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The hidden symmetry of then-dimensional Kepler problem is considered. The treatment is 
based on the algebraic properties of the operators. 

IN his famous paper of 1935, [ 1] Fock pointed out 
that the Hamiltonian for the hydrogen atom 
(Kepler problem) has a "hidden" symmetry: it 
is invariant under the four-dimensional rotation 
group (or the Lorentz group). Fock, treating 
momentum space as the stereographic projection 
of the unit hypersphere of a four-dimensional 
Euclidean space, reduced the Schrodinger equation 
in momentum space to an integral equation for 
four-dimensional spherical functions. Bargmann, 
starting from the solution of the hydrogen atom 
found by Pauli, [ 2] in a note concerning Fock's 
paper[ 3] showed that the symmetry group discov­
ered by Fock is generated by the known integrals 
of motion for the problem: the angular momentum 
and the Laplace integral ( Runge-Lenz vector). 1> 

Thus Fock first made clear that the so-called 
accidental degeneracy, which is not associated 
with any explicit geometrical symmetry (as, for 
example, in variance under spatial rotations) ex­
presses a higher "hidden" symmetry of the Ham­
iltonian. Another example is the higher symmetry 
of the Hamiltonian for the n-dimensional harmonic 
oscillator-invariance under the group of n-dimen­
sional unitary transformations, which was pointed 
out by Jauch and Hill, [SJ and later, obviously inde­
pendently of them, by Demkov (for n = 3) L6] and 
Baker. [ 7] Then-dimensional generalization of 
the Kepler problem was treated by Alliluyev [BJ 

on the basis of Fock's method. He transformed 
the Schrodinger equation for the n-dimensional 
Kepler problem to an integral equation for the 
( n + 1) -dimensional spherical functions, and thus 
explained the symmetry of the problem under the 
( n + 1) -dimensional rotations. 

We shall also consider the n-dimensional 
Kepler problem, but shall not choose a specific 
representation of the operators. Following Paulf, 
Bargmann, and Hulthen, we shall use only alge-

l)Cf. also the remark of Klein cited by Hulthen[4]. 

braic (commutation) properties of the operators. 
Because of the close analogy between quantum 
mechanical operators and classical quantities, 
such an approach to the problem enables us to 
explain how the "hidden" symmetry of the prob­
lem manifests itself within the framework of 
classical mechanics. 

The Hamiltonian for the problem has the form 

(1) 

(We assume summation over repeated indices 
from 1 to n. ) It is immediately clear that the 
group Rn of n-dimensional rotations is the sym­
metry group of this Hamiltonian. The infinitesi­
mal generators of the group 

Lrs = XrPs- PsXr (r, s = 1, 2, ... ' n)' (2) 

which are the components of the angular momen­
tum tensor, commute with H. (The total number 
of components is obviously ( ~).) 

The additional integrals of the motion are the 
components of the Lenz -Runge vector: 

(r = 1, 2, ... , n), 

generalized to the case of n dimensions. 

(3) 

We shall restrict ourselves here to the sub­
space of Hilbert space in which H is negative 
definite (bound states). We define the hermitian 
vector operator 

A,'= (-2H)-'f,A,.. (4) 

The components Lsr and Ar, or Lsr and A~, 
n n+1 . 

constitute ( 2 ) + n = ( 2 ) operators commutmg 
with H. But it is better to use the A~, since we 
can, from the components Lsr and A~, using the 
formulas 

Drs= Lrs (r, s = 1, 2, ... , n), 
(5) 

Dr n+1 = -Dn+1 r = Ar' (r = 1, 2, ... , n) 
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form one ( n + 1) -dimensional antisymmetric ten­
sor Drs• whose components satisfy the commuta­
tion relations 

[Drs, Dtu] = i/i({jruDts + 6stDur + 6rtDsu + 6suDrt) (6) 

(r, s, t, u = 1, 2, ... , n + 1), 

which coincide with the commutation relations of 
the Lie algebra of the group Rn+ 1 of the ( n + 1)-
dimensional rotations. 

the motion an ( n + 1) -dimensional antisymmetric 
tensor, the ( n + 1) -dimensional orthogonal trans­
formations of this tensor will constitute the sym­
metry group of the Hamiltonian of the equations of 
motion. 

One can similarly treat the case of positive 
energies. Then, in place of (4), we can define the 
hermitian vector operator A~ by the formula 

Ar' = (2H)-'I•Ar. 
Using formulas (1)-(5), we get 

H-1 = -2[G(Rn+t) + 1/,li2 (n- 1)2], 

where 

The group generated by the operators Lrs• A~ is 
(7) now the ( n + 1) -dimensional Lorentz group (with 

one timelike variable). 

(8) 

(summation over r, s = 1, 2, ... , n + 1) is the 
Casimir operator for the group Rn+1 in a suitable 
normalization. The eigenvalues of the operator G, 
as follows from ( 6), have the form li2N ( N + n - 1), 
[ 9] where N is a nonnegative integer. Using this, 
we get from (7), 

EN= -1 I 21l2 [N + 1/z(n- 1) )2. 

This formula coincides with Alliluyev's result, 
which he obtained by solving the Schrodinger equa­
tion for the eigenvalues of the energy, and which 
is a generalization of the familiar Balmer formula 
for the hydrogen atom and also of the two-dimen­
sional and one-dimensional Balmer formulas found 
respectively by Jauch and Hill [S] and by Louck. [ 10] 

The expression (7) for the energy can also be 
used in the classical limit n - 0. If, according 
to (5), we construct from the integrals Lrs• A~ of 
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