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We consider some properties of metallic particles with dimensions so small that the spec
trum of the electronic excitations becomes discrete. The existence of microscopic rough
nesses on the particle surfaces makes it impossible to calculate the detailed level distribution 
in the spectrum of each individual particle. At the same time, the mean level density is still 
determined by the macroscopic characteristics of the metal. This circumstance allows us to 
describe the level distribution statistically, in a manner similar to that employed in nuclear 
physics to find the distribution of the highly excited levels of the atomic nucleus. The formu
las obtained for the electric polarizability in a high-frequency field, especially the part of the 
polarizability responsible for the absorption, contain explicitly the binary correlation function 
introduced in Dyson's well-known papers. It is shown that all three types of level statistics 
proposed by Dyson are realized in the objects under study under different conditions. It 
therefore becomes possible to observe in the level scheme of a random system a long-range 
order that leads to strong oscillations of the absorption when the field frequency is varied. 
Formulas are also obtained for the specific heat and for the paramagnetic-resonance inten
sity in minute metallic particles. The possibility of experimentally observing the phenomena 
in question is discussed. 

1. STATEMENT OF PROBLEM 

A system of many particles in a finite volume has 
discrete levels, the distances between which, gen
erally speaking, decreases exponentially with in
creasing number of particles. The systematics of 
the low-excitation levels, to which it is sufficient 
to confine oneself at low temperatures, has a 
unique character. As is presently well known 
from statistics, it is possible to use at low tem
peratures the notion of excitations or quasiparti
cles obeying a definite dispersion law (which as a 
rule is phenomenological). The energy of the 
entire system is represented by the sum of the 
energies of the individual quasiparticles. 

Of special interest for what follows are excita
tions of the Fermi type or, more accurately speak
ing, electronic excitations in metals. The density 
of the number of states per unit energy interval 
does not vanish in this case at zero excitation 
energy, but is equal to a constant, whose values 
for an isotropic dispersion law is 

( 1) 

where V is the volume of the system, m* the ef
fective mass, and Po the limiting momentum of the 
Fermi surface ( ti. = 1). The reciprocal ~ = v-1 

is thus the average distance between the levels 
near the Fermi surface. Usually the level sys
tematics of particles in a large volume is obtained 
by considering the system in a large cube with 
periodic boundary conditions, with the final levels 
corresponding to the values of the momentum 
quantized in intervals 6.p ~ 1/a, where a is the 
dimension of the system. This is perfectly ade
quate for a description of a macroscopic system, 
but becomes incorrect if we consider seriously 
the levels of sufficiently minute metallic particles. 
Imperfections in the shapes of such particles, which 
cannot be controlled at all, and which arise when 
the metal is sputtered, cause the distances between 
levels to be mainly of the order of ~. and certainly 
not of the order p0/m* a. 

This circumstance was already pointed out by 
Kubo [ !] , who introduced the phenomenological 
level-distribution probability density, on the basis 
of which he investigated the thermodynamic prop
erties of such systems, namely the specific heat 
and the magnetic susceptibility. We shall show 
below that Kubo's phenomenological function leads 
to incorrect relations for these quantities, but the 
most interesting from our point of view is a study 
of the properties of minute particles in an alter
nating field, where the concepts developed below 
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lead to non-trivial consequences. 
It is important to note that the distribution of 

the levels should remain random even if the par
ticles have the same volume and a good shape, say 
spherical particles of equal size. The point is that 
electrons in the metal have a wavelength on the 
order of atomic dimensions. Therefore surface 
irregularities of atomic size are sufficient to make 
the level distribution perfectly random. This dis
tribution ceases to be random if the electron re
flection is not difuse but specular. 

Thus, if the quasiparticle concept is valid in 
this range of dimensions and temperatures, then 
the quasiparticle levels are determined by the 
perfectly random interactions with the walls, and 
the average distance between levels is ll = v-1 

with v given by (1). 
The situation is therefore completely analogous 

with that which takes place for the distribution of 
high-excitation levels of the nucleus in nuclear 
physics. The complexity of the real interactions 
in the nucleus leads to the possibility of consider
ing the distribution of the levels statistically. In 
the nucleus, the averaging is carried out over 
different nuclei with respect to the average density 
of the levels of the nucleus, or over different sec
tions of the spectrum of the nucleus. In our prob
lem, the averaging reduces to a study of a large 
assemblage of metallic particles of equal size. 

The concepts of nuclear-level statistics based 
on complete randomness of the interactions were 
apparently first developed by Wigner[ 2]. Recent 
papers by Dyson[ 3] and Dyson and Mehta [ 4] pre
sented a mathematical formulation of these con
cepts and formulas for the correlation functions 
between these levels, which we shall henceforth 
simply borrow from these papers. 

According to [ 3], the level distribution coincides 
with the distribution on the unit circle of the eigen
values of matrices from different ensembles. 
There are three such ensembles: 1) orthogonal, 
which describes systems that are invariant against 
time and space inversion, or with integer spin; 
2) symplectic-for random interactions, invariant 
against time reversal; the total spin of the system 
is half-integer; 3) unitary-for systems that are 
not invariant against time reversal. 

In nuclear physics, apparently, only the first 
ensemble is realized. If we employ this approach 
to describe the spectrum of an individual Fermi 
excitation in the field of a random potential, then 
the orthogonal ensemble pertains to the case of 
small spin-orbit coupling, when the spin is a quan
tum number; the symplectic ensemble is realized 
when the spin-orbit coupling is sufficient to mix 

levels with different spins. Finally, the unitary 
ensemble is obtained from the symplectic one 
when the magnetic field is turned on and J.l H » t.. 

The value of t. is inversely proportional to the 
volume of the particle and for a linear law of elec
tronic specific heat it is connected with the coeffi
cient by 

/). = 1.1·10-20 ~ [0 K] ~ ~-
a3py N 

(2) 

(A is the atomic weight, p is the density, and y 
is expressed in mJimole-deg2 ). For aluminum 
with a= 4.2 x 10-7 em we have ll ~ 1°. In gen
eral, it is seen from (2) that when N ~ 104 - 105 

the average distance is ll ~ 1 - 0. P, that is, it is 
quite large when the system dimensions are still 
sufficiently large to be able to use the macro
scopic characteristics of the metal. 

To conclude this section, let us discuss the 
main question: to what extent is the excitation 
concept applicable to the case of such small di
mensions or such low temperatures (as ll - 0). 
We note immediately that acoustic oscillations, 
both volume and surface, can be excluded from 
consideration, since long-wave sound has a 
strictly discrete set of frequencies, starting with 
low values of w ~ ula ( u-speed of sound). The 
ratio 

wId~ u(poa) 2 I VF 

can always be made sufficiently large. For exam
ple, when a ~ 10-6 we have wl ll ~ 10. For this 
reason, at sufficiently low temperatures T ~ ll, 
the sound oscillations are not excited at all, and 
at higher temperatures the interaction between the 
electrons and the phonons is less effective because 
of the discreteness of the spectrum. 

The reason why the excitation concept may turn 
out to be incorrect is the attenuation connected 
with the interaction between the electrons them
selves. In bulk metal at frequency w, the attenua
tion is on the order of w2 IE F or T2 IE F· It is 
therefore clear that at temperatures 

T<l't).eF ~ 10-100° K (3) 

the attenuation becomes smaller than the level 
spacings fl. Finally, heat exchange with the 
medium is also too weak to lead to a noticeable 
broadening of the levels. By virtue of these con
siderations, we assume that it is meaningful to 
speak of Fermi excitations in the objects of 
interest to us. 

2. PARTICLES IN AN ELECTROMAGNETIC FIELD 

So long as the frequencies w of the field are 
small compared with the reciprocal of the time the 
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electron travels from wall to wall (~vI a), and 
the field intensities are small compared with the 
internal fields 

eEa~,f:J., 

the interaction of a "metallic" small particle with 
the field can be considered by using perturbation 
theory for a quantum system. In this range of 
fields the particle behaves like an atom with a cer
tain polarizability and does not manifest its met
allic properties at all. Inasmuch as the field 
changes little over the dimensions of the particle, 
the interaction reduces to the term 

tJ =-Ed, 

where a is the dipole moment of the system. 
The average dipole moment 

(da) = i ~ ([da(t), d~(t')])EB(t')dt', 

( [, ]-commutator) can be easily expressed in 
terms of matrix elements of the coordinates of 
the excitations and the occupation numbers of the 
individual levels nk: 

d 2E "" nh - n1 
aw = - e ~"' LJ rhlarlhB. 

k.l8h- 81 + w + i6 

In the last formula we have changed over to the 
Fourier components of all the quantities in ac
cordance with 

1 00 

d ( t) = 2n I d.,e-iwt dw. 

(4) 

Separating in (4) the static part of the polarizability 
a, we obtain 

(5) 

(6) 

As will be shown below, the sum over l in (6) 
converges when Ek- Ez ~ v/a, that is, near the 
Fermi surface. As a result, 

ao = 2/se2v\f2) = 4e2a5mpo l15n = 4a5e2y I 5n, 

where y is the coefficient in the linear law of 
specific heat: Ce = VyT. The order of this 
quantity is 

ao ~ a3 (poa) 2 ~ a met (poa )2, 

where amet = a 3 denotes the polarizability of the 
equivalent metallic particle in the field. 

For the objects considered, a polarizability 
a ~ amet is attained in fields eEa » ~. suffi-

ciently strong to mix the levels of the system. In 
these fields the system will have the usual metallic 
properties. As far as we know, no one has called 
attention to the anomalously large values of the 
polarizability of minute metallic particles in weak 
fields. Yet, apparently, this circumstance uncovers 
a possibility of producing artificial dielectrics with 
large controllable dielectric constants. 

In formulas (4) and (5) nk are the equilibrium 
occupation numbers for which, however, we cannot 
in general use the known formulas with a chemical 
potential for the Fermi distributions. When 
T ~ ~ the number of excitations is very small 
and it is therefore necessary to take into account 
the well known premise of the Fermi-liquid theory 
concerning the conservation of the total number of 
quasiparticles. An analysis for T = 0 and for 
large values of the temperatures (3), when we can 
write 

nh = {exp [ (8h- ~-t) IT] + 1}-1 

yields the same result. That the results which 
follow from (5) are completely independent of the 
temperature can be demonstrated by using the 
more general method of Fowler and Darwin [ 5], 

in which the conservation of the number of excita
tions is explicitly taken into account. Without 
dwelling on this proof, we present a derivation for 
the case of high temperatures (3), since it is of 
greatest experimental interest. 

Let us average (5) over the level distribution. 
To this end we multiply each term in the sum (5) 
by the probability 

( 7) 

that two levels will be in the interval of values dE 1 

and dE 2, and integrated with respect to E1 and E2: 

e2w2 
2 r"'ra d n1-nz (r1zrz!)R(I81-82I) 

---v .l .l 81 8z--- (8) 
3 -oo 81- 82 (81- 8z)2--;- (w + i6)2 · 

The integral over the energy difference converges 
when E1 - E2 ~ w. If w « v/a, as assumed, then 
r21·r12 ~ (r21 •rt2)o is constant. Replacing 
( n 1 - n2)/( E1 - E 2) by an/BE for E ~ w « T, we 
obtain 

(9) 

f R( 181)d8 
A (w) = w2v .l 82_ (w + i6)2. (10) 

-co 

We now calculate the quasiclassical matrix 
element ( r 12 • r 21 )o. For the case of diffuse re-
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flection of the electrons from the surface, 
Shapoval[s] developed a general method of calcu
lating such quantities, which we shall use with 
slight modification. The average of two quantities 
f ( t) and g ( t) at different instants of time, taken 
over the state I ni) , is 

(ni If (t) g (t + 't')J ni) = L; (ni I j (t)J kj) (kj I g (t)l ni) e-iwkn~, 
i·< 

where n and k denote the energies, while i and j 
are the other quantum numbers. It follows there
fore that the matrix element averaged over i and 
j, which we shall denote by fnkgkn• is 

1 co 

fnkgkn = 2:rtv t ei"'•n~ (j(t)g(t + -r)>d1:. 

Going over to the quasiclassical approach, we 
obtain 

1 1 Ta oo 

fnkgkn= 2:rtv 2T
1

)dt) d-rei"'>nl:j(t)g(t+-r). 
-T1 -oo 

Here the integration with respect to t corresponds 
to averaging along the given trajectory, and the 
bar over the integral denotes averaging over all 
the quasiclassical trajectories of the particle. 
For the quantity of interest to us, using the fact 
that the correlations with respect to T are even, 
we obtain 

1 1 Ta co 

l~tzlzk =- -) dt) d-r cos ( W~tz't) (r (t)r (t + -r)). (11) 
:rtV 2Ti_T, 0 

As can be seen, expression (11) is actually cut off 
at Wkl ~ v/a. 

Let 0, t 1, t 2, .•• , tn ... be the times of collisions 
of the particles with the wall. Let the time t lie 
in the interval 0 < t < t 1, and then t + T can lie 
either in the same interval or in the next interval, 
corresponding to one, two, etc. reflections. It is 
therefore sufficient to calculate the integrals 

ta 11-t t,-t 

)r(t)dt{) r(t+-r)d-r+) r(t+T)d-r+ ... } (12) 
0 0 t,-t 

and to average them over all the reflection angles 
and the initial point of the trajectory r 0• Total in
tegration with respect to t reduces to multiplica
tion of (12) by a number of segments of the trajec
tory N equal to the number of collisions of the 
particle with the surface during the time 2T 1: 

N = 2T1vS / 4V. 

The probability of a given trajectory is 

dS II cos-&; 
dJ:.traject= -8 --dO;, 

. :n: 
l 

where Ji is the angle of reflection of the particle 
after the i-th collision. Finally, 

v 1 1 cos-&; '• 
(r~tzlz~t)o = J;--J dS) J ... ) II --dO;) r(t)dt 

l:rtvV i :n: 0 

ta-t t,-t 

X {) r(t+-r)d-r+ ) r(t+-r)d-r+ ... }. (13) 
0 t,-t 

For a sphere we obtain after elementary calcula
tions 

139 1 2 a 
(r~t'zlz~t)o =----a-. 

150 2:n:v v 
(14) 

A somewhat different approach is necessary if 
the range of the electrons in the sample is smaller 
than the sample dimensions. In the integration with 
respect to T, the characteristic time in formula 
(11) is determined by the diffusion from the point 
r(t) tothepoint r(t+ T): 

't eff ~ a2 I D ~ a2 I lv. 

In this case we always have ~ • T eff ~ apo Zpo » 1. 
The matrix element of interest to us can be 
written in the form 

1 co 

(r~tzlz~t)o=-) d3ro) d3r(ror)) Wr, (r,t)dt, 
:rtvV 0 

(15) 

where Wr0 ( r, t) is the probability of finding the 
particle in the point r at the instant t, if its posi
tion at t = 0 is r 0: 

aw.,(r,t) AW w 0 .. 
at =Do. r,(r,t), r,(r,t= )=u(r-r0). 

Integrating the diffusion equation with respect 
to t, expanding Wr0 ( r, t) in Legendre polynomials 
and using the fact that W ro ( r, t = oo ) = 1/V, we 
obtain 

1-- fJ(r- r0) = D ~ {_.!._ !:_r2!!_- l(l + i) } 
V r2drdr r2 

l 

X~ Wr.Z(r,t)Pz(cos-&)dt. 
0 

Putting 

we obtain for f ( r) the elementary equation 

d f(r) I _ 0 dr-r- r=a- ' 

from which, after calculations, we finally obtain 

48 1 a~ 

(r~tzrz~t)o = 175 2:rtv n· (16) 

We note here that whereas for a pure sample 



944 L. P. GOR'KOV and G. M. ELIASHBERG 

the frequency-dependent part of the polarizability 
(including Im a, which determines the absorption) 
is of the order of a - a 0 ~ amet> in the case of a 
small mean free path we have 

a-ao ~ Umeta/l~amet· 

We now proceed to expression (10) for A(w). 
As already mentioned, the orthogonal ensemble is 
realized in the case when the spin-orbit interac
tion can be neglected, that is, for light metals. 
According to [3], we have in this case 

sin2 X f sin xt 
Rort (rev e)= Rort (x) = 1---+ J --- dt 

xz o t 

X !:__ ( sin x l _ ~ ~ ( sin x ) . 
dx X; 2dx. x 

(17) 

Breaking up the part of (17) that is symmetrical 
in x into two branches f+ + f_, which are analytic 
in the upper and lower half planes respectively, 
we can calculate the integral in (10) in explicit 
form 

sin 2z 2 Ci (z) 
A(omv) = A(z) = 2-------- (sinz-zcosz) 

z z 

[ 1 cos 2z Si(z) J +i 2z--+------- (sinz-zcosz) 
z z z ' 

(18) 

where Ci ( z), and Si ( z) are the integral sine and 
cosine, respectively. [ 7] 

In Fig. 1 is shown a plot of the real and imagi
nary parts of the ratio A ( z) I 2z 
= [ A1 ( z) + iA2 ( z) I l2z. This dependence is far 
from trivial. In particular, we see that when 
w :S .6. the absorption acquires essentially a quan
tum character. As w - 0 we get 

A (z) ~ 2/3z2(2 -In (yz)) + 1Mnz2• 

In the opposite limiting case, as z - oo, we have 

10 

FIG. 1. 

_A(z) ~ i( 1 __ 1_+_3_+ cos2z) 
2z z2 2zt 2z4 

1 1 sin2z 
+-.z-7s-~· 

The oscillating term denotes the presence of a 
long-range correlation in the arrangements of the 
levels-the effect of "repulsion" between levels, 
that is, the existence of an appreciable probability 
of a periodic arrangement of the levels[2•3J. Unfor
tunately, these oscillations are too small to be ob
served experimentally. We therefore proceed now 
to discuss the results for heavier metals or for 
larger particles, where the spin-orbit interaction 
cannot be neglected, and which we therefore de
scribe by the so called "symplectic ensemble"C 4J. 

The function 

R•impl(2rcve) = Rsimpl(x) 

is given by 

sin2 x ( sin xt dt _d ( sin x ) . 
R•impl(x) = 1-----J 

xz 0 t dx x 

FIG. 2. 

Figure 2 shows the behavior of the ratio A (z) I z: 

sin 2z 
A(2rcvro)== A(z) = 2-~ 

( rc \ cos z + z sin z - - + Si (z) 1 ------
2 . z 

+i[z- sin2z +(~+Si(z) jzcosz-sinz]. (19) 
z 2 J z 

We see here the strongly pronounced oscillations 
of both the real and the imaginary parts of 
A ( z )lz. Indeed, as z - oo we have 

A(z) 2 1t . ·( n ) 
-- ~ ---Sill Z + ~ 1 +- --COS Z , 

z z 2z 2z 

(20) 

that is, the oscillations have a much larger ampli
tude than in lighter substances. The physical rea-
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son for this effect, as is well known, is that the 
spin-orbit interaction lifts all but the Kramers 
degeneracy. Therefore a random appearance of 
two closely-lying levels is even less probable than 
in an orthogonal ensemble, and accordingly a 
stronger "repulsion" is produced between levels. 

We present also an asymptotic expression for 
low frequencies: 

A (z) ~ 2fgz2 + 1f45z5, 

from which we see that absorption is very small 
in this case and has a very steep variation with 
increasing frequency. 

To conclude this section we present formulas 
describing the absorption of electromagnetic 
radiation, when, on the one hand, the spin-orbit 
interaction is sufficiently strong, and on the other 
there is an external constant magnetic field suffi
cient to mix the levels (iJ.H » .0.) and to produce 
a "unitary ensemble"[3, 4J: 

. . sin 2z [ sin 2z ] Auntl(2nvw) _ Aumt(z) = 2----+ i z--- . 
2z 2z 

(21) 

Although the oscillations here are weaker than in 
the symplectic ensemble, they are also quite 
noticeable. 

3. SPECIFIC HEAT AND SINGULARITIES OF 
THE BEHAVIOR IN A MAGNETIC FIELD 

At high temperatures T » .0., all the thermody
namic quantities, naturally, have the same form as 
for bulk metal. We confine ourselves therefore 
here only to the case of low temperatures T « .0.. 
The situation is the simplest with specific heat, 
for at such low temperatures the appearance of 
more than one excitation per system has little 
likelihood. For the orthogonal and symplectic 
ensembles, which both have doubly degenerate 
levels, the level filling scheme is shown in Fig. 3. 
The dashed line denotes the free levels, the solid 
line with circle the occupied levels. 

Figure 3a corresponds to "even" filling. The 
total partition function is equal to 

[ e1 - eo J [ 2 ( e1 - eo) J 
Z·even = 1 + 4 exp - --T- + exp - T . 

The state on Fig. 3b is doubly degenerate. Leaving 
again in the partition function only those excitations 
which affect only one level, we obtain 

[ Bo - B-! J [ B+! - Bo J Z odd = 2 + 2 exp - T + 2 exp - T . 

Averaging F = - T ln Z over both possibilities, 
and also integrating over the probability P (.0. ) of 

a 

-t

b 

FIG. 3. FIG. 4. 

a given spacing .0. between neighboring levels, we 
obtain 

T "" T"" 
F=---ln2-3T~ e-!>./TP(tl)dtl----~ e-2MTP(t1)dt1. 

2 0 2 0 

The last formula leads to the results of Kubo[lJ, 
if we use for P ( .0. ) his expression which, however, 
does not take into account the repulsion of the 
levels. The correct functions lead to a specific 
heat which is proportional at low temperatures to 
T 2, T 5, and T 4 for the orthogonal, symplectic, and 
unitary ensembles, respectively. 

We proceed to the magnetic susceptibility. For 
the symplectic ensemble, as expected, the suscep
tibility always coincides with the value for the bulk 
metal. Curious results can be obtained, however, 
for the orthogonal ensemble when the spin-orbit 
coupling is small and the spin remains a good 
quantum number. In this case we can speak sep
arately of electronic excitations in which the spin 
is directed with and against the field. Let the 
field H have an arbitrary value ( IJ H comparable 
with .0.). Figure 4 shows the level scheme of an 
individual particle in the field. Let Eo and Eo be 
respectively the last filled levels having spin 
parallel and antiparallel to the field, respectively. 

Let us increase the field to a value H + dH. It 
may turn out that following this it is energetically 
easier for the excitation to go from the level Eo 
to the level E!. The condition for this is 

e1-- eo+- 2~J,H- 2~J,dH < 0. 

The moment of the entire system changes by an 
amount - 21J.. The probability of such an event is 
equal to the probability of two levels being sepa
rated by a distance 2iJ.H in the energy interval 
2 iJ.dH. Therefore 

XII= dM / dH = 4~J,2vRor1(2nvJ.tH). (22) 

In weak fields 

dM / dH ~ :Xoo1/an2vJ.tH 

vanishes. Of course, when iJ.H » .0., Eq. (22) goes 
over to the value of the paramagnetic susceptibility 
of the bulk metal. In this cas·e x II experiences 
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small oscillations of the same nature as described 
in Sec. 2: 

dM { ( 1 ) 2 1 + cos2 (2:rtvf1H)} 
-~l(oo 1- -- + • 
dH 2nvf1H (2nvf1H)" 

The smaller the role of the spin-orbit interac
tion, the more accurately these relations are satis
fied for the orthogonal ensemble. In particular, it 
can be thought that paramagnetic resonance would 
become observable, with good accuracy, in minute 
particles made of light metals. It is easy to obtain 
in the usual manner an expression for the perpen
dicular component of the paramagnetic suscepti
bility 

In the absence of spin-orbit coupling, the spin 
precesses about the direction of the magnetic field 
with frequency 2/-(H. From formulas of the type 
(11) it follows immediately that the only nonvanish
ing transitions are those with Wkp == 2/-(H = w0: 

rectly. The point is that, when we considered the 
bulk properties we disregarded completely the 
existence of different surface centers with local
ized magnetic moments. Yet the contribution made 
to the susceptibility by such a center is of the order 
of 1-L 2 /T, and is much larger than ( 22) when T « fl.. 
An analogous role is played by various paramag
netic impurities. Nevertheless, it seems to us 
that a direct measurement of the paramagnetic 
susceptibility is possible by determining the field 
dependence of the Knight shift of the frequency of 
the nuclear magnetic resonance. (We recall that 
only the conduction electrons are responsible for 
the Knight shift.) This dependence dll.w/ dH is 
given directly by formula (22). When fl. ~ P the 
required temperature is 0. P and the required 
field is H ~ 104 Oe. 

Of course, local centers can make a contribu
tion to the paramagnetic resonance line, but in 
this case there is no field dependence of the line 
intensity. Therefore such measurements are also 
desirable. 

The foregoing experiments necessitate, how-
wo ~ 

X.L =- 2!12 2 ( + 'b} 2 LJ [n(eh +!!H)- n(eh- 11H)]. ever, the use of low temperatures. Therefore, 
Wo - w ~ h the most convenient for the confirmation of the 

The meaning of this formula becomes perfectly 
clear if we look at Fig. 4: Xl is proportional to 
the number of places which are free on the left in 
this figure. Finally, 

wo2 1 H 

X.L = wo2- w2 H ~ XII (H) dH. 
0 

(23) 

Thus, experiments will disclose that the inten
sity of the paramagnetic resonance lines expe
riences a quantum variation with varying magnetic 
field, changing in accordance with (22) and (23) 
from zero at small fields to a value characteristic 
of bulk metal when 1-L H » fl.. 

We emphasize once more that all the formulas 
of this section, including (22) and (23), are valid 
only at low temperatures T « fl.. 

4. CONCLUSION 

We now discuss briefly the possibility of exper
imentally observing these effects. Measurements 
of the specific heat seem to us of little likelihood, 
primarily because of the smallness of the specific 
heat itself. It can be readily understood that when 
T ~ fl. the specific heat is of the order of k per 
particle, that is, is comparable with the contribu
tion made to the specific heat by the vibrations in 
the host matrix. For analogous reasons, it is dif
ficult to measure the magnetic susceptibility di-

proposed laws seem to be, in our opinion, the sin
gularities of the behavior of small metallic parti
cles in an electric field. We note, first, that it 
would be generally of interest to demonstrate the 
quantum character of such systems, and that even 
the observation of large polarizability of the sys
terns in a weak static field is sufficient for this 
purpose. When a~ 10-6 we have fl. ~ 0.1° and the 
permissible fields ( eAe « fl.) are E « 10 VI em. 

At low concentrations, the dielectric constant 
is 

B = 1 + 4nNa, (24) 

where N is the number of particles per unit vol
ume. Thus, a unique nonlinear effect exists even 
in relatively weak electric fields, in that the polar
izability a, the order of magnitude of which is 
( p 0a) 2a3 » a3 when eEa « fl. begins to decrease 
strongly when eEa ~fl., and reaches finally the 
usual value a 3 at eEa »fl.. The field at which the 
nonlinear variation of a begins decreases rapidly 
with increasing particle dimensions ( ~a-4 ). It is 
necessary to bear in mind here that the larger the 
particles the lower the temperature at which this 
effect can exist (see the end of Sec. 1). 

Of fundamental interest, of course, is the quan
tative verification of the formulas of Sec. 2, which 
follow from the general fundamental laws of the 
statistics of complex interactions. A principal 
factor here is the condition that the dispersed 
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particles be sufficient homogeneous in their dimen
sions and shapes. As can be seen from the dia
gram in Fig. 2, for a symplectic ensemble the ab
sorption oscillations come into play when the vol
ume or the frequency change by a factor 2 or 3. 
This imposes the condition that the dimension 
fluctuations not exceed several percent. In addi
tion, the polarizability in (24) can, generally 
speaking, depend not only on the dimensionless 
quantity z = w/!::., but may contain, in accordance 
with (16), an extra power of a if the mean free 
path is shorter than the particle dimensions. It is 
difficult to control the mean free path and it would 
therefore be preferable to measure the frequency 
dependence of the dielectric constant (24). It can 
be assumed, however, that for dispersed particles 
of a sufficiently pure metal the mean free path will 
be of the order of the sample dimensions, and by 
virtue of this a is a function of only the variable 
z = w/!::., which enters in A(w) (10). 

We are indebted to V. I. Petinov and I. F. 
Shchegolev for calling our attention to this 
question. 
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