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We consider the problem of small-angle inelastic scattering of slow neutrons in ferromagnets, 
in the case when the change in neutron energy during the scattering is comparable with the 
energy of the magnetic interaction of the atomic spins with one another and with the external 
magnetic field. It turns out that scattering with absorption of a spin wave occurs in a wider 
range of angles than scattering with the emission of a spin wave. In the range of angles 
where only scattering involving absorption takes place there should be in a number of cases 
a strong dependence of the cross section upon the neutron polarization and if the incident 
neutrons are unpolarized considerable polarization must appear as a result of scattering. 
We show that sufficiently slow neutrons can not be scattered at all with absorption or emis
sion of a single spin wave. We also discuss some recent experiments on small angle scat
tering in ferromagnets. 

SMALL-angle scattering of neutrons in ferromag
nets has been studied theoretically in detail on the 
basis of the assumption of a quadratic spin wave 
dispersion law (see, e.g., the paper by the present 
author[!] and the review by Izyumov[2] ). The fol
lowing results were then obtained: the scattering 
occurs basically with the absorption or emission 
of a single wave; the scattering angle ~m is 
limited by the magnitude ~m = 1/ a where 
a = 2mAn-2 (A is the constant in the spin wave 
dispersion law Ek = Ak2, and m the neutron mass) 
and finally the change in neutron energy on scat
tering is of the order of E/ a ( E is the energy of 
the incident neutrons). 

The assumption that the dispersion law is quad
ratic is clearly inapplicable if the quantity E/ a 
becomes comparable with the energy of the mag
netic interaction between the atomic spins with 
one another or with the external magnetic field H, 
i.e., comparable with either 4rrJ.LMo or 2j..!H, 
where M0 is the saturation magnetization and 1-L 

the Bohr magneton. The exact expression for the 
spin wave energy is well known to be of the form 
(see, e.g., the survey by Akhiezer, Bar'yakhtar, 
and Kaganov[ 3]) 

Bk = [ (Ak2 + 2f!H) (Ak2 + 2f!H + S:rtf!Mo sin21h)] '/'. ( 1) 

Here H is the magnetic field inside the specimen 
and Jk is the angle between the wavevector k and 
the magnetic field. Generally speaking, in (1) 
should also occur terms caused by the magnetic 
anisotropy. However, this anisotropy is small in 

cubic crystals and we neglect it. Moreover, if the 
crystal is magnetized along one of the axes of easy 
magnetization the anisotropy can be taken into ac
count by adding to the field H the anisotropy field 
HA. 

Taking the exact dispersion law ( 1) into account 
leads to a number of interesting effects in neutron 
scattering. In particular, it turns out that the 
scattering involving the emission of a spin wave 
proceeds in a narrower range of angles than the 
scattering involving absorption, and as a result a 
strong dependence of the scattering cross section 
on the polarization of the incident neutrons arises 
and also when an unpolarized beam is scattered 
appreciable polarization appears. Moreover, for 
sufficiently low neutron energies it turns out that 
single-quantum scattering is not possible at all. 

The expression for the scattering cross section 
can easily be obtained by the standard method [2] 

if we use the expressions connecting the atomic 
spin operators with the spin wave absorption and 
emission operators (see, e.g., [ 3]). Omitting the 
corresponding rather long, albeit simple, calcula
tions we give at once the result 

da± / dQdE' = 1/2N sr02y2 ( nq + 1/ 2 + 1/2) { ( uq2 +I Vq 12) 
X (1 + (em) 2]+2(em)(eP0)}b(E'-E+eq). (2) 

Here N is the number of magnetic atoms in the 
scatterer, s their spin, r 0 the classical electron 
radius, y the neutron magnetic moment in nuclear 
magnetons, q = p - p', e = q/q, m the directfon of 
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the magnetization in the scatterer, P 0 the polariza
tion vector of the incident neutrons, 

-( Aq + Bq )''• Uq-
2Bq ' 

Bq = (Aq2-1Bql2)'", 

Aq = Aq2 + 2flH + 4:rt].!Mo sin21tq, 

Bq = 4:rt(lMo sin21tq exp (2i<pq). (3) 

In (2) and in the following the upper sign refers to 
the scattering involving emission and the lower 
sign to scattering with spin wave absorptions. In 
deriving (2) the magnetic formfactor, the Debye
Waller factor and the ratio p' /p were taken to be 
equal to unity since we are interested in small 
angle and small energy-transfer scattering. 

The expression for the polarization of the scat
tered neutrons can also be obtained in the standard 
way and has the form 

{2[PO..L -e..l (Poe) +e(em) (MP0) ]-P0[1 + (em) 2]} (uq2+jvqj2) +2e(em). 

p+ [1+(em) 2](ui+lvqi 2)+2(Poe)(em) ' 
a..l =a- (am)m, M = m- (em)e. (4) 

The next problem for us is the analysis of the 
angular distribution and the total polarization of the 
scattered neutrons, determined by the formula 

where cp is the azimuthal angle, which conveniently 
is reckoned from the projection of the magnetic 
field on the plane perpendicular to the incident 
beam; it is clear that if the field is parallel to the 
beam there is no dependence on cp. 

The character of the angular distribution is 
mainly determined by the energy conservation law 
occurring in (2) which we can write in the form 

(2 + x)x ±a[ (x2 + (1 + x)-(}2 +a) (x2 + (1 + x)1t2 +a 

+ b sin21tq)] '/, = 0; 

x = (p'- p)p-1, a= 2(lH(aE)-1, b = 8:rt(lMo(aE)-1, 

(6) 

where sin2 ~q depends on the angle between the 
magnetic field and the incident beam and also on 
~ and cp. 

We restrict our consideration to two cases: 
1) the magnetic field is parallel to the incident 
beam and 2) the magnetic field is at right angles 
to the incident beam. Simple calculations lead to 
the following results: 

• '2 - (1+x)1t2 
1) s1n 1tq- x2 + (1 + x)1t2 , 

• 2 - - (1+x)1t2 
2) sm -(}q - 1 x2 + ( 1 + x) -(}2 cos2 <p. (7) 

Using (7) we get from Eg. (6) an equation of 
sixth degree, the solution of which can not be ob
tained in general form. Our problem is thus to 
study qualitatively the behavior of its roots. To 
do this it is convenient to write (6) in the form 

y (x, {t2) = z (x, 1}2), 

y(x,f}2) = [x2 + (1+x)it2 +a)2- (2+x) 2x2 la2, 

z(x, 1}2) = -b[x2 + (1 + x}1t2 +a] sin21tq. (8) 

The function y ( x, ~2 ) has the roots 

=F (1 + atJ-2/2) + j [a-2- -(}2- a(1 + a-1)]''• 
Xo/±l= , (9) 

a+1 

where j = ± 1. It follows from this formula that 
y ( x, ~2 ) < 0 if x lies in one of two intervals: 

Xo-(+) <X< Xo+(+) < 0, 0 < Xo_(-) <X< Xo+H. 

and this inequality can only occur if the x~j) are 

real. Therefore, if x < 0, the function y ( x, ~ 2 ) 
can only be negative if 

1to+2 = a-2 - a(1 + 1 I a) > 1t2 > 0, 

and when x > 0, if 

1to- = a-2 - a(1-1 I a) > 1t2 > 0. 

At the same time z ( x, ~2 ) < 0. 1> The y- and z
curves can thus intersect only if x lies in one of 
the above mentioned intervals. The situation oc
curring here is schematically shown in the figure. 
Moreover, if ~~+ < 0, y > 0 for all x < 0, while if 
~ij_ < 0, y > 0 for all x > 0. Scattering is thus 
possible only if at least one of the quantities ~~ 
is positive. 

The further discussion must be given separately 
for the cases 1) and 2). 

Case 1). It follows from (7) and (8) that when 

1lwe are only interested in small scattering angles. One 
shows easily that if 1't2 « 1, z(x, 1't2 ) < 0 for all x. 
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,92 increases the curve y ( x, ,92 ) is raised and the 
curve z ( x, J 2 ) lowered, i.e., for .s2 = 0 the y
curve has its lowest position and the z -curve its 
highest position, coinciding with the x-axis. (Of 
course, with increasing J 2 the shape of the y- and 
z -curves also changes but this is not important to 
us.) 

As we mentioned already, when .sij+ > 0 they
curve comes into the lower half-plane when 
x < 0 if ,92 < J-~; for small .9-2 the z-curve lies 
close to the x-axis and therefore one can always 
find sufficiently small J-2 for the y- and z -curves 
to intersect, provided J~ > 0. Bearing in mind 
the connection between a and the energy, we get 
from this inequality the condition that scattering 
with the emission of a spin wave takes place: 

E > Ea+ = 2f.tH(a + 1). (10) 

Similarly, scattering involving the absorption of a 
spin wave is possible, provided 

(11) 

When x > 0 they- and z -curves intersect, 
generally speaking in two points. This follows 
from the fact that in the left half-plane the func
tion y has one minimum while z monotonically 
decreases with decreasing x. However, these 
curves intersect only for sufficiently small ,9-2• 

There exists thus a limiting angle J+ < Jo+ such 
that when J > J+ scattering involving emission is 
impossible. It is clear that when J- = J+ the y
and z-curves touch one another. Similarly, when 
x > 0 they- and z-curves intersect also in two 
points and there exists an angle J_ < .s0_ such that 
for angles J > J_ scattering involving absorption 
is impossible. 

We show in Appendix I that J_ > J-+. It follows 
from (9) that the roots of the equation y = z are 
of order 1/ a. Moreover, it is clear that scattering 
is possible only if a Sa - 2. Assuming that b is a 
quantity of the same order of magnitude we reach 
the conclusion that J± ~a -i and that the difference 
between them is of the order a-2• However, for 
energies close to Ea+ when J-+ is anomalously 
small, J_ may turn out to be of the order of a-3/ 2• 

The difference J_ - J+ will then be of the same 
order of magnitude. This is connected with the 
fact that J-~ and .s.; differ from one another by 
terms of the order a-3 and when J-3 tends to zero, 
at the same time the terms of order a-2 in J-~ 
also tend to zero. 

We now consider how the cross section depends 
on the polarization of the incident neutrons. We 
shall assume that the neutron polarization vector 
P 0 is parallel or antiparallel to the field, i.e., 
that 

P0 =Pom, -1~Po~1. 

Otherwise, P 0 will rotate around the field and the 
experimental study of polarization effects is made 
much more difficult. We restrict ourselves to the 
case of sufficiently small J± when sin2 ,Jq « 1. 
The quantities ( e · m )2 = cos2 Jq and ~ + I vq 12 

occurring in (2) are then close to unity and thus 

da±! dQ ~ 2(1 ± P0). 

The scattering cross section involving emission 
is thus increased when P 0 > 0, while the scattering 
cross section involving spin wave absorption de
creases. In particular, using completely polarized 
neutrons we can experimentally study those two 
cross sections separately. Moreover, it is clear 
that the strongest polarization dependence will be 
in the range of angles J+ < J < J_. 

Let now the incident neutrons be unpolarized. 
It follows from (4) that in the range of angles 
J+ < J- < J-_ where there is no cross section with 
emission the scattered neutrons will become 
strongly polarized and the component of their 
polarization along the magnetic field will be 
proportional to cos 2 Jq so that for small Jq the 
polarization P ~ m. In the region of angles 
J < J+ the polarization of the scattered neutrons 
turns out to be proportional to the difference in 
the scattering cross sections with emission and 
with absorption of spin waves. 

The above-mentioned effects can clearly be 
observed if the spread in the energy of the incident 
neutrons as to order of magnitude does not exceed 
E/a. 

Case 2). In this case 

z(x 't'P)= -b[x2 -f-(1-f-x)'t'P-f-a][1- tt2 (i-f-x)cos2 <p J 
' x2 + (1 + x) 1'}2 • 

( 12) 

Let the y- and z -curves intersect for some J 2 • 

When J-2 increases (in the case where J 2 > J5+ 
for x < 0 and in the case when ,9 2 > .st for x > 0) 
they-curve will turn out to be completely above 
the x-axis while the z -curve for all ,92 lies in the 
lower half-plane. It is thus clear that for suffi
ciently large ,92 they- and z-curves cease to 
intersect, i.e., in this case scattering is only 
possible in a limited range of angles J. The 
function z ( x, J 2 ) both when x > 0 and when 
x < 0 is a monotonic function of x and there are 
thus again, generally speaking, up to two inter
sections both in the left and in the right half-plane. 
When cos2 cp = 1, both curves move upwards when 
J 2 increases. In principle there is thus a possi
bility that the y- and z -curves do not intersect 
when J 2 = 0, while with increasing J 2 the z-curve 
overtakes the y-curve and intersection occurs. 
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One can show, however, that this possibility is 
not realized. 

Thus, scattering is only possible, if the equation 

y(x,O) = z(x,O) 

has real roots (this equation is independent of q;). 
Neglecting x in the expressions for y and z com
pared to unity, we get the following condition for 
the reality of the roots: 

2 I a2 > a + b I 2, 

(2la2-a-bl2)2>a(a+b). (13) 

Bearing in mind the connection between a and b 
and the energy we get from (13) the following con
dition for the occurrence of scattering: 

E > Eb = a~tH[1 + 2nMo I H + (1 + 4nMo I Hr'•]. (14) 

A little later we give a more exact condition 
for the limiting energy when it turns out that, as 
in case 1), Eb+ > Eb-· In Appendix I we show that 
also in that case J+ < J_ i.e., there is again a 
range of angles where only scattering involving 
spin wave absorption occurs. All we have said 
earlier about the order of magnitude of the angles 
J± and their difference is now also valid. We note 
further that the J ± depend on <fJ. 

We now consider how the cross section depends 
on the polarization of the incident neutrons. We 
limit ourselves merely to two cases: cos2 q; = 1 
and cos2 q; = 0, i.e., to scattering in a plane con
taining the magnetic field and in a plane at right 
angles to the field. As before, we can then assume 
that the incident neutrons are polarized parallel 
or antiparallel to the field. Let cos2 q; = 1. Then 

(em) 2 = cos2 'frq ~ 'fr2 I (x2 + -&2) 

and, according to (2), the cross section is propor
tional to 

(1+cos2 'frq)(uq2 + ivqi 2) +2Pocos2 'frq. 

The cross section depends thus strongly on the 
polarization at large scattering angles ( J ~ J±) 
and this dependence disappears in the range of 
small angles ( J « J±). In particular, changing 
the sign of the polarization may strongly change 
the scattering cross section in the range of angles 
J+ < J < J_. Moreover, according to (4), when an 
unpolarized beam is scattered in the range of 
angles J+ < J < J_ an appreciable polarization 
may arise, and the component of the polarization 
along the magnetic field is proportional to 

cos2 'fr q [ ( 1 + cos2 'fr q) ( Uq 2 + I v q 12) ] - 1• 

For angles less than J+ the polarization due to the 

scattering must strongly decrease, as follows 
from (4) and (5). Of course, one can also in this 
case observe these effects only if the spread in 
energy of the incident neutrons does not exceed 
E/a in order of magnitude. 

Recently, Drabkin et al. [ 4] have studied experi
mentally the scattering of neutrons in a plane, 
containing the magnetic field. In their experiments, 
the scatterer was an iron single crystal, the mag
netic field was 26 kG and the neutron energy was in 
the interval 110-130° K 

0
Corresponding to wave

lengths from 2. 7 to 2. 9 A. They observed a rela
tively large scattering up to angles of about 25'. 
A very strong dependence of the cross sections 
on the polarization was observed in a range of 
angles from about 18-20 to 25'. In the same 
interval of angles an unpolarized beam became 
strongly polarized (of the order of 30%) on being 
scattered. If we assume that the observed effects 
are caused by scattering involving absorption or 
emission of a single spin wave, 2> we can conclude 
about the magnitude of a. Indeed, substituting 
into (14) the above-mentioned value of the mag
netic field and M0 = 1. 7 kG (the magnetization of 
iron at room temperature) we get E > 4.8[°KI 
and thus, assuming that E ~ 120° K, we get 
a < 25. This estimate is also in agreement with 
the range of angles in which strong polarization 
effects are observed. 

Lowde and co-workers [S,T] have also studied 
small angle scattering in ferromagnetics. In their 
papers they describe experiments on the scatter
ing of very fast, non-monochromatic neutrons 
( 71. > 1.1 A). By reducing the experimental data 
and assuming a quadratic dispersion law, they 
found a ~ 130. Since high-energy neutrons were 
used in these experiments, an account of the cor
rections necessitated by the magnetic interactions 
in the reduction of experimental data can not 
strongly change the magnitude of a. 

We must note that the value a ::::: 130 agrees 
well with data on the exchange integral obtained 
by other means. Thus, a study of the T312 law 
for the spontaneous magnetization in pure iron 
leads according to Argyle et al. [B] to a ::::: 130 to 
140. The data given in that paper on the exchange 
integral, which were obtained by means of ferro
magnetic resonance, agree within experimental 
errors with such a value of a. In the same paper 
a value was given for the exchange integral for 

2)Processes involving two or more spin waves have a negli
gible cross section because of the smallness of the phase vol
ume for the additional spin waves. This was shown by the pre
sent author[5] for the case of a quadratic dispersion law. 
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iron with 3% silicon impurities. In that case the 
exchange integral ( and thus also a) turns out to 
be about 10% less than in pure iron. 

The reason for the divergence in the results of 
the above-mentioned experimental papers is so 
far not clear. The problem requires further ex
perimental study. 

We now consider the scattering in a plane at 
right angles to the field. In that case the vector 
m is perpendicular to the vector e and therefore 
the cross section is independent of the polarization. 
Moreover, polarization cannot occur when an un
polarized beam is scattered, and if the incident 
neutrons are polarized along the field one sees 
easily by using (4) that on scattering the polari
zation vector turns around the beam over 180°, 
i.e., P = - P 0• Furthermore, since cos2 cp = 0, 
sin2 Jq = 1. Therefore, the equation 

y (x, -&2) = z (x, -&2) 

becomes a fourth-degree equation. It is solved in 
Appendix II. According to Eq. (II. 7) we have for 
the limiting angles 

1 a2b2 1 b) 
-&±2 = az+w- a+-2 

( }1 __ b2a2 ) ( ~ _ b2a2 )''' 
+ a+ 2 8 a 2 16 ' (15) 

It is at once clear that J~ < J:. In this formula 
the first three terms are quantities of the order 
of a-2 and the last one of the order a-3 so that 
J± ~ a-1 and J_ - J+ ~ a-2; however, if the terms 
of order a-2 in ( 15) practically completely cancel 
one another, the difference J_ - J+ may turn out 
to be of order a-312• Such a situation arises 
clearly for energies close to the limiting one. 
The limiting energies Eb± are determined from 
the condition J~ = 0 and are easily found by the 
method of successive approximations: 

As one should expect, the difference 

Eb+- Eb- """"' Eba-1• 

(16) 

We bear in mind that we have shown above that the 
limiting energy is independent of cp. 

Although we know xj±) in the case considered, 

the equations for dcr± /<ID are practically unman
ageable. However, in the case when in Eq. (II. 7) 
of Appendix II we can neglect the correction terms, 
the cross section has the comparatively simple 
form: 

X [( a+ b + -fr2)2- 1 b2J-1 .!_. 
2 4 a2E 

(17) 

In deriving (17) we assumed that E « Ta. It is 
clear that if that condition is satisfied the cross 
section is proportional to the temperature also in 
the general case. 

The radicand in ( 17) contains the quantity 
,Jij - J 2, where Jo is the limiting scattering angle 
so that da/<ID, as J- J 0, becomes infinite as 
( Jo - J )-112; the total cross section remains then, 
of course, finite. The appearance of this infinity 
is caused by the fact that as J- Jo two roots in 
the argument of the o -function in (2) approach one 
another and therefore the result of the integration 
of (2) over E' turns out to be inversely propor
tional to the distance between these roots, i.e., 
(Jo- J)1/2. 

A similar case arises, clearly also in the gen
eral case where we can show that the character of 
the singularity is retained, i.e., dcr± /<ID 
~ (J±- J)-112. This must be borne in mind for 
numerical calculations. 

In conclusion the author expresses his grati
tude to G. M. Drabkin, E. I. Zabidarov, Ya. A. 
Kaeman, A. I. Okorokov, and V. A. Trunov for a 
large number of interesting discussions without 
which this paper could not have been written, and 
also to A. Klochikhin and A. D. Piliya, with whom 
he has discussed a number of problems touched 
upon in the paper. 

APPENDIX I 

The aim of this appendix is to prove that 
J+ < J_. 

Case 1). Let J 2 = J~. This means that they
and z -curves touch at x = x 1 < 0. It is necessary 
to explain why these curves intersect for x > 0 or 
not. If they intersect, J: > J~. since with in
creasing J 2 they-curve goes up and the z-curve 
down. We split they- and z-functions in parts 
even in x (y1 and z 1 ) and parts odd in x (y2 and 
z 2 ). Assuming that x « 1, we get 

Yl= (x2+-fi2+a)2-4x2fa2, 

z1 = -b[1 +a/ (x2 + -fr2) ]-fr2; 

ya = XTJ = 2x'fr2(x2 + -&2 +a) - 4x3 I a2, 

z2 = x£ = -bx-&2 [1 + ax2 f (x2 + -&2)2]. 
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In the point of contact 

y (x1, 'l't+2) = z (xz, 'l't+2). 

It is clear that when x > 0 the curves intersect 
if 

y(Jx1 J,it+2) < z(Jxd,it+2). 

This follows from the fact that when x > 0 the 
y-curve has one minimum while the z-curve is 
monotonic. Since x « 1, the above inequality has 
the form 7J < ~ under the additional conditions 

(the last of these equations is due to the fact that 
the curves touch). The additional conditions are 
of an approximate nature but as Y2• Z2 « Y 1• z 1 

this is not important. 
We can thus show that 

2it2(x2 +iF+ a) - 4x2 I a2 < -bit2[1 + ax2 I (x2 + it2)2] 

(I.1) 

under the conditions 

(x2 +a+ 'l'}2)2- 4x2 I a2 = -b[1 +a/ (x2 + 'l'}2)]it2, (I.2) 

2 (x2 +a+ 'l't2) - 4/ a2 = abi}Z / (x2 + it2)2. (I.3) 

Using condition (I.2) to eliminate b from (I.1) and 
(I.3) we have: 

- (x2 +a+ it2)2(x4 + x2a- it4) < 4x2ait2 I a2, (I.1') 

(x2 + 'l'}2 + a)2(x2 + 'l'}2 + af 2) 

(I. 3') 

Substituting then 2x2a/ a 2 from (I.3') into (I.1') we 
obtain the inequality 

4it2 1 a2 < (x2 +iF+ a) 2. (I.4) 

However, according to (I.3) 

xz +iF+ a= 2 I a2 +A (A> 0), 

so that (I.4) is certainly satisfied if J 2 < 1/a2, but 
we know that 

iF :::::;;; 1 I a2 - a ( 1 ± 1 I a) . 

Case 2). By complete analogy with the previous 
subsection we obtain the following conditions which 
must be satisfied for the intersection of the y- and 
z -curves for x > 0, if for x < 0 these curves touch 
one another: 

4x2 bit2 
2(it2 + xz + a)it2-- < [ax2 + (a'l't2 

a2 (x2 + 'l'}2)2 

_ (x2 + 'l'}2) (xz + 'l'}2 +a) )sin2 cp], (I. 5) 

4 [ a'l't2 cos2 cp -] . 2(x2-j--i}2-j--a)-"U2=-b 1-t- (x2-t-'l't2)2 (I.7) 

Substituting 4x2/ a 2 from (I.6) into (I.5) and 
(I. 7) we get 

(x2+it2-t-a) (it2-x2-a) 

b { ait2 ( x2-j--'l'}2 sin2cp)} 
<-- x2(x2-j--it2+a) + 2 + 'l'}2 ' (I.5') x2-t-'l'}2 x 

(xz + 'l'}2 +a) (xz- 'l'}2- a)= b {ax4 + ai}2x2 sin2 cp 
(x2 + it2)2 

-t-(x2+it2-t-a)(x2+it2)it2sin2cp}. (I.7') 

It follows from (I. 7') that x2 > J 2 + a whence we 
get again that the left-hand side of (I.5') is nega
tive but since the right-hand side is positive, the 
inequality is proven. 

In the case considered we can show that with 
increasing J 2 both the y- and the z-curve move 
upwards. In particular this occurs when cos2 cp 
= 1. However, they-curve rises then faster than 
the z -curve and overtakes it. That this is, indeed, 
the case follows from the inequality 

dy 1 I dit2 > dz1 I dfJ2, 

which is easily proven from the conditions (I.6) 
and (I. 7). 

APPENDIX II 

Here we look for the solution of Eq. (6) in the 
case when sin2 Jq = 1, i.e., of the equation 

x(2 + x) = +a{[x2 + (1 + x)'l't2 + C + D] 

X [x2 + (1 + x)tt2 + C -D]}'h, (II.1) 

where C =a+ b/2, D = b/2. When D = 0 this 
equation splits into two quadratic ones the roots 
of which are 

j = +1, 
1- ait2/2 

6_= 1' ' a-

(II.2) 

Taking the square of Eq. (II.1) we get a fourth de
gree equation which we can by means of (II.2) 
write in the form 

y4- yz (R+z + R_z -t- 2A2) + 2Ay (R+2 - R-2 ) 

+ (Az _ R+z) (Az _ R_z) _ nzaz f (az _ 1) 

= y4 + pyz + qy + r = 0, 

(II. 3) 

To solve the fourth degree Eq. (II.3) we must 
find one of the solutions of the auxiliary cubic 



INELASTIC SMALL ANGLE NEUTRON SCATTERING IN FERROMAGNETS 975 

equation (see, e.g., Kurosh's book[ 9] ): 

z3 + pz2 + (p2 I 4- r)z- q2 I 8 == z3- (R+2 + R_2 + 2il2)z2 
+1M (R+2 + R_2 + 2A2) _ 4(Ll2 _ R+2) (Ll2 _ R-2) 

+ 4D2a2 I (a2 - 1) ]z- Ll2 (R+2 - R_2) 2 I 2 = 0. (II.4) 

After that Eq. (II.3) reduces to two quadratic 
equations: 

y2 ± 2l'z I 2 y +pI 2 + z + q I 2y2z = o. (II.5) 

We assume that C and D are quantities of 
order 1/a2 and, moreover, that J-2 :S 1/a2• One 
then verifies easily that the coefficients of 
Eq. (II.4) have the following order of magnitude: 

p,...., a-2 + O(a-4), p2 I 4- r,...., a-&, q2 ,...., u-8, 

whence we get immediately that at least one of the 
roots of (II.4) must be of order 1/ a 2 and to eval
uate it we can neglect the free terms. As a result 
we get 

z± = 1I2{R2+ + R_2 + 2Ll2 ± 2[ (Ll2- R+2) (Ll2- R_2) 

- D2a2 I (a2- 1) ]'"} ~ 112u-2 _11,(fJ2 +C) 

±1M (fJ2 + C)2 _ D2]'h. (II.6) 

The approximate equality in the right-hand side 
of (II.6) occurs if we neglect terms of order a-4. 

One can also easily verify that the corrections to 
z± caused by the free terms in (II.4) are also of 
order a-4• Since, by definition, C > D, Z± are real 
for all J-2• Moreover, if J-2 + C < 2/a2, z+ > 0, and 
furthermore, z+ > lz_j. In (II.5) we must substitute 
the solution of (II.4) which is of order of magnitude 
1/a2• It is clear that in that case z+ is such a 
solution. Similarly, when J-2 + C > 2/a 2, z_ is a 
proper solution, since in that case z_ < 0. Because 
of this fact the solutions of Eqs. (II.5) are now com
plex, i.e., when ,~2 + C > 2/a2, scattering is not 
possible. In particular, it is impossible when 
C > 2/a2• 

Substituting z+ into (II.5) and solving the equa
tions obtained, we get 

(II. 7) 

We verify easily that when D = 0 Eq. (II. 7) turns 
into (II. 2) if in both formulae we expand in powers 
of 1/ a and limit ourselves to the first two terms 
in such an expansion. 
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