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An analytical expression is derived for the electron distribution function in a neutral spa
tially-homogeneous plasma in the presence of a weak electric field. The dependence of the 
flux of the runaway electrons on the field strength is found. 

J. The question of the velocity distribution of the 
electrons in a plasma with a weak electric field 
has been discussed in a number of papers [ l-3] by 
both numerical and analytical methods. The main 
interest lies in the computation of the flux of the 
so called runaway electrons which have a suffi
ciently high velocity so that collisions with the 
other plasma particles have practically no influ
ence on their acceleration. However, the expres
sions which have been obtained in the papers 
referred to above frequently give quite different 
results, since they contain very sensitive expo
nential factors. This is caused by the fact that, 
owing to the very complic'ated behavior of the dis
tribution function, the flux of the runaway electrons 
was estimated from additional physical considera
tions, which were not always valid when the 
parameters of the problem were changed. So, 
for example, Gurevich[ 2] found the distribution 
function only for velocities below the runaway 
threshold. Evidently, this precludes the possi
bility of obtaining trustworthy expressions for the 
flux. 

2. The kinetic equation for the distribution 
function of the velocities of the electrons, f ( v), 
can be written for a spatially uniform plasma in 
the stationary state in the form 

!" + /'(1- a2yJ.1) + (2y)-1{[ (1- J.12)f~th 

- a2y(1- J.12)f!i} = 0, 

where these nondimensional variables are used: 

( 1) 

y = v2 I 2vo2; 11 =cos 'fr; a2 = ET I 2ne3NA ~ 1, (2) 

and where the partial derivative with respect to y 
is denoted by a prime, and that with respect to JJ 
is denoted by a subscript p.. In (2), v0 = (T/m)112, 

T is the electron temperature, J is the angle be
tween the velocity v and the electric field E, N 
is the electron density which is equal to the ion 
density, and A is the Coulomb logarithm. 

The structure of Eq. (1) has been sufficiently 
fully discussed by Gurevich. [ 2] We remark here 
only that ( 1) is, generally speaking, applicable 
when y » 1; at the lower limit of the range, i.e. 
when y ;::__ 1, the distribution must be Maxwellian 
since in that case the collisions and the associated 
dynamic losses must outweigh the influence of the 
electric field. Evidently sources are needed in 
order to maintain the stationary state in the pres
ence of the electric field. We shall assume in the 
following that they are concentrated at y « 1 and 
have no influence on the distribution function in 
our region of interest. 

It is important to note that at very large veloc
ities, larger than, in particular, the runaway 
threshold velocity which is of the order of y c 
= a-2, the distribution must have a sharp angular 
dependence and must be concentrated in the region 
of small angles J ( JJ ~ 1). To compute the flux of 
the runaway electrons one needs to know, at the 
same time, the behavior of f(y, p.) as y- ""· 
Thus we shall seek a solution for the range p. ~ 1 
in analogy with the treatment in [ 2]: 

f(y,J..t) =/oexp{cpi(y) +cr2(y)(J..t-1) +O[(J..t-1)21}. 

t3) 

stipulating that when p. = 1 the equation (1) hold as 
well as its derivative with respect to p.. We then 
obtain a nonlinear system of equations for the 
functions cp 1 and cp 2: 

cp/' = cpz I Y - cp1'2 - cp/ ( 1 - a2y); 

cp2" = (jl22 I y + a2cp/y + (jl2Y-1 ( 1 - a2y) 

- cp2'(Zcp/ + 1- a2y). (4) 

An analogous system of equations was solved by 
Gurevich [ 2] by the method of successive approxi
mations, where the first approximation was ob
tained with cp 2 = 0. As a result of this the obtained 
solution has a meaning only for y < a-2, and it be
comes complex for large velocities, although the 
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physical meaning of the problem requires that a 
stationary solution should exist for arbitrary y. 
Such a solution is obtained below as an asymptotic 
expansion in terms of the small parameter a. 

3. For the case of small velocities it is natural 
to utilize as an initial condition the requirement 
that the distribution function become Maxwellian 
for y ~ 1. Keeping in the expressions for qJ 1, 2 

the terms of order unity, which is important be
cause of the exponential character of the solution 
of (3), and introducing a new independent variable 

(5) 

we find the following expressions: 

<Ji1 ~ u-'ia¢(1 + ¢ 3 I 2) + ln ¢(1 + 2¢3)-'/, + O(a'i•); 

<Jiz I y ~ a'la¢ + a2(1 + ¢6) ( 1 + 2¢3)-2 + 0 (a'ia), (6) 

which are applicable for negative w, and also for 
0 ~ w « a -213• The function 1/J ( w) satisfies the 
cubic equation 

¢3 + 2-'la.3w¢- 1 = 0 

and has the form 

¢ = 2'/a( -w) 'h cos [113 arccos (- w)-3], w<-1, 

¢ = [Yi + w3 + 1]'/' I 2'1,- [Y1 + w3 - 1J'fs I 2'1•, 

w > -1. 

(7) 

(8) 

A graph of the function 1/J ( w) is given in Fig. 1. 
The condition w « a-213 restricts the applica

bility of these formulae to the region below the 
threshold velocity. For the region of large y we 
introduce again a scale change of the independent 
variable 

( 9) 

Here we use as an initial condition the requirement 
that the solution join with the solution (6) for small 
u. Then we obtain for a21 3 « u < oo 

<J11 ~ -ln Ei1 (u-1) + 0 (a2); 

-tu -! -6 -¥ -z 

So' 
5.0 

FIG. 1. 

(10) 

(the additive constant in the expression for qJ1 can 
be omitted since it is contained in the normalization 
constant f0 of (3)]. Using the asymptotic expres
sion of the exponential integral Ei 1 ( u-1) for 
u « 1 it is easy to show that the solutions of (6) 

and (10) can be joined together with sufficient 
accuracy in the whole region of applicability 

a'!a~u~1 or 1~w~a-'t,. (11) 

Only the normalization constant f0 remains to 
be found for the complete determination of the dis
tribution function, since for y ~ 1 the distribution 
has to become Maxwellian: f- Nv03 ( 21r )-312e -y. 
We find from (6) and (8), with an accuracy given 
by the omission of certain small terms of the 
order ~a, 

fo = 2'io(2n)-'hv0- 3a-'lz exp [ -1/2a2 - 2/ a- 1/ 2]. (12) 

Using the expansion of (6) and (8) in inverse 
powers of w it is easy to obtain expressions for 
the distribution function which are valid in the 
range where I w I » 1. The first terms of this 
expansion indeed coincide with those obtained in 
[ 2]. However, in the vicinity of and above the 
threshold the difference becomes quite substantial 
as one can see, e.g., in Fig. 2 where the mean 
square angular spread of the distribution is shown. 

The applicability of the obtained expressions 
can be easily checked by substituting 

f = G(y, f.l) exp [<JI1 + <pz(f,l-1)] 

in the basic Eq. ( 1). It then becomes evident that 
the function G ( y, 11) differs from unity by an 
amount of the order ( 1 - 11) 2 uniformly in the 
whole range of y. We note, however, that for 
qJ 2 » 1 the function f ( y, 11 ) itself depends very 
sensitively on 11 even for 1 - 11 2 « 1. This way 
the distribution indeed turns out to be concentrated 
at small ~ for sufficiently large y. 
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FIG. 2. Dependence of the angular dispersion on the velocity. 
The corresponding curves frorn[2 ] are shown dashed. 
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4. It is now easy to calculate the flux of the 
runaway electrons using the behavior of the distri
bution function at infinity. Since the fast electrons 
move practically in the direction of the electric 
field and the collisions are unimportant, we obtain 
for the flux, using (3), (10) and (12), 

2nv2eE :H 
J = lim-- ~ f(y, ~t)d~t 

y-.oo m -1 

= 2'/s;rr-'f,Nva.-'r, exp ( -1/2a2 - 2/ a - 1/z), ( 13) 

where J denotes the number of particles acceler
ated in a unit time from a unit volume, and 

v = 4ne4NA I VmT3 

is the electron-electron collision frequency for 
thermal velocities. 

(14) 

The analogous expressions obtained for the flux 
by Gurevich[ 2] in the same approximation differ 
from (13) by the pre-exponential factor. This, 
evidently, is the consequence of using the distri
bution function which is valid for y < a-2• A re
sult more close to (13) ( J ~ a-314 instead of 
a-112 ) has been obtained by Kruskal and Bern
stein [3], but without the numerical coefficient. 

We now describe some characteristic features 
of the distribution function. For small y, natu
rally, it is determined by the form of the source 
function. For 1 « y « a-1 the distribution coin
cides with the Maxwell distribution, but it de
creases somewhat slower as y increases. At the 
same time the dependence on 1-L• i.e., the angular 
dependence, appears already below the runaway 
threshold. It becomes sharper as the threshold 

is approached, as has already been pointed out 
in [ 2]. We note that the maximum value of the 
mean square value \J2 ) min turns out to be some
what smaller than given by Gurevich[ 2] (see 
Fig. 2). Slightly above the runaway threshold, 1l 

at y r::o 2.59 a-2, the angular dispersion goes 
through a maximum which for arbitrary a has 
the value (J2 ) max r::o 0.31. It then begins slowly 
to decrease, approaching for large y » a-2 the 
behavior y-1 ln y. This indicates that in this 
range the distribution of the perpendicular veloc
ities is Gaussian with a slowly (logarithmically) 
growing dispersion. Along the line 1-1 = 1, i.e., 
along the direction of the electric field, the distri
bution function always decreases (cpJ. < 0). For 
large y » a-2 this decrease becomes very slow 
and is proportional 1/ln y. 

It should be mentioned that the above method of 
asymptotic expansion can be easily used also for 
the case of a multiply ionized plasma, and also 
for the investigation of the process leading to the 
establishment of the stationary state. 
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1lGurevich's results are not applicable in this range and 
formally give an infinite angular dispersion for y = a·2 • 


