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The concept of Heisenberg field operators is introduced and rules for the transition from the 
asymptotic representation to the Heisenberg representation are established. The relation be­
tween the axiomatic theory developed here and the theory of Lehmann, Symanzik, and 
Zimmermann [9] and the usual Lagrangian method for constructing the scattering matrix is 
investigated. 

1. INTRODUCTION 

IN the last years much attention has been paid to 
the "axiomatic" approach to field theory, which is 
based on a certain system of basic physical as­
sumptions or "axioms" instead of equations of 
motions. A system of this type has been proposed 
by Bogolyubov, Polivanov, and the author [1] 1 l to 
establish the dispersion relations, and was further 
developed by the author [2' 3] 2 l in the direction of a 
systematic S matrix theory. In this approach 
there was no need of the concept of Heisenberg 
operators; the basic representation chosen for the 
field cp (x) (for simplicity, we consider first a 
self-interacting scalar field) and in which the S 
matrix was found, was some special representa­
tion, in which the fields satisfy the free equations 
of motion and commutation relations [cf. PTDR, 
(2 .4.2)], but at the same time describe real parti­
cles, so that they already take all interactions 
into account [PTDR, (2.2.-4.)]. We shall call this 
the asymptotic representation, or more precisely 
(as defined by the choice of the sign of the time in 
the causality condition), the out representation. 

However, it should be noted that, together with 
the out representation, certain operators in PTDR, 
I, and II were also used in the Heisenberg repre­
sentation, such as the current operator j ( x) and 
all current-like operators Av introduced in I. 

In the present paper we use this approach to 
establish the general rules for the transition from 
one representation to the other. These rules 

1lin the following referred to as PTDR. 
2)These papers are referred to as I and II in the following. 

We use, without explanation, the notation of these and the 
preceding papers. 

989 

allow us to clarify the relation between our axio­
matic method and other axiomatic approaches as 
well as the usual Lagrangian method of construct­
ing the scattering matrix. 

2. HEISENBERG FIELD OPERA TORS 

We begin with the introduction of the Heisen­
berg field operators in analogy with the usual 
theory, basing ourselves on the known representa­
tion of the Rei senberg field A ( x) in terms of the 
asymptotic field cp ( x) = A out ( x) and the S 
matrix: 

A(x) = Tw(cp(x)S) .s+. (1) 

We use this expression as our definition of the 
Heisenberg field. To this end we must, of course, 
also define the meaning of the symbol 
Tw ( cp ( x) S ). We shall interpret it in the sense of 
the Wick theorem; i.e., we shall consider the S 
matrix as given by its expansion I, (10) in terms 
of normal products of the asymptotic fields and 
define the chronological product of cp ( x) with 
each of the terms of this expansion as the usual 
Wick sum for the T product of normal products 
(of free fields !).3) 

We emphasize that the possible appearance of 
derivatives of the fields in the expansion I (10) 
must be described by the coefficient functions 

3 lwe note that this definition of the T product is not com­
plete. There is still the well known arbitrariness when the 
arguments coincide. For a complete definition, one must 
specify the character of the singularities which appear in this 
case, or more precisely, give the rules for the integration of 
a T product with functions which are not sufficiently regular 
when the arguments coincide. It is known from the usual ex­
pansion (c£. [4 ], Ch. IV) that this arbitrariness may be traced 
back to the counter-terms added to the interaction Lagrangian. 



990 B. V. MEDVEDEV 

<I> 11 (these must then contain derivatives of 6 func­
tions); as is easily seen, it follows from this that 
the chronological products of derivatives are equal 
to derivatives of chronological products: 

( 0 I Tw( ancp(x) !mcp(y) )I o) 
\ axn aym 

an am 
= axn aym <OITw(cp(x)<p(Y)) IO>. (2) 

It is clear that the so-defined Wick T product, 
Tw, by no means has to coincide with the T 
product of Heisenberg operators (currents and 
A 11 operators) introduced in I and II, which we 
shall call a Dyson product and provide with the 
index D when necessary. Indeed, in the case of 
two Heisenberg operators, the second type of 
product implies a chronological ordering with re­
spect to the explicitly appearing time variables, 
whereas the first type of product involves an 
ordering with respect to times which enter im­
plicitly through the functional dependence on the 
asymptotic fields. The difference even remains 
in the case of free fields if derivatives are in­
volved: the Dyson product does not satisfy (2) 
[a derivative can be regarded as a functional of 
the field with a kernel of a special kind; therefore 
in the Wick product the fields are ordered, ac­
cording to (2), whereas in the Dyson product the 
derivatives themselves are ordered]. 

After these remarks on the meaning of the T 
product we can expand the right-hand side of (1), 
using the partial Wick theorem: 

A(x)=(-i) ~ dyDc(x-y) 8~~y) S++ :cp(x)S:S+, (3) 

where the symbol: <;9S: denotes the sum of normal 
products of <P ( x) with normal products of each 
term of the expansion I (10) with the corresponding 
coefficient functions. On the other hand, we can 
write the identity <P (x) = <P (x) S · s+ and expand 
its right-hand side in the same way: 

<p(x) = cp(x)S-S+ = (- i) 

1 8S 
x .J dyDH(x- y)-- S+ +: cp(x)S: S+. 

I'Jcp (y) 
(4) 

Subtracting this from (3) and using 

Dc(x-y) -DH(x-y) =D<advl(x-y), 

we get rid of the troublesome term: <PS: s+, and 
introducing the current under the integral sign, 
write the result in the form 

A (x) = cp(x)- ~ fl(advJ(x- y)j(y)dy. 

(5) 

(6) 

This formula could also have been written down 
immediately by noting that, according to (5), the 
function-iD(adv) plays the role of a contraction 
in the Wick theorem for the expansion of chrono­
logical products in terms of ordinary products (it 
is easy to see that the Wick theorems also hold 
for the expansion of any product occurring in 
quantum field theory in terms of any others). 

Formula (6) is identical in form with the Yang­
Feldman equations [this may serve as an additional 
argument in favor of our definition (1)]. It must be 
noted, however, that it has a different meaning 
(otherwise it would already contain the proof for 
the identity of the axiomatic and Hamiltonian ap­
proaches). Indeed, in the Yang-Feldman theoryC7J 
there is, besides Eq. (6) which expresses the field 
A ( x ) through the current j ( y), another, 
"trivial" equation, which expresses the current 
j ( x) in the form of a function (usually, a poly­
nomial) of the field A (x) at the same point x. 
Only these two equations together form a closed 
system, whereas in our method the second equa­
tion has so far not been introduced. We shall 
therefore call (6) the Yang-Feldman relation. 

The Yang- Feldman relation provides an im­
mediate proof that the transformation (1) does not 
change the hermitian properties of the field: the 
Heisenberg form A ( x) of a hermitian field <P ( x) 
is a hermitian operator. This is seen from the 
hermiticity of the current and the reality of the 
function D(adv). We note that this circumstance 
is by no means trivial-the original formula (1) 
for the transition from the ou+ field to the Heisen­
berg field provides no basis whatsoever for pre­
dicting this result earlier. 

The above-mentioned incomplete definition of 
the T product shows up in the Yang-Feldman re­
lation in the circumstance that the current whose 
matrix elements need, according to PTDR II (1), 
exist only as generalized functions, is multiplied 
by the (again generalized) function D(adv). The 

However, this is only the case for the scattering matrix it­
self. If we consider any other operator, for example A(x), we 
see that it contains new combinations of chronological pro­
ducts which do not enter in the S matrix, and the "compensa­
tion of the arbitrariness" in the T product and the Lagrangian 
is destroyed. As a result there remains some arbitrariness in 
the Heisenberg fields for given values of the s matrix elements. resulting indeterminacy becomes apparent if we 
This circumstance, which was first noted by Borchers,[5 ) was take the matrix element of this equation between 
investigated in detail by Slavnov and Sukhanov. [6 ] the states ( ( p )l I and I ( q )s) (cf. [B] ) : 
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< (p)ziA (x) I (q) .> = < (P)zl cp(x) I (q).> 

-~ fl(advl(x--x')((p)zlj(x') I (q).)dx'. 

Displacing now the argument of the current from 
x' to x with the help of the translation invariance 
and introducing the Fourier transform of the func­
tion D(adv)' we obtain for it 

<(p)ziA(x) I (q).> = < (P)zlcp(x) I (q).> 

_ j)(adv)(- (P- Q)) ( (p)z-jj(x) I (q).), 

an expression which loses its meaning for p2 - Q2 

= m 2, i.e., in particular, for l = 0, s = 1 or for 
l = 1, s = 0 (cf. the effect, discus~ed earlier,[B] of 
this fact on the meaning of the so-called "asymp­
totic condition'' [SJ ). 

The above-given rule for the transition to the 
Heisenberg representation is taken over to the 
spinor case practically without any changes. If 
we are dealing with one spinor out field lj! ( x), 
I)! ( x ), we define the Heisenberg fields if! ( x ), 
If ( x) by the equations 

x(x) = Tw(¢(x)S) ·S+, -x(x) = Tw(~(x)S) ·S+, (7) 

in which the T product is again, of course, under­
stood as a sum of Wick contractions. By the same 
method as in the boson case we obtain from the 
first of these definitions, using the spinor current 
L(y) introduced in PTDR (5.4), 4) 

x(x) = ¢(x)+! dx'S(advJ(x- x') t(x') (Sa) 

the Yang-Feldman relation for the spinor field. 
The same steps lead to the relation for the adjoint 
field 

x(x) ='iJ(x) + ~ dx'~(x')S(ret>(x'-x). (Sb) 

It is easy to see that the operator If ( x) is indeed 
the Dirac adjoint of the operator if! (x), i.e., the 
transformation (7) conserves, as in the boson 
case, the hermitian properties of the transformed 
field. 

3. PRODUCTS OF HEISENBERG FIELDS 

The rules for the transition from the out fields 
to the Heisenberg fields can be immediately 
generalized for arbitrary operators in the out 
representation. Let oout be some out operator. 

4lFor the convenience of the printer we replace here the 
Georgian letter "in" in PTDR by the Greek letter "iota." 

We define its Heisenberg form by the transforma­
tion 

QH = Tw(OoutS) .s+, 
(9) 

where, of course, oout must, just like the S 
matrix, be expanded in normal products of out 
fields, and the entire product (9) reduces to 
products of the separate terms of these expansions. 

Expanding now the T product in (9) according 
to the Wick theorem for the expansion of chrono­
logical products in terms of ordinary products5) 

and recalling the definition of the radiation opera­
tors in I, we obtain 

QH = Qout 

{)Qout 
- i ~ (dy)i (dz) 1--D(adv)(y1 - zt)S(1l(z1) + ... 

6cp(yi) 
( _ i) s tjsQout 

+ --s-! -S (dy).(dz). ( 6c:p (y) )s [D(advl(y- z)]s 

(10) 

the Yang-Feldman relation for an arbitrary 
Heisenberg operator having an out prototype. The 
factor s! in the denominators comes from the 
circumstance that each combination with 
[ D(adv)] s is taken s! times in the successive 
differentiation and differs only by the order of 
factors in this product. If the operator oout is 
quasilocal (in the sense of Bogolyubov and 
Shirkov [4] ) all integrations over y are removed; 
if it is a polynomial in the out fields, then the 
series in s terminates after a finite number of 
terms, just as it terminates after the first term 
in the usual Yang-Feldman relation for the field 
itself. 

Important examples for the application of the 
generalized Yang- Feldman relation are provided 
by certain special kinds of products of Heisenberg 
fields, which we shall now introduce. 

Let us begin with the "quasi-Wick T product 
of Heisenberg fields," which we define by the 
formulas) 

5lone could, of course, again take recourse to the stratagem 
used in the derivation of the Yang-Feldman relation, of a paral­
lel expansion of the chronological and ordinary products in 
terms of normal products, but this would be too much computa­
tional work in this case. 

6 lThis definition is, of course, somewhat arbitrary, as in­
dicated by the epithet "quasi Wick." As a justification we re­
call that in the usual theory it is one of the possible forms of 
the definition of the T product of Heisenberg field operators 
which is particularly useful in the investigation of the Green's 
function.[ 10] It was this form which was used in PTDR in the 
study of the Kallen-Lehmann spectral representations. 
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TQw(A (xt) ... A (xn)) = Tw(qJ(x1) ••• cp(xn)S) .s+. (11) 

In order to transform this formula to a form 
which permits the application of (10), we note that 
the product of operators q; (x) on the right-hand 
side of (11) can be included under the sign of an 
internal T product and the latter can be expanded 
in normal products by the usual Wick theorem. We 
thus arrive at the expansion 

... A(x{-i)A(xHi) ... A(xn))+ ~ .... +... (12) 
contracted 

pairs 

of the entire quasi Wick product in terms of cer­
tain new products which we shall call quasinormal; 
they are defined by 

NQ(A(xi) .. . A(xn)) = Tw(:cp(xl) ... cp(xn) :S) .s+. (13) 

The quasinormal products already have the 
form required by (9). Applying (10) to them, we 
obtain the Yang- Feldman relation for quasinormal 
products of Heisenberg operators: 

N Q (A (xi) ... A (xn)) =: cp (xi) ... cp (x,) : 

- iP ( Xt ) ~ dyt :cp(xz) ... cp(xn) :D<adv>(xi- yi) 
\ X2, ••• , Xn 

X S(i)(Yt)+ ... + (- i)•P ( Xt, • • ·' Xs l ~ dy1 
Xs+h • • •' Xn' 

... fl(adv>(xs- Ys) S<•>( (Y)s) + ... 

+ (- i) n ~ dyi ... dynfl(adv) (xi- Yt) ... 

.. . D<adv>(xn- Yn)S<n>(y~, · • ·, Yn). 

Turning now to the quasi Wicl~ products (11), 

(14) 

we easily see that if such a product is transformed 
into a sum of quasinormal products with the help 
of (12), and the Yang-Feldman relation (14) is used 
for each of the quasinormal products, then groups 
of terms appear with the same radiation operators 
and sets of advanced functions, which differ from 
the terms in (12) only by the replacement of part 
of the operators q; ( x) by chronological products 
of the free field. All such terms within each 
group can be summed, which leads precisely to 
the chronological products of free fields. As a 
result, the quasi Wick products of Heisenberg 
fields will obey generalized Yang- Feldman rela­
tions which are completely analogous to (14) ex­
cept for the replacement of all normal products of 

out fields q; ( x) by chronological ones: 

TQw(A (xi) ... A (xn)) = Tw(cp(xt) ... cp(xn)) 

- iP( Xz, -~~., xJ ~ dytTw(cp(x2 ) 

... cp(xn) )D<adv>(xi- yi)S(il(yt) + ... 

( (x). \ r 
+(-i)•P (x)n-s) J (dy).Tw(cp(x,+l) 

... cp(xn) )[D<adv)(x- y)]s S<•>( (y,)) + ... 
+(-i) 11 S (dY)n[fl(adv)(x-y)]nS<n>((y)n). (15) 

It is instructive to operate on the Yang- Feld­
man relation for the quasinormal product (14) with 
the Klein-Gordon operator 0 - m 2 for each of the 
variables. All terms containing normal products 
will then be annihilated, and the functions D(adv) 
in the only remaining last term are transformed 
into 6 functions, so that the integration becomes 
trivial. In this way we obtain an expression for 
the radiation operator in terms of Heisenberg 
fields: 

inS<n>(xi, ... , Xn) = ( Oi- m2) ••• (On- m2)NQ (A (xi) 

.. . A(xn)). (16) 

In particular, if we take account of I (12), the co­
efficient functions of the scattering matrix will 
also be expressed in terms of Heisenberg fields: 

... A (xn)) I 0). (17) 

The relations (16) and (17) permit a comparison 
of the present theory and the well-known formula­
tion of axiomatic theory due to Lehmann, Syman­
zik, and Zimmermann. 

4. CONNECTION WITH THE THEORY OF 
LEHMANN, SYMANZIK, AND ZIMMERMANN 

In constructing a quantum field theory based on 
the system of axioms of Lehmann, Symanzik, and 
Zimmermann, [9] where the Heisenberg fields are 
the basic objects of the theory, the relation (17) 
plays a fundamental role for the determination of 
the coefficient functions of the scattering matrix. 
However, in this approach it is not proved for 
quasinormal products but for the so-called q; 
products, which are connected with the Dyson T 
products of Heisenberg fields by the same rela­
tions (12) which relate our quasinormal products 
to the quasi Wick products. The proof in [9] is 
essentially based on the asymptotic condition and 
is, from our point of view, not exhaustive.[B] 



ON THE AXIOMATIC CONSTRUCTION OF THE SCATTERING MATRIX 993 

We see now that the validity of relation (17) in 
the form required of Lehmann et al. [s] would im­
ply 

Tv(A(xi) ... A(x,)) = TQw(A(xi) ... A(x,)) 

(18) 

if only after application of n Klein -Gordon opera­
tors and averaging over the vacuum. Let us see 
now whether this relation is fulfilled. 

The Dyson T product of Heisenberg operators 
on the left-hand side of (18) consists, according to 
the Yang-Feldman relation (6), of two parts of 
different type: the free field q; ( x) and a term 
which involves an integral over the current, i.e., 
A (x) == qJ (x) + A~(x). Their T product is there­
fore written in the form of a binomial expansion or, 
if A' ( x) is replaced by the integral over the cur­
rent, in the form 

Tv(A (xi) .. . A (xn)) = Tw(qJ(xi) •.. qJ(x,)) + ..• 

+(-i)•P( (~~~~. )5 (dz) 8PT(x1, ••• ,x,) 

X (D(adv)(x- z)S(1)(z) )sqJ(Xs+1) ... 

... qJ(x,)+ ... +(-i)"S (dz),PT(x~, ... ,x,) 

X [D(adv)(x- z)S(1)(z)],, (19) 

where we have introduced the chronological sym­
metrizing operator PT ( x1, ••• ,xn ), which acts on 
a product of operators depending on x1, ••• ,xn 
according to the rule 

PT (xi, ... , x,) 01 (xi) ... 0, (x,) 

= P (1, ... , n)-& {xi- xz) ... -& (Xn-i- x,) 01 {xi) 

... O,(x,). (20) 

Here the operator P ( 1, ... ,n) in (20) denotes the 
sum over all permutations of the arguments 
x1, ••• ,xn together with the operators depending 
on these. 

In order to prove or disprove the validity of 
(18), one would have to proceed in the following 
way: transform, by permutation of operators, 
each term in (19) in such a way that the T 
products of the free fields stand to the left, which 
then can be replaced by Wick products. Then (19) 
would go over into an expansion constructed ana­
logously to (15), and one would only have to com­
pare the coefficients of each T product. This 
procedure would involve very complicated com­
binatorics. We shall not do this, using the fact 
that to disprove (18) it suffices to show that, for 
example, the current-like operator An enters in 
different ways in the coefficients of the T prod­
ucts of the free fields in (19) and (15). 

In transforming (19) to a form analogous to (15) 
we must commute the operators sOl with each 
other and with the free operators q;(x). It is 
easy to see that only the last commutations will 
lead to an increase of the order. Therefore the 
current-like operator of n th order An can only 
come from the second term 

P (-x-1 _\) (- i)P(1, ... , n) S dz1tt(x1 - x2) 
(x) n-1 · 

in (19), which contains n -1 operators of the free 
field. Even in this case the required operator An 
is obtained only from those terms in the sum over 
commutations in which the time x1 is larger than 
all other times, since only in these terms the 
operator sO) will originally stand all the way to 
the left, and it takes exactly n-1 commutations to 
bring them into the form (15). 

Thus we shall only be interested in the terms 

(- i)P( _x_1-) S dz1 S(x1; Xz, .•. , x,) 
(x) n-1 ' 

X 0(adv)(x1 - z1)S(1)(zi) P(2, ... , n)tt(xz- xs) 

••• -fr {X n-1 - X n) qJ ( Xz) ... qJ (X n) . (21) 

Further, in the product S(t) ( Zt) qJ ( X2) ... qJ ( Xn) 
we are again only interested in the term with the 
maximal order of variational differentiations, i.e., 
in changing the order of the operators S(t l and q; 
it suffices to keep only the term with the com­
mutator. As a result we find 

S(i) (zi) qJ (xz) ... qJ (xn) = ... + (- i) "-1 S dz2 

l)n-1S(i) ( z!) 
. .• dz, [D(x-z)]n-1 ____ . 

(1\qJ(Z)) n-1 

If we also use the equations of motion for the 
current-like operators II (18), we see that the 
total contribution proportional to An to the Dyson 
T product of the fields A ( x) is 

(- i)2 in-1p( ~) S (dz), S(x1; Xz, ••• , x,) 
(x) n-1 

X D(adv)(x1-z!)'[D(x-z)]n-1An((z),), (22) 

where we took account of the fact that the sum 
over the permutations P ( 2, ... ,n) goes only over 
the J functions owing to the symmetry of the 
operator An, and gives unity by completeness. In 
the quasi Wick product (15), on the other hand, 
the current-like operator An can come only from 
the last term containing s(n l and gives the contri­
bution 

- i(- i)" S (dz) n [D(adv)(x- z) ]11 A, (z1, ... , z,). 
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We thus obtain finally 

= terms with lower-order current-like operators 

+ ( _ i) n+l ~ (dz) n{ [D<advl(x- z) ]n 

+ (- 1) n P( Xz, . ~~ ' xJ fl(adv) ( X1 - z!) {t ( x1 - x2) 

... tt(x!-xn)D(xz-Zz) ... D(x,-zn) }An((z)n). 
(23) 

If this relation is averaged over the vacuum, the 
locality and symmetry properties (cf. II) of 
current-like operators imply that the vacuum ex­
pectation value ( 0 I Ani 0) must have the form of 
a symmetric polynomial of the differential opera­
tors with respect to all coordinates P ( ... 8/oz ... ) 
acting on the product of i5 functions 

(24) 

It is now easily seen that if the product (24) 
without the polynomial P ( 8/8 z) is substituted in 
the average value (23), the latter will, since all z 
are equal, effectively contain the chain of J func­
tions 

'l't(zl- x1)'1't(x1- xz) ... 'l't(x1 - Xn) 

which can be supplemented with the product 

'l't(zz-Xz) ... 'l't(zn-Xn), 

then all D functions reduce to D(adv) functions, 
and the resulting symmetric combination of these 
functions can be taken out from under the sym­
metrization operator, which, acting on the remain­
ing J functions, gives unity by completeness. 
Thus the second term in the last member of (23) 
cancels against the first. However, if the poly­
nomial P ( ... a /EJ z ... ) is not identically equal to 
unity but contains differentiation operators of suf­
ficiently high order, then this compensation breaks 
down, as is easy to verify; the two T products­
the quasi Wick and the Dyson products-will no 
longer coincide. 

We thus convince ourselves that the axiomatics 
of PTDR which we developed in I and II describes 
a wider class of theories than the axiomatics of 
Lehmann, Symanzik, and Zimmermann: in our 
case there is no restriction on the possible order 
of derivatives in current-like operators, which 
would follow from the requirement (18). 7) 

7 llt is interesting to note that an attempt is described in 
the literature["] to treat condition (18) (after application of n 

Klein-Gordon operators and averaging over the vacuum) as a 
basic equation of the theory. 

5. CONNECTION WITH THE LAGRANGIAN 
FORMALISM 

The rules (1) and (9) introduced in the preced­
ing sections for the transition from the out opera­
tors to Heisenberg operators via Wick T products 
have a rather inconvenient form. First of all, in 
this form it is not possible to invert the transfor­
mation explicitly; although the Heisenberg form of 
each out operator can easily be found, we do not 
know of an effective method of obtaining the out 
form of a Heisenberg operator. Similarly, we can 
in general not count on the preservation of the 
group property: the Heisenberg form of a product 
of operators is not necessarily equal to the prod­
uct of the Heisenberg forms of the factors. (We 
received a lesson concerning this last circum­
stance in the preceding section, when we investi­
gated the relation between the Dyson and quasi 
Wick products of Heisenberg operators.) As al­
ready noted, we can not even be sure that the 
transformation (9) preserves the hermiticity of 
the operators. It would, of course, be very de­
sirable to avoid these troubles, at the price 
of certain restrictions if need be, and to establish 
that the transition can be described in the usual 
form of a unitary transformation. Is that possible'/ 

Thus, let us assume that the transformation (1) 
(for definiteness, we consider the field operators 
themselves) is unitary, i.e., there exists some 
unitary operator, which it is natural to denote by 
S ( oo, x ), such that 

A (x) = S ( oo, x) cp (x)S+( oo, x), (25) 

and consider the consequences of this assumption. 
Commuting <p with S ( 00 , x) in (25), we obtain an 
alternative form to (6) for the Yang- Feldman re­
lation: 

A(x)=cp(x)- \D(y-x) [ibS(oo,x) S+(oo x)Jdy (26) 
J 6cp(y) ' 

From the requirement that both expressions be 
equal for the Heisenberg field we get the condition 

~ dy['l't(y-x)j(y)-i 1\S(oo,x)S+(oo,x) Jn(y-x)=O, 
6cp (y) 

(27) 

from which the operator S ( oo, x) is to be obtained. 
We would now like to get rid of the integral and 

rewrite (2 7) in the form of an "equation of motion" 
for S ( oo, x): 

.1\S(oo,x) . 
~ llcp(y) -=fl(y-x)J(y)S(oo,x). (28) 

As is seen, we arrive then at a typical Tomonaga­
Schwinger equation in terms of variational deriva­
tives, where the current operator plays the role of 
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the Hamiltonian (cf. Sec. II). Of course, Eq. (28) is 
only a sufficient condition for the possibility of 
writing (1) in the form of a unitary transformation, 
but by no means a necessary one. Let us see 
whether the integrability conditions for this equa­
tion are fulfilled. Differentiating the right-hand 
side of (28) with respect to cp ( z ), then doing the 
differentiation in the reverse order, forming the 
difference of the second derivatives and using the 
integrability condition II (21) for the current op­
erator, we reduce the integrability condition (28) 
to the form 

lt(y- x)lt(x- z) bj(y)- lt(z- x)rt(x- y)-{Jj(z) = 0. 
bcp (z) bcp (y) 

(29) 

Rewriting the variational derivatives of the cur­
rent with the help of the equations of motion II (18), 
we see that the terms with commutators cancel 
and only the term with the current-like operator 
A2 remains. We obtain then the condition 

(lt(y- x) - lt(z- x) )A2(z, y) =0. (30) 

Since the operator A2 differs from zero only 
for coinciding arguments, it can depend on the 
difference z-y only through a 6 function and its 
derivatives; by invariance, it must be a polynom­
ial of ( D z-y - m 2 ) acting on this function. As in 
the very similar discussion of the preceding sec­
tion, we see at once from (30) that if no current­
like operator contains derivatives of 6 functions 
[here we must consider all operators, since (30) 
must hold for all matrix elements, and the higher 
matrix elements contain higher operators Av ), 
the integrability condition for S ( oo, x) will be 
fulfilled. But physically all operators Av can be 
free of derivatives only in an unrenormalizable 
theory without derivative couplings. 

Thus for unrenormalizable theories without 
derivative couplings the transformation (1) can 
be formally written in unitary form. The term 
"formally" is added deliberately - from the ful­
filment of the integrability conditions it does not 
follow at all that the result of the integration is 
also finite. Nevertheless, one may hope so in an 
unrenormalizable theory. 

The further course of the considerations would 
be very simple. Since a unitary transformation 
can be inverted, we would define with its help the 
out form of the operators Av (x1, •.• ,xv ): 

Avout(x!, .. . , Xv) = S+(oo, x)Av(X!, ... , Xv)S(oo, x) 

(x=x1 = ... =Xv). (31) 

In the variation of (31) with respect to the out 
field, one would have to vary Av as well as 

S ( 00 , x ). Owing to the "equation of motion" (28), 
the terms coming from the variation of S ( oo, x) 
would just cancel the terms with a commutator in 
the equations of motion II (18) for the current-like 
operators. As a result we would obtain very 
simple equations of motion for the operators 
A OUt. 

j) • 

bAvout (X!, ... , Xv) put 
--~( )-- = A'v+! (x1, ... , Xv, y), (32) 

cp Y. 

which would imply the quasilocality of these oper­
ators: 

bAvout (x~, ... , Xv) 
---bcp(y) ___ = 0, unless x1 = ... =Xv = y, (33) 

and the property that they are all successive de­
rivatives of a single local Lagrangian. 

Thus, in an unrenormalizable theory without 
derivative couplings the axiomatic formulation 
can, if only formally, be reduced to the Lagrangian 
form. The situation is considerably less clear for 
renormalizable and, particularly, for unrenorm­
alizable theories. It is easy to see that if, say, the 
operator A2 contains just one Klein-Gordan oper­
ator, then condition (30) ceases to hold. However, 
since it was only a sufficient and not a necessary 
condition for the existence of the unitary transfor­
mation (25), this result by itself does not yet lead 
to any conclusions to the opposite effect. One must 
investigate the integral equation of motion (2 7), 
which is less perspicacious. We were not able to 
reach any definite conclusions. Clear is only that, 
since (28) is not fulfilled, the basic equations can­
not in this case be reduced to the simple form (32). 

In conclusion I should like to thank N. N. 
Bogolyubov, M. K. Polivanov, and A. D. Sukhanov 
for a discussion of the results. 
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