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An expression is obtained for the averaged Green's function of a nonrelativistic electron in a 
statistically homogeneous and isotropic random field; the expression does not depend on the 
time, and is valid under rather broad assumptions concerning the characteristics of the field. 

THE question of the behavior of an electron in et 

random field is encountered in various problems, 
for example, in the analysis of the effect of random 
inhomogeneities on electrons in a solid. Mathe
matically, a similar formulation is used for the 
problem of the propagation of acoustic, thermal, 
and in some cases also electromagnetic waves in 
a medium with random properties, as well as 
many other problems [ 1]. 

A random field will henceforth be character
ized by a pair correlation function of the potentials, 
( V ( x) V ( y) ) , where the angle brackets denote 
averaging over the ensemble. The main numerical 
characteristics of the field are in this case the 
magnitude of the fluctuations ( ( V - \ V)) 2 ) and 
the characteristic correlation length Z. Our main 
problem is to calculate the averaged Green's func
tion of the electron. We first find, for the case of 
large-scale inhomogeneities, a solution valid for 
any magnitude of the potential fluctuations (an ex
pression of the q uasiclassical type). The solution 
is then generalized to include inhomogeneities of 
arbitrary size; for small-scale inhomogeneities, 
limitations are imposed in this case on the magni
tude of the potential. 

To find the average value of the Green's func
tion (G) it is necessary first to solve the Schro
dinger equation in an arbitrary external field, and 
then average over all possible potentials. 

We consider the equation for G: 

[;~ V~ +E- V(x)] G (E, x, x'J V) = -6(x-x'). (1) 

Taking the Fourier transform with respect to the 
difference in the coordinates 

G(E,x, x' IV)= (Z~)3 ~dpeip(x-x'>G (E, p, xj V), (2) 

we obtain for the function G ( E, p, xI V) the equa
tion 

[;~ (V~- 2ipVx- p2) + E- V (x)] G (E, p, X/ V) = -1. 

(3) 
Its symbolic solution can be written directly (we 
choose a retarded Green's function): 

G(E, p, xiV)= i~ dtexp[ -it(~~ -E-i6 )] 
0 

[ ( ft2V2 ift2 \] 
X exp it ---- p V - V I . 

, 2m m 1 
(4) 

The problem consists of expressing the last expo
nential in explicit form with maximum accuracy. 

As will be shown later, each differentiation V' 
adds to <G) a quantity z-1• In the case of large 
scale inhomogeneities (large l) the first step is 
to discard all the terms containing V'. This ac
tually corresponds to the classical approach; the 
corresponding Green's function was used by 
Bonch-Bruevich[ 2]. We shall take exact account 
here of the term ili2p • V' /m and expand in powers 
of ti2V2/2m. Criteria for the applicability of the 
resultant expressions will be given below. 

We write the last exponential in (4) in the fol
lowing form (to abbreviate the notation we omit 
ti2 I 2m for the time being): 

exp[it ( V2- 2ipV - V) ]= exp [ -it(2ip V + V) ]L(t). (5) 

Differentiating both halves of (5) with respect to t 
(the procedure is analogous to that given in [ 3]) 

we obtain an equation for L(t): 
d 

-L(t) = exp[it(2ipV + V)] 
dt 

X V2 exp[- it(2ipV + V)]L(t). (6) 

We confine ourselves to the first two terms of 
the expansion of L ( t) in a series in V'2: L = 1 
+ L1 ( t). Recognizing that 

exp[- it(2ipV + V(x) )] 
-t 

= exp ( 2tp V) exp [ i ) dt' V (x + 2pt') J 
0 

(7) 
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(this relation can be obtained with the aid of the 
same procedure of differentiating with respect to 
t), we obtain 

t 

dL1 = i exp{ i ~ dt' V (x- 2pt')} 
dt 0 

t 

x V2 exp{ -i ~ dt' V (x- 2pt') } 
0 

and, bearing in mind that L ( t) acts on unity, 
t t' 

L 1(t)= ~ dt'~ dt"V 2V(x-2pt") 
0 

- i ~ dt' [ ~ dt" v v (x- 2pt") r . 
0 0 

In this approximation the Green's function (4) 
is equal to 

G(E, p, xJ V) 

(8) 

(9) 

00 t 

= i ~ dt exp{- it(p2 - E- i/'J)- i ~ dt' V (x + 2pt')} 
0 . 0 

t t 

X [ 1 + ~ dt' ~ dt" V2 V (x + 2pt- 2pt") 
. 0 0 

- i { dt'( f dt" VV(x + 2pt- 2pt") r + ... J. (10) 
0 0 

We now average this expression. In the avera
ging we assume that all the correlation functions 
of the potential ( V ( x1) .•• V ( Xn) ) are expressed 
in terms of the pair correlation function p ( x1 - x2 ) 

= ( V ( x 1) V ( x2) ) • The operation of averaging over 
the ensemble is reduced thereby to all possible 
pairings of the potentials in the sense used in 
quantum field theory. Such an assumption is 
equivalent to introducing a normal distribution [ 4] 

for the random function V ( x). The perturbation
theory series for the average Green's function is 
then represented in the form of a sum of diagrams, 
and the average of Eq. (10) is itself expressed in 
terms of a continual integral, in complete analogy 
with the Green's function of the quantized field. 
(The propagation functions of the Bose field are 
replaced here by correlation functions; there are 
no diagrams containing the polarization of 
vacuum.) 

Instead of calculating the continual integral, it 
will be more expedient for us to take functional 
derivatives of a suitably chosen expression, as is 
sometimes done in quantum field theory. Namely, 
using the properties of a normal distribution and 
following the procedure used by Fradkin[ 5], we 
can easily show that the averaging is equivalent 

to the operation of differentiation with respect to 
fictitious external sources: 

(G(E, p, xJ V(x))> = a(E, p, xl-6-) 
M(x) 

X exp{ ~·· ~ ~ dx1 dxzl(x1)p(x1- Xz)l(xz) }I J=O .(11) 

We shall assume further that the average value 
of the potential is equal to zero [otherwise it is 
necessary to add to the Green's function a factor 
exp( -i<V)t) ). Averaging (10) with the aid of 
(11), we obtain 

< G ( E, p, xI V) ) = G ( E, p) = i S dt exp {- it (p2 - E) 
0 

1 t t 

-- ~ dt' ~ dt" p (2pt'- 2pt")} 
2 0 0 

t t• t 

X [ 1 - ~ dt' ~ dt1 ~ dtz V2p (2pt1- 2pt2 ) 

0 0 t' 

t t t' 

+iSdt'{ Sdt1~ dtzVp(2pt1 -2pt2))
2+ ... J. (12) 

0 \ 0 0 

We perform all possible integrations in (12), 
restore the correct dimensionalities, and intro
duce the following symbols: Z-correlation length, 
defined by the relation 
00 

S dxp(x) = lp(O) = l <V2); p = <VZ> Fm, s = x/l; 

tz-characteristic time, defined by 

tz = lm/pll.; Ep = p211.2 /2m. 

Carrying out a Fourier transformation with re
spect to energy, we obtain ultimately for a time 
t > 0 (when t < 0 we have G(p, t) = 0): 

tit, tit,-£, 
i (V2)2fz4 I(' (' ( t ) J + 11.4 l J d£1 J d£z~ -1-2£z. F(£t)F(£2)+.: .. 

p o s• 1 

(13) 
This is the amplitude of the probability that an 
electron with momentum pl:'i at t = 0 will be in 
the same state at the instant t. 

Scattering by the inhomogeneities causes the 
amplitude to decrease with time. From (13) we 
see that, regardless of the form of F( ~ ), at suf
ficiently short times the decrease has a Gaussian 
character 

G(p, t)- exp {-(V2)t2 /211.2}, t~t1, (14) 
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and at large times an exponential character 

G(p, t) ~ exp {-<V2>plt/2Epn}, t':Pt1• (15) 

Which of the two types of fall-off predominates 
depends on whether ( V2 ) ( pl) 2 /E~ is very much 
larger than or very much smaller than unity. By 
substituting in (13) sufficiently simple concrete 
expressions for F ( ~) we can easily obtain for 
G ( p, t) a final formula containing no integrations. 

To clarify the character of the neglected quan
tities, we expand the exponential in (12) 

1 t t } { 1 
exp {-2 ~ dt' ~ dt"p (2pt'- 2pt") = exp - 2 (2Jt)3 

0 0 

I I 

X~ dqp (q) ~ dt' ~ dt" exp [2ipq (t'- t")]} (16) 
0 0 

in a series and integrate term by term with re
spect to t ( f denotes henceforth the three dimen
sional Fourier transform of the function f). We 
obtain 

1 < V2) (pl)2 1 
G(E,p) = Ep- E + (2Jt)3Ep (Ep- E)2 

\ dqF (q) 
X J pzzz- 2mEZZjf12 + 2Zpq 

(17) 

X ( 1-pzzz- 2m!:z;nz + 2Zpq) + ... 
Comparing (17) with the perturbation-theory series, 
where the typical denominator corresponding to 
the free fermion propagator can be written in the 
form 

l2(p2- 2mEjf12)+ 2lp L;q; + ~ q;z + ~ q;qj, (18) 
i i i,<=j 

we verify that the principal term in (12) or (13) 
corresponds to the sum of all the diagrams of per
turbation theory, from each of which we discard 
the propagator terms that are quadratic in q 1• 

The correction in the square brackets accounts 
for all these terms in first order, the first of the 
terms corresponding to inclusion of terms of the 
type ~iq~, and the second to inclusion of 

~i;ejqiqj. 

We see from (17) and (18) that we actually deal 
with expansions in inverse powers of pl. An anal
ysis of (13) shows indeed that in order for the 
expansion in the square brackets to be meaningful 
and for the corrections to G ( p, t) in the principal 
region of its variation (that is, before G ( p, t) 
becomes much smaller than unity in absolute 
value) to be small, it is necessary and sufficient 
to satisfy the condition 

pl ':P 1. ( 19) 

If for some reason we are also interested in the 
value of G ( p, t) at a time when they are already 
much smaller than unity, then the regions of appli
cability can be found by simply requiring that the 
correction terms in the square brackets of (13) be 
small compared with unity. Since the corrections 
increase with time, we obtain by the same token a 
limitation on the permissible values of t. 

We note that the method of discarding the terms 
that are quadratic in the virtual momentum was 
used to study the infrared asymptotic values of the 
Green's functions in quantum field theory, where a 
formula corresponding to the principal term in 
(12) was obtained [s, 7]. 

To illustrate the possibility of applying the ob
tained results to questions of physical interest, let 
us find the change in the density of the energy 
states of the electron in a solid, due to its inter
action with inhomogeneities described by an effec
tive potential V (we have in mind, for example, 
deviations of the crystal lattice from ideal; l is 
the characteristic length over which the change 
in structure takes its place, and ph is the quasi
momentum). Confining ourselves to a limiting 
case requiring no complicated computations, we 
take for G(p, t) the form (14), which is valid if 
the following conditions are satisfied 

pl ':P 1, < V2) (pl)2 I Ep 2 ':P 1. ( 20) 

The energy-state density p (E) is determined by 
the following formula [ 8] 

P,(E) = 4~4 ~ dp Im G(E, p). (21) 

From (14) and (21) we get 

( n )''' { (Ep-E)Z} 
Im G(E, p) =, 2<P> exp - 2< vz> • 

1 (2m)''• (-E2) (-E) 
p(E)= 4y2n2 fj (VZ)'i•exp 4<V2) D_," <VZ)'/, 

(22) 
( Da ( x) is the parabolic-cylinder function). Re
lations ( 22), the most remarkable property of 
which is that they give a nonzero density of states 
in a hitherto forbidden band ( E < 0), were ob
tained in a different fashion by L. V. Keldysh 
(unpublished), and also by AlmazovC 9]. 

We can now show that Eqs. (22) are applicable 
under the following conditions 

<Vz>'''ml2ffi2':P1, <V2)ml2fnz':PIEI. (23) 

The first inequality in (23) is a consequence of 
(20), while the second is obtained from there
quirement that an appreciable contribution be 
made to the integral (21) only by values of p satis
fying (20). In addition, of course, it is necessary 
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to satisfy the conditions for the applicability of 
the single-band approximation. If the character
istics of the field are not satisfied by inequalities 
(23), then to obtain p ( E) it is necessary to use 
the more complete formula (13), or the later 
formula (25). We shall not stop here to discuss 
this question in greater detail, and proceed to 
generalize the expression for the Green's function. 

We wish now to get rid of the limitation (19), 
taking into account some of the discarded terms. 
To this end we set up a Green's function which 
takes into ,account in each of the denominators of 
(18) not only the terms that are linear in qi, but 
also terms of the type I:q~ (but not I:i,rjqi • qj). 
For this end it is sufficient to modify somewhat 
the exponential in ( 12), replacing (16) by 1> 

t t' 

exp{ (2 n:~3 ~ dqp (q) ~ dt' ~ dt" exp [i (2pq- q2) (t'- t")]} . 
0 0 

(24) 
It is easy to check the correctness of this state
ment by again expanding the exponential (24) in a 
series and integrating the expression for G ( E, p) 
term by term with respect to t. We made such a 
check up to fourth order of perturbation theory, and 
the character of the resultant expressions has dem
onstrated the correctness of the chosen form (24) 
in any order. 

Calculation of the integrals in (24) now leads to 
the following expression for the Green's function 
when t > 0: 

{ 
iE t e-3irr/4< V2) "" 

G (p, t) = i exp - _P_- (pl) 'f, ~ dS£F (~) 
fi 2l'2:rt E p 2 

0 

t!t1 

(' t/tt-S [ ipl ( ~2 )]} X sinpl£ J ds~exp - 2- s+-;- . 
0 

(25) 

Of course, when pl » 1 this expression goes over 
into the principal term of (13), inasmuch as the 
expansion in the ( pZ )-1 has not been disturbed. 
We note nevertheless that even when pl » 1 it is 
preferable to use (25) and not (13), since a com
parison carried out for several trial functions 
F ( ~ ) , of the first and second correction terms in 
(13), which give the corrections in the quantities 
I:iqi and I:i,rjqi ·qj respectively, shows that the 

second of the corrections does not exceed several 
per cent of the first. This is due to the fact that 
~iqi is always positive, whereas ~i;rjqi • qj re-

verses sign when integrated with respect to 
angle, and has a zero mean value. 

1) A formula of the same type was obtained previously by 
Fradkin in quantum electrodynamics[10]. 

The main advantage of taking into account the 
terms of the type ~iq~ lies in the fact that this 
yields correctly the lower order with respect to 
< V2 ) in G ( p, t) since terms of the type 
~ i,.., jqi · q j appear only for < V2 ) 2• More accurately 
speaking, in this case complete account is taken of 
all the diagrams corresponding to the lower order 
with respect to < V2 ) in the mass operator. This 
circumstance enables us to state, as we shall show 
below, that (25) is suitable also for a description 
of the case pl « 1. 

At sufficiently small correlation lengths (the 
required criteria will be indicated below), the 
Green's function (25) has in the main region of its 
variation the form 

{ iEpt <V2)tpl f' . } 
G(p, t) = i exp - -fi-- lf;fl.l d~F('S) (1- e2,pl~) , 

0 

t>O, (26) 

corresponding to 

G(E p)=r E -E- i 
' l. p 2 

<V2)pl \ d£F(s) (1- e2ipls) J-t 
Ep o 

(27) 

(an additional factor arises on going over from (25) 
to (26) and (27), but the difference between this 
factor and unity can be neglected when the condi
tions written out below are satisfied). 

Expression (27) can be obtained independently 
by calculating the mass operator in the lower ap
proximation in < v2 ) : 

(V2) (' 
il.f2 (E, p) = -'--E (pl)1 z-3 ~ dxG0 (E, x) F (x) eiPx, (28) 

p u 

provided we improve somewhat the free Green's 
function of the electron 

G0 (E, x) = (4n:x)-1 exp (il'2mEx/ fi), 

by replacing in it the free-motion momentum 
..J 2mE by pn (when < V2 ) ( pl) 2/E~ « 1 the motion 
is close to free and such a replacement is inessen
tial). 

We see therefore that at sufficiently small pZ 
the use of (25) leads to the same result as an ac
count of the lower order in the mass operator. 
This is usually perfectly sufficient, since the inter
action of the electron with the small-scale inhomo
geneities is on the average weak and is well de
scribed by perturbation theory, as can be seen 
from the criterion given below for the applicability 
of (31). It is essential here that the perturbation
theory variant, in which the expansion is carried 
out in the mass operator [and by the same token 
in the argument of the exponential in (26) I does 
not require that the variation of the Green's func-
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tion be small compared with the free one; it is 
merely required that the contribution from the 
next order be small. We are therefore justified 
in using (26) for G ( p, t) even at those values of 
the time when its absolute value differs appre
ciably from unity. 

Let us explain finally the conditions for the 
applicability of expression (26) when pl « 1. 
Formula (25) goes over into (26) when t » t 1/pl. 
In order for the region t :S ttfpZ to be inessential 
it is necessary that the characteristic damping 
time of the exponential in (26) be appreciably 
larger than t 1/pZ; this leads to the condition 

The same condition ensures smallness of the 
damping over one wave length. 

(29) 

To estimate the correction terms it is neces
sary to find the mass operator in the next higher 
order in ( V2). Fourth-order calculations lead to 
the expression 

pl~i. 

Comparing with the damping in M2 (that is, 
ImM2), we find that in order to obtain a small 
correction at a time when G ( p, t) is still not 
much smaller in absolute value than unity, it is 
necessary to satisfy the condition 

(30) 

We note that (31) is a more stringent require
ment on the value of ( V2 ) than (29). Nonetheless, 
it enables us to consider strong fields, which can 
be larger than the kinetic energy. This indeed is 
the cause of the good applicability of perturbation 
theory when pZ « 1. We note that estimates of a 
similar kind were made by Tatarskil and Gertsen
shteJ:nC 11 •12] for the scattering of electromagnetic 
waves in a turbulent medium. In an estimate of a 
quantity similar to M4, Tatarski1[ 12J obtained an 
expression which is literally equivalent to (30), 
but the final estimate corresponds there to (29), 
and not to (31) as in our case. The reason for it 
is that Tatarski1 [ 12 ] required that M4 be small 
compared with ReM2, without paying attention to 
the fact that M4 is imaginary. 

When pZ ~ 1, estimates in the fourth order of 
the mass operator lead to the rather stringent 
requirement: 

(32) 

which replaces both (29) and (31). We cannot 
state, however, that this condition is necessary, 
for when ( V2 ) ~ Et the function G ( p, t) no 
longer has the form (26), and the use of perturba
tion theory in the mass operator is not justified. 
In this case (25) can be regarded as an interpola
tion formula between large and small values of 
pZ, which describes qualitatively the intermediate 
region. It is hardly possible to obtain directly a 
solution in this region, for when pZ ~ 1 and ( V2 ) 

~ Eb there are no small parameters left in the 
problem. 

As already stated, the employed method has 
great generality and can be used in various prob
lems involving wave equations in a medium with 
random properties. We plan in the future to apply 
the obtained results to the question of the propaga
tion of electromagnetic waves in a medium with a 
fluctuating dielectric constant, especially to find 
the region of applicability of various types of solu
tions. 
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Note added in proof (24 March 1965). A direct calculation of 
p(E) in accordance with formulas (21) and (13), in which simpler 
concrete functions were taken in lieu of F(,f}, has led to a more 
precise definition of the conditions of applicability of (22). 
Namely, it turned out that the second inequality in (23) should 
be replaced by the following stronger inequality: 
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