTRODUCTION 

IN order that emission of radiation should occur 
when a charge is moving uniformly in a medium 
it is necessary that the proper field of the charge 
be transformable into transverse electromagnetic 
waves as a result of its interaction with the me­
dium. We consider the case when Vavilov-Ceren­
kov radiation is absent. Then radiation can occur 
as a result of the scattering of the proper field of 
the charge by spatial inhomogeneities in the me­
dium. The properties of such radiation have been 
investigated earlier by many authors[tJ. We 
pointed out [2] the existence of another mechanism 
of radiation, associated with Raman scattering of 
the proper field of the charge in a medium. For 
the appearance of such radiation (to which it is 
natural to refer as Raman radiation) it is neces­
sary that certain definite relations be satisfied. 

It is essential to point out the fact that the most 
interesting possibility is that of Raman radiation 
in a strictly homogeneous medium (without transfer 
of momentum to the substance). This possibility 
is related to a certain peculiar feature of Raman 
scattering of the proper field of the charge. In­
deed, in Raman scattering of transverse waves the 
change in the photon energy leads to a change in 
its momentum (the laws of conservation admit 
such a process only if momentum is transferred 
to the substance), so that Raman scattering of 
transverse waves is essentially related to the ex­
istence of inhomogeneities in the substance. 

If the Fourier-component of the proper field is 
scattered 

Eo (r, t) = S d3qE0 ( q) exp [iq (r- vt) ], 

E ie v ( qv) eo - q 
o(q)=2rr2eoq2 -(qv) 2 eo' (1.1) 

then the situation is altered, since the relation 
between the momentum of the Fourier-component 
q and the energy q · v is less restrictive than for 
transverse waves. In particular, one can find such 
an angle between q and v for which Raman scat­
tering occurs without transferring any momentum 
at all to the substance. Such a version of the 
process is distinct from all the others due to the 
fact that it can occur in a strictly homogeneous 
substance, i.e., it is not associated with the pres­
ence of inhomogeneities in the medium. There­
fore, Raman radiation of this type is more proba­
ble than radiation involving a transfer of momen­
tum. 

From an investigation of the Raman scattering 
of the proper field it follows that radiation without 
transfer of momentum to the medium is possible 
if the angle of emission of the quantum J satisfies 
the following condition [2] 

cos it= - 1-( 1- 6-w), 
v"Yeo, w 

(1.2) 

where .t.w is the energy transferred to the medium 
by the quantum as a result of scattering. From the 
requirement cos2 J ~ 1 we obtain the following 
condition for the existence of radiation 

v2eo;;;;: ( 1 - Llw_)2. 
(t) / 

(1.3) 

If Vavilov-Cerenkov radiation is absent, i.e., 
v2E0 < 1, then Raman radiation is possible only 
for .t.w > 0. From (1.2) it also follows that the 
spectrum of the frequencies radiated has the form 

Llw 
(t) == ' (1.4) 

'1 - v "Yeooos it 

so that high frequencies can also be emitted near 
the threshold of the Vavilov-Cerenkov radiation. 
It is evident that emission of frequencies lying 
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far from the characteristic frequencies of the 
medium is of interest since otherwise it will be 
impossible to distinguish the radiation from the 
charge against the background of spontaneous 
radiation from the medium. This investigation is 
restricted by the assumption that the radiation 
represents a process which is rapid in comparison 
to the interaction with neighboring atoms (mole­
cules) so that thermal motion does not affect the 
emission of radiation. It is evident that this con­
dition is fulfilled if the frequency of radiation w 

and the time T characteristic of relaxation proc­
esses satisfy the inequality w T » 1. 

2. POLARIZATION OF EXCITED MATTER BY 
AN ELECTROMAGNETIC FIELD 

We investigate the singularities which appear 
when a substance containing excited atoms is 
polarized by an electromagnetic field 

E(r,t) = ~ dwE(r,w)e-iwt. 

In carrying out this investigation we shall 
assume that the dielectric permittivity of the 
unexcited substance Eo ( w) is known. Let the 
wave function of an individual atom (molecule) 
prior to the switching on of the field be a super­
position of stationary states 

n 

where the expansion coefficients an can be as­
sumed to be either independent of the time or 
sufficiently slow functions of the time. This as­
sumes that all the relaxation processes are slow 
compared to the radiation process under discus­
sion. 

The switching on of the field leads to a change 
in the wave function by a small quantity 

n 

in which the expansion coefficients change with 
time much more rapidly than an· Writing down 
the Hamiltonian for the interaction with the long 
wavelength field in the form -D · E, where D is 
the dipole-moment operator, it is not difficult to 
obtain from the Schrodinger equation in the ap­
proximation linear in the field 

Cm(R, t) = ~a.~ dw . DmsE(R, w) 
8 Wms-w-~0 

X exp [i(Wms- w) t], (2 .1) 

assuming that the field was switched on at 

t - - 00 • Generally speaking, the expansion coeffi­
cients cm are different for each atom, and this is 
taken into account by the dependence of cm on the 
coordinate of the center of mass of the atom R. 
The dipole moment induced by the field in an in­
dividual atom has the form 

n,m 

It is convenient to break up the density of the 
dipole moment induced by the field P ( R, t) into 
a part corresponding to the unexcited medium, 
P0 ( R, t) and a correction to this quantity P 1 ( R, t) 
which is due to the presence of excited states: 

P (R, t) = P0 (R, t) + P1 (R, t), 

n,s m 

X Dnm(Dms(R, w)) exp[i(Wns-w)t]+compl. conj. 

where the bar denotes averaging over the direc­
tions of the vector D, while the prime in the 
summation over n, s denotes that in the sum we 
omit the term corresponding to the unexcited 
medium (n = s = 0). 

The distinction in principle between P1 and P0 

can be easily seen on the example of a periodic 
field. In this case P 0 ( R, t) oscillates with the 
frequency of the field, while P1 ( R, t) represents 
a superposition of oscillations with the comb ina­
tion frequencies w - Wns. Such a dependence of 
the polarization on the time is equivalent to a 
variation of the properties of the medium with 
time, i.e., to a variation with time of the dielec­
tric permittivity. The appearance of this depend­
ence even in an equilibrium substance is associ­
ated with the fact that the discussion of the scat­
tering of electromagnetic waves must always be 
carried out with greater accuracy than the usual 
considerations of macroscopic theory. The values 
of the macroscopic fields are here taken to be the 
result of averaging only over a physically infini­
tesimal volume. As is well known averaging over 
the motion of the particles is not carried out in 
the scattering problem (it can be carried out only 
in the final result), since the carrying out of such 
averaging at the initial stage of the investigation 
would lead to the disappearance of the scattering 
process that is of interest to us. Therefore, the 
dependence of the properties of the medium on 
the time arising in the case of the equilibrium 
substance is related to the absence of averaging 
over the motion of the particles. 

Setting E = e IE I as a result of the uniqueness 
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of the selected direction e we have 

so that 
I 

4:rtP1 (R, t) = ~ ~ dwQns(w)E(R, w)exp [- i(w- Cilns)t], 
n, s 

m 

(2 .2) 

from which follows the relation associating the 
induction with the field: 

D(R, t) = ~ dw [ eo(w)+ ~' Qns(w)exp(iwnst) J 
n, s 

X E(H, w)e-iwt 
(2 .3) 

or 
D(k. w) = eo(w)E(k, w) 

I 

-j- ~ Qns(w + ulus)E(k, w -j- Wns). (2.3') 
n, s 

These relations prove the equivalence of a sub­
stance with excited atoms with a substance having 
a dielectric permittivity variable with time. For 
example, in the simplest particular case when two 
levels are populated - the ground level and the 
first excited level, we have 1 l 

X exp (iw10t). 

Thus, the system of Maxwell's equations in a 
medium with excited atoms assumes the form 

rotH(w) = 4nj(w)- iweoE((J))- iw 

n,s 

eodivE(w) = 4np(w) 

- ~ Qns((J) + (J)ns)divE(w + Cilns), 
n,s 

divH((J)) =0, rot E ( (J)) = i(J)H ( <u) . (2 .4) * 

3. INTENSITY OF RAMAN RADIATION 

The solution of the system of Maxwell's equa­
tions (2 .4) for the field of a uniformly moving 

l)The radiation of a charged particle in a medium with a 
phenomonologically given dependence E(w, t) = E0 (w) + 
E.(w)cos (k· r - Ot) has been investigated recently by Barsu­
kov and Bolotovski'l [4]. 

*rot = curl. 

charge can be carried out by the method of suc­
cessive approximations. For this we assume that 
Qns are small quantities and the solution of the 
system (2 .4) is written in the form 

E = Eo + E1 + Ez + ... , 
in which the k-th term is proportional to ( Qns )k. 

In the zeroth approximation the system (2.4) 
coincides with Maxwell's equations for an unex­
cited medium. The field of a uniformly moving 
charge in such a medium E0 ( r, t) is known and 
is given by formula (1.1). In the first approxima­
tion with respect to Q the system (2 .4) yields 

rotH1((J)) =- iw 

X ~Qn,s((J)+(J)ns)Eo(Cil-j-(J)ns), 
n, s 

1 
divE1(w) =- · ~ Qns(Cil + Cilns)divEo(w + Cilns), 

Bo n, s 

divH1 = 0, (3.1) 

From (3.1) it follows that E1 ( R, w) satisfies 
the equation 

ilE! + w2eoE1 =- ~ Qns((J) + Wns) [ w2Eo((J) + (J)ns) 
n,s 

+ 1 graddivEo(w+wns)], 
Bo 

(3.2) 

which coincides in form with the equation for the 
retarded potentials. Therefore, the solution of 
(3.2) at large distances can be obtained by means 
of the well known approximate expression for re­
tarded potentials at great distances from the 
source [3]: 

n,s 

x·[w2E0 (r,<u-l-wns)+ ~0 V(VEo(r,w-t-wm))l 

n v-k=j[Cil e0 • 

Utilizing the expression (1.1) for Eo ( r, t) we 
can easily obtain 

eikR J 
E1 (R, w) = ~ ~ (2n)~ l Qns (w + w,) [ w2E 0 (k) 

n,s 

-k(kEo(k)) LJ o(w-kV-J-Ciln;)}. (3.3) 

As is well known, the energy emitted in the 
frequency interval dw into the solid angle dn 
during the whole transit time T in the medium is 
given by the expression 

We now assume that in the unexcited medium there 
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is no radiation from a uniformly moving charge 
( v2 Eo < 1 ) . This means that the field E0 ( R, w) 

falls off at large distances faster than 1/R. In 
this case at sufficiently large distances one can 
omit E0 in (3.4), retaining only E1 ( R, w ). From 
(3.3) it can be seen that in this case in (3.4) there 
appear squares of 6-functions with the same 
argument, and this means that the radiation is 
proportional to the total transit time T. Indeed, 
transforming 

[il(w ± Wns- kv))Z = T(2:rt)-1il(w + Wns- kv), 

one can obtain from (3.3) and (3.4) that the energy 
dJ emitted in the frequency interval dw into the 
solid angle dQ per unit path is determined by the 
expression 

X {[nEo (k) ]}2 L I Qns ( w + Wns) 12 6 ( W + Wns- kv) 
n, s 

or, substituting Eo ( k) by the expression 

dl(n, w)=_::_ l'eo(w) w2dwdQ (kv)2[w2~o(kv)-(kv2)] 
2:rtv e0 (kv) [k2 - (kv) 2 e0 (kv) ]2 

XL IQns(w + Wns) l2 6(w + Wns- kv). (3.5) 
n-, s 

It follows from (3.5) that the angle J between 
the direction of the photon momentum k and the 
direction of the particle velocity v is related to 
the photon frequency by the equations 

cos~ = - 1 - ( 1 - ~) ' 
vl'eo(w) w ' 

and this agrees with formula (1.1) obtained from 
considering the conservation laws for emission. 

Integrating over the angles with the aid of the 
6-function we can easily find the energy emitted 
by a uniformly moving charge into the frequency 
interval dw in all directions per unit path: 

I Wnsl > W ( 1 - V l' Bo ( w) ) . (3.6) 

As an example we consider the simplest case 
when prior to the switching on of the field only 
the ground and the first excited states of the 
atoms are populated. Then Qns = 0 for s ?: 2, 
n ?: 2; the diagonal elements yield no oscillations 
with sum or difference frequencies and do not 

lead to emission of radiation. Therefore, it re­
mains to take into account only Q01 and Q10 , and 
only two terms will remain from the sums over 
n and s. Assuming that the condition w 10 

> w ( 1 - v~)) is satisfied we obtain from 
(3.6) 

e2 wdw 
dl=- -,--~-------:­

V2 eo(w + ww) 

(3.7) 

where radiation of the given frequency w is 
emitted only at a single well defined angle deter­
mined by the equation 

1 ( Ww ) cos~=---= 1--- . 
vl'eo w ' 

As has been pointed out [2], this circumstance 
enables one to utilize Raman radiation for the de­
tection of charged particles of high energy. The 
advantage of this method is the fact that by 
selecting the frequency of radiation w and the 
excitation energy w10 , one can always make the 
angle of emission of the quantum of the order of 
magnitude unity even for arbitrarily high energies 
of the particle. 

4. IONIZATION LOSSES IN A MEDIUM WITH 
EXCITED A TOMS 

A charged particle moving in a straight line in 
a medium loses by ionization and excitation of 
atoms during the whole time of flight T the en­
ergy 

Tl2 

t.& = ev S dtE(vt, t) 
-T/2 

Tl2 

=e~dw~d3kvE(k,w) ~ dtexp[it(kv-w)]. 
-T/2 

For large values of T the integral over t behaves 
like a 6-function, and for the energy lost in the 
frequency interval dw per unit time we can ob­
tain 

2:rt I dl = erdw J d3kvE(k, kv) {il(w- kv) + 6(w + kv)}. 

It is convenient to transform this expression 
in the following manner. We choose the gauge for 
the potentials in which cp = 0, and introduce the 
retarded Green's function for the electromag­
netic field in a substance with excited atoms 
Di[ R (k, w, w') by means of the relation 

A;(k, w) = ~ dw' D;1R(k, w, w')j1(k, w'). (4.1) 
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The dependence of DiZ R on the two frequencies 
w and w' is related to the circumstance noted 
above that an excited substance is equivalent to a 
substance with a dielectric permittivity variable 
in time. In the final analysis the dependence of 
Dil R ( k, w, w') on the two frequencies, and the 
consequent nonequivalence of different instants of 
time for an equilibrium medium, is related to the 
previously mentioned absence in the preceeding 
investigation of averaging over the motion of the 
particles. 

It is natural that in an equilibrium substance 
no singled -out instant of time remains after all 
the averages have been taken, and the Green's 
function must have the form Di[R(k, w )o(w- w'). 
utilizing the relation 

E1 (k, w) = iw ~ dw' nl]R {k, w, w') j j (k, w') 

and the expression for the current of a uniformly 
moving charge h = evi ( 21r) - 3o ( w - k · v ), we can 
transform the spectral density of the ionization 
losses to the form 

dl e2w ~ ~ = - -- d3k Im v ·vzn ·zR (k kv kv) 
dw 4Jt2T ' ' ' ' 

X {6(w- kv) + 8(w + kv)}. 
(4.2) 

From the Maxwell equations for the excited sub­
stance we can easily obtain the equation for 
Di[ R (k, w, w'): 

nilR(k, w, w') = niloR(k, w)<'l(w- w') +n?~ (k, w) 

X ~ tllil' ( W + Wns) n{fz (k, W + Wns, w'), 

where nsDiloR ( k, w) o ( w - w') is the Green's 
function of the electromagnetic field in the unex­
cited substance (in the gauge which we have 
chosen we have D44°R= D4i0R= Di4°R= 0). 

Since DiZR and DiZoR depend only on the 
single vector k we can without loss of generality 
represent them in the form 

n~(OR) (k ') = ("·- kikl )nt(Otl(k ') tl 7 (!), (!) Uti k 2 , W, (!) 

+ kikz nz (Oil (k ') 
k2 'w, (!) ' 

where the quantities D01 and D0Z are related to 
the dielectric permittivity of the unexcited 
medium E0 : 

The equation for Di[ R now assumes the form 

nt (lJ(k, w, w') =not (OIJ(k, w) 8 (w- w') +not (OIJ(k, w) 

X~ II1 (IJ(w + Wns)n1 <ll(k, (!) + Wns, w'). (4.3) 
n, s 

The solution of this equation behaves for w - w' 
as Dt(Z)(k, w) o ( w - w'), where the function 
Dt(Z)( k, w) can be obtained in the following 
manner. We replace D(k, w + Wns• w') on the 
right hand side of (4.3) again by (4.3) and in the 
equation so obtained we let w - w' retaining 
only the principal terms with the a-function 
singularity. In the four-fold sum over n, n', s, 
and s' the quantity o ( w - w') appears only in 
terms for which Wns + wn's' = 0, i.e., for n = s' 
and s = n'. Therefore, only a twofold sum re­
mains, and for the coefficients of o ( w - w') we 
obtain the relation 

n 1 <1>(k, w) =not <01l(k, w) (1 + D.t (ll(k, w) )n1 (l)(k, w), 

where 

~~(I)= 2; II1 (IJ(w + Wns)not (Ol)(k, (!) + Wns) II1 (l)(w + Wns), 
n,s 

and, consequently, 

not (01) (k (!)) 

n1<1l(k w)- ' 
' - 1-not(OlJ(k, w)I11(1J(k, w) 

Now representing o ( w - k · v) in (4.2) again 
in the form of an integral over t and cancelling 
T in the numerator and the denominator we can 
easily obtain the spectral density of the losses in 
the form 

dl e2w (" d3k 
d~=- 2Jtd ~-<'l(w-kv) 

, { [k x vF (kv)2 } X 1m _ ---'-::-'---c-.,. 
k 2 - eow2 - 11 1 e0w2 + 111 • 

(4.4) 

We now discuss the physical meaning of the 
quantity Di[R (k, w) o ( w - w' ). We average the 
quantity Dil R (k, w, w') over the motion of the 
particles. From general considerations it is evi­
dent that the answer must have the form 
Di[ R ( k, w) o (w - w' ). In the approximation 
quadratic in Q nothing other than the solution 
obtained above can be obtained since all the terms 
proportional to o ( w - w') have been taken into 
account already. Therefore, the quantity obtained 
above Di[ R ( k, w) o ( w - w') does represent the 
completely averaged Green's function of the elec­
tromagnetic field in the Q2 approximation. From 
this, in particular, it follows that the relation be­
tween the frequency and the propagation vector of 
the photon is determined by the roots of the equa-
tion 

k2 = e0 (w) w2 + ~~ (k, w), 

which due to the smallness of ~t can be written 
in the form 

k2 ~ eow2 + 111 (wf'eo, w) ~ eo{w + 111/2weo) 2• 
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Thus, w represents the energy lost by the parti­
cle and because of Raman scattering does not 
agree with the frequency of the emitted quantum 
wk. 

We now consider the spectral density of energy 
losses in that frequency region where the medium 
is transparent ( Im Eo-- 0 ), the function Eo ( w) 
does not pass through zero and in the unexcited 
medium the Vavilov-Cerenkov radiation is absent 
( v2E0 < 1 ). In this case the spectral density of 
the losses in the unexcited medium reduces to 
zero. In the excited material the losses will no 
longer reduce to zero due to the presence of 
Raman radiation. 

Utilizing the well known relation 1m (x - io )-1 

= 1r0 (x) one can in the frequency range under con­
sideration represent the spectral density of the 
ionization losses in the form 

d! e2w 1 d3k 
dw = 2:rt .l k2 ( k 2v2 - w2) 6 ( w - kv) 

X ~(k2 -Bo( w+~)2), 
, 2wBo 

so that the spectral density of the Raman radiation 
assumes the form 

d! e2w ( ow ) -- = --- -- ( v2wh2Bo - w2) 

dwh 2Bowh2v owh ' 

X ~sin'frd'fr6(cos'fr--~~. (4.5) 
VfBoffih/ 

0 

Thus, the angle of emission of radiation is de-
termined by the formula 

1 w 1 ( llE) 
COS {} = V f Bo ffih = V -y; 1 - Wh 

where ~E is the quantity ~t ( w.fEo, w )/2wE0 ex­
pressed in terms of Wk· The formula for the 
angle of emission of radiation agrees with for­
mula (1.2) derived on the basis of kinematic con­
siderations. The fact that ~E does not coincide 
with any of the characteristic frequencies of the 
atom is not surprising since the discussion of 

this section takes into account the transfer of 
energy resulting from an arbitrary number of 
Raman scattering events. 

The results of the method of successive ap­
proximations are obtained from (4.5) if we as­
sume k2 - w2E0 » ~t and expand (4.4) in terms 
of ~t. Consequently, the domain of applicability 
of (3. 7) is restricted by the condition k2 

- w2E0 » ~t or 1 - v2E0 » ~t/k2 , i.e., by the 
remoteness from the threshold for the Vavilov­
Cerenkov radiation for the unexcited substance. 
We note that at relativistic energies of the parti­
cle E » M and for emission of frequencies 
higher than the atomic ones ( Eo = 1 - ( w Ll w )2, 

w L 2 = 47rne2 Z/m ) the condition for the applicabil­
ity of the method of successive approximations 
appears in the following form ( M/E )2 + ( WL/ w )2 

» ~ t /k2• This means, that as the particle energy 
and the frequency increase there can always be 
found such a region in which the method of suc­
cessive approximations is not applicable and one 
should utilize the more exact formula (4.5). 
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