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The passage of an electric current through plates, cut from a many-valley semiconductor 
such as n-type Ge, is considered. It is shown that at low temperatures, when the mean free 
path of the carriers associated with the intervalley scattering is sufficiently long, the condi­
tions for the continuity of the electron current in each of the valleys lead to a strong depar­
ture from the equilibrium electron distribution between the valleys in the surface layer; 
consequently, some of the valleys are considerably enriched with electrons while others are 
depleted. When the free-transit time associated with the intervalley scattering is 
Rl10- 9 sec, a considerable redistribution of carriers takes place, in fields of the order of 
several volts/ em, at depths up to ~ 10 tJ.. The intervalley redistribution leads to an electrical 
conductivity anisotropy, to its dependence on the surface band curvature (a kind of "field 
effect"), to the appearance of nonlinearity in weak fields, etc. It is also shown that weakly 
damped waves, associated with the intervalley redistribution of carriers, may appear in 
strong electric fields. 

INTRODUCTION 

MANY well-investigated n-type semiconductors 
( Ge, Si, several intermetallic compounds) have 
electron energy spectra with a many-valley struc­
ture. The contribution of each of the valleys to the 
electrical conductivity of a crystal is, as a rule, 
strongly anisotropic; however, the total electrical 
conductivity of cubic crystals of this type is iso­
tropic because of the symmetrical distribution of 
the valley system. 

Electrons in each of the valleys experience two 
types of collision: intravalley and intervalley. 
Collisions of the former type make the main con­
tribution to the electrical resistance and are inves­
tigated by the usual methods employing transport 
processes. Collisions of the second type are 
associated with large momentum transfer ( of the 
order of the reciprocal lattice periods) and, there­
fore, they are much less probable. In fact, during 
cooling, the probability of the intervalley lattice 
scattering decreases exponentially as the activa­
tion energy, equal to the energy of the intervalley 
phonons (i.e., energy of the order of the Debye 
energy) increases. The intervalley impurity 
scattering is also relatively weak compared with 
the intravalley scattering since it cannot be 
caused by long-range Coulomb interactions but is 
due to some special processes. Therefore, the 
influence of the intervalley scattering on the trans-

port coefficients at low temperatures is weak; 
however, it increases considerably the absorption 
of ultrasound. [t, 2] The free-transit times T 1 , 

associated with the intervalley scattering and 
found from the absorption of ultrasound in pure 
samples of Ge at 30° K, are longer than 10-9 sec, [ 2] 

which agrees with the mean free path lengths Z' 
=liT'~ 10-2 em (vis the average thermal velocity). 

The high value of T 1 in perfect samples allows 
us to consider the electrons belonging to different 
valleys as, to a considerable extent, independent 
groups of carriers described by a system of inter­
related diffusion equations. In the presence of a 
weak external electric field E, these equations may 
be satisfied if we assume that the densities in all 
the valleys are equal to their equilibrium values. 
A completely different situation obtains at the 
surface of the sample. Since the ellipsoidal 
constant-energy surfaces, corresponding to 
different valleys, are inclined at different angles 
to the surface, the electric field parallel to the 
surface plane accelerates some electrons to the 
surface but repels others away from it. If there 
is no very effective mechanism of intervalley 
scattering at the surface, which would re-establish 
equilibrium, then the density of electrons belonging 
to the former groups increases and the density of 
the latter groups decreases; carriers are ''pumped'' 
from some valleys to others. At higher values of 
l', the region of nonequilibrium distribution of 
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electrons should have a macroscopic thickness 
considerably greater than the mean free path l 
associated with the intravalley scattering. In this 
region, the electrical conductivity should be 
strongly anisotropic. 

We consider below the characteristics of the 
electrical conductivity of finite semiconductor 
samples, associated with the intervalley redistri­
bution of carriers in the surface region, as well 
as the factors governing the magnitude of this 
effect. We show, moreover, that, for certain 
relationships between E and T 1 , weakly damped 
oscillations, accompanied by "leakage" of elec­
trons between valleys, may be propagated in many­
valley semiconductors. 

2. INTERVALLEY REDISTRIBUTION 

We shall assume that T' is considerably 
greater than the characteristic time of the intra­
valley relaxation. Then we can write down the 
diffusion equation for electrons belonging to the 
a -th valley: 

a;;a. = +- div Ja. + ~' (R!'>a. -Ra.fl), 
{l 

J12 = en 12~12E + eD12Vn 12 , ( 1) 

where na, Ja, Dw ua are, respectively, the car­
rier density, current density, diffusion coefficient 
tensor, and the mobility tensor for electrons, and 
Ra/3 is the rate of transitions from valley a to 
valley i3; the prime of the summation sign denotes 
that i3 "' a. 

We shall consider only the case of weak fields 
E, when Eq. (1) can be linearized. For a plate 
bounded by the planes y = ± d, we obtain, instead 
of Eq. ( 1), 

a ' ;]?/ dE If, 
~=D "~+n ou ,. __ Y_+ ~ np -n,. , 

at yy dy2 ,. yy dy f 'tap' 

(2) 

where n~ and n~ are, respectively, the equili­
brium density of electrons in the a-th valley and 
the nonequilibrium increment of this density; ob­
viously, n~ and E can depend only on the coor­
dinate y and, because curl E = 0, the components 
Ex and Ez are constant throughout the sample. 
If, moreover, the screening length l D is consid­
erably smaller than the dimensions of a region in 
which n~ changes considerably, the number of 
equations in system (2) can be reduced by one, 
using the quasineutrality equation: 

~ np' = 0; (3) 

Ey is found from the condition that the total cur-

rent along the direction y is equal to zero; it fol­
lows from Eq. (1) that for cubic (i.e., macro­
scopically isotropic) crystals with the electrical 
conductivity 

Ciij = e ~ n,.0 ui;" = ,CII:Ji; ,. 
it has the form 

e dnp' 
Ey= --- ~Dyy~'>--. 

CI f> dy 

Substituting Eq. (4) into Eq. (2) and using 

(4) 

Eq. (3), we obtain a system of interrelated equa­
tions for n~. This system should be supplemented 
by boundary conditions, which can be easily formu­
lated by introducing phenomenological rates of the 
intervalley scattering at the surface S~J : 

.!_I ay = ~ 'S,.13<+> ( n13' - n,.') when y = + d, 
e ll 

!l,.y=-~'s,.13 ->(n13'-n,.') when Y=-d; 
e ll 

(5) 

strictly speaking these conditions apply not to the 
surface itself but to the boundary of the quasi­
neutral region near the surface. 

The formula for the total current follows di­
rectly from Eq. ( 1): 

+d 
li= ~ ~laidy=2daEi+e~Diy"(n,.'(d)-n,.'(-d)). 

-da « 
(6) 

In aGe crystal, all four valleys are equivalent and, 
therefore, all n~ and T~/3 are equal; if we use the 

notation n0 = n° and T' = T 1 R/4, then the last term 
a a~-' 

in Eq. (2) will be equal to -n~ /T' as a conse­
quence of Eq. (3). The coefficients s~J are not 

independent either, but the nature of the relation­
ships between them depends, in general, on how the 
plate is cut with respect to the crystallographic 
axes. We shall consider below two special cases, 
which allow us to explain all the most interesting 
features without a cumbersome treatment. 

For simplicity, we shall restrict ourselves 
also to a constant electric field. For a field 
varying in accordance with the law exp ( iwt), all 
the formulas may be obtained by the substitution 
T'- T'/(1 + iwT'), which gives a frequency­
dependent electrical conductivity beginning from 
w~1/T'. 

A. Plate bounded by (010) planes. In this case, 
the y axis is the fourfold axis of the whole system; 
therefore, the total electrical conductivity in the 
xz plane remains isotropic and all quantities 
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Da = D are equal. However, it then follows yy 

directly from Eqs. (3) and (4) that Ey = 0, i.e., 
there is no transverse electric field and the equa­
tions in (2) can be separated. If the valleys lying, 
respectively, along the axes [ll1], [ill], [1ll], 
[lll] are numbered 1, 2, 3 and 4, and E is 
directed along the x axis, it is evident from the 
considerations of the symmetry and electrical 
neutrality that 

n{ = n{ = -nl = -ns' == n'. 

If we also allow for the fact that s~~) = si~) 

and if we use the notation s(±) = 2(s(±) + s(±)) 
12 13 ' 

then instead of Eqs. (2) and (5) we obtain for n' 

rPn' n' 
D----=0 

dy2 ,;' ' 

dn' { -S<+> n' when y = + d D --+ noUyx1 Ex = 
dy S<->n' when y =-d. 

(7) 

(8) 

The quantities D and Uyx1 are expressed sim­
ply in terms of the principal values of the corre­
sponding tensors for each of the valleys: 

D = 1/s(Dl + 2Dt), Uxy1 = 1/s(ul- Ut). (9) 

We shall write directly the formula for the ef­
fective electrical conductivity which is obtained 
by an elementary solution of Eq. (8) using Eq. (6): 

~=~=cr{ 1 -g( u1-ut)2 tanh(d/L)} (10) 
2dEx ul + 2ut d/ L 

1 + 2 (L/D) (S<+> + SH)coth(d/ L) 
g = 1 + (L/D)2S<+>S<-> + (L/D) (S<+> + S<->)coth(2d/L)::::;; 1. 

(ll) 

The quantity L = ( DT') 11 2 has the meaning of the 
diffusion length in the process of the establishment 
of equilibrium between electrons of different 
valleys; obviously, L ~ (ll') 11 2• When l ~ 10-4 em, 
l' ~ 10-2 em, we have L ~ 10-3 em. We note that 
the resultant situation is markedly similar to that 
which should be obtained near a boundary in macro 
scopically anisotropic bipolar semiconductors. [ 3] 

Several conclusions follow from Eq. (10). l; 

and u differ even in the zeroth order with respect 
to the electric field. When s(±) - 0, ut » u1 and 
d ~ 2.5L, we obtain ( u- l; )/u ~ 0.1 and this 
fraction increases rapidly as d increases. The 
quantity l; depends strongly on the surface state 
through the factor g; if we establish artificially, 
by an external transverse field, a blocking curva­
ture of the bands, we can considerably reduce 
s(±) by making it difficult for electrons to reach 
the surface, and thus we can increase g and re­
duce l;/ u. In this way, we obtain a kind of "field 

effect" associated not with a change in the total 
number of carriers but with their redistribution 
between valleys in a layer of thickness ~ L; when 
L » Zn, this effect may be stronger than the 
normal field effect. 

The value of the nonequilibrium electron density 
at the boundary when s(±) = 0 is given by the 
formula 

n'(d) ul- Ut Ex d + 2 E- tanh -L-' 
Ul Ut L no 

( 12) 

in the absence of degeneracy Dz/uz = kBT/e, and, 
forT= 30°K, L= 10J.L, we obtain EL ~ 2.5 V/cm, 
i.e., the diffusion fields EL, which determine the 
limit of the linear conditions, are weak; the fields 
Ex~ EL permit considerable intervalley redistri­
bution at the boundary. In accordance with the as­
sumptions made above, T' is the longest of the re­
laxation times of the system and, therefore, the 
field EL cannot heat carriers. 

In spite of the fact that the total effective elec­
trical conductivity l; of a plate is isotropic, there 
is anisotropy in the surface layer, which follows 
directly from Eq. (12) and which may be detected 
from the reaction of the system to additional 
external fields (for example, microwave fields 
or infrared radiation, which do not cause a marked 
redistribution of carriers at wT' > 1). It follows 
from Eq. (12) that the principal axes of the conduc­
tivity ellipsoid at the surface are oriented along 
[llO], [1l0], and [001] and the corresponding 
principal values are 

0'1,2 =a [ 1 + ( ~~; 2u~J2i tanh{-J, u3 =a. (13) 

It is evident that when E :S EL (i.e., in the non­
linear region), l; itself becomes anisotropic. 

B. Plate bounded by (1l0) planes. This case 
differs from the preceding one in that the normal 
to the plate is a binary (twofold) axis and, there­
fore, we may expect anisotropy of l; even in the 
linear region. If we select the x axis along the 
[110] direction, then, as can easily be shown, 
u~ ~ 0, for all ellipsoids and, therefore, an exter-

nal field applied along the x-axis direction does not 
redistribute carriers and l;x = u. If an external 
field is directed along the z axis, then Ey = 0, 
n1 = n4 = 0, n2 = - n3 ""' 0 and, by analogy with the 
preceding case, we can obtain 

l; =a{ 1 _ g (ul- ut) 2 tanh(d/L)} (l4) 
(ul+2ut)(2ul+ut) d/L · 

The coefficients g and L which occur in the above 
equation are given by the same formulas as in the 
preceding case, but we now have 
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D- 1/s(2Dz + Dt), 
S<±) = 4s12<±) = 4S1s<±). (15) 

Consequently, a plate cut in this way is anisotropic 
even in the linear approximation and the degree of 
anisotropy may be varied by varying s(±). 

We shall note several other effects of the red is­
tribution of carriers. In asymmetrically cut uni­
form plates with s<+) ~ s<-), the passage of a cur­
rent when E :=:. EL should be accompanied by recti­
fication. A considerable departure from thermal 
equilibrium in layers of thickness ~ L may cause 
various instabilities, in particular those associated 
with an intense emission of intervalley phonons. 

3. INTERVALLEY WAVES 

In conclusion, we shall consider briefly quasi­
stationary long-wavelength oscillations (7t » Zn), 
accompanied by electron transitions between 
valleys, but we shall not consider the interesting 
region near the surface because it is too difficult 
to analyze. Taking the system of Eq. (1) in the 
presence of an external uniform electric field E, 
which is not assumed to be small, and linearizing 
it with respect to the amplitudes of the oscillations 
of the density na and field E, we can easily obtain 
an equation for the determination of the natural 
frequencies. If we neglect the dependence of O.a 
on the densities and consider only waves of the 
exp[i( k· r- wt)) type with k II E then 

Uz + 2ut . [ 1 Dz + 2D1 J 
W[!OO] = - Ek- ~ .. + k2 

3 ~ 3 , 

W[ 1101 = _ Ut(2uz+ut) Ek-i[-1 +D1(2D1+Dt) k2J 
Uz + 2ut T 1 Dz + 2D1 

(16) 

for the orientation of E along the directions [100) 
and [110], respectively; 0- the former case E == 0, 
while in the latter case E ~ 0. 

The condition for weak damping of the inter­
valley waves, i.e., the smallness of the imaginary 
component of w compared with the real one, is 
satisfied for waves with 1t == 1/k given by 

EL E 
LE-<;J-<LE~· 

(17) 

The inequality (17) can be satisfied only if 
( E/EL) 2 » 1. The velocity of propagation of the 
intervalley waves is governed by the average vel­
ocity of the electron drift; their characteristic 
damped wavelength is Im 1t ~ LE/EL. 
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