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A relativistic two-dimensional (one spatial and one temporal coordinate) model of a self­
interacting fermion field with nonzero rest mass is investigated. The eigenfunctions of the 
energy operator and the scattering operator are determined in the unphysical space of the 
pseudoparticles. The s-matrix of elastic scattering of the physical particles is constructed 
with the aid of an improper canonical transformation. 

1. INTRODUCTION 

A few years ago, to study the contradictions 
which arise in relativistic quantum field theory, 
Thirring[t] proposed and investigated a two­
dimensional model (one spatial, one temporal co­
ordinate) of a self-interacting fermion field of 
zero rest mass. In the present paper we are con­
sidering a more general model, differing from 
Thirring's model in that the fermion field has 
nonzero rest mass. To investigate our model, 
we make use of the method essentially proposed 
by Thirring. This method consists of first intro­
ducing the unphysical space of pseudoparticles, 
connected with the space of the true particles by 
a canonical transformation. In this space we find 
the eigenfunctions of the energy operator, and the 
scattering operator. Then, carrying out a canon­
ical transformation, we obtain the operator for 
elastic scattering of physical particles. This 
method seems to us also advantageous in the in­
vestigation of more meaningful models of field 
theory. Each of the two stages into which the prob­
lem is broken up, although nontrivial, nevertheless 
turns out to be much simpler than the initial prob­
lem as a whole. 

Let us explain the idea of the paper in greater 
detail. We consider a Hamiltonian Hu = H0 + V: 

Ho =- i) dx{[ 1Jlt+(x) B¢;;x) -1jl2+(x) B¢~~x)_ J 
+ m [¢t+(x)¢z (x) -1jlz+(x)1Jlt (x) 1}, 

V = -2g) dxdy¢t+(x)1Jlz+(y)u(x- Y)'llt(X)'IJz(y). (1) 

The operators zp~(x) and ¢{3(y) satisfy the Fermi 
commutation relations 

{1Jl<>.+(x), 'llll+(y) }+ = {¢<>.(x), 'llll (y) }+ = 0, 

{1Jl<>.+(x), 'llll(Y)}+ = 6<>.1l6(x- y). 

The function u(x) is a form factor. The Hamilto­
nian H, which describes the model in question is 
obtained from (1) by going to the limit as U (x) 
---. o(x ). 

The operators zp;(x) and 1/ia(x) are expressed 
in terms of the operators of creation and annihila­
tion a+ (p ), b+ (p ), a(p ), and b(p) of the physical 
particles and antiparticles in accordance with the 
usual formulas 

'll<>.(x) = 1jJ (~) = 2:rc'h) dp eipx [va ( +, p) a(p) 

+ v<>.( -, p) b+(-, p)], 

1Jl<>.+(x) == 1jl+(£) = 2n-'h) dp e-ipx [a+(p)v<>.( +. p) 

+ b(-p)v<>.(-, p)] (2) 

( v ot is the complex conjugate of v 0! ) , in which the 
continuous spatial variable x and the discrete vari­
able ot = 1, 2 are denoted for brevity by a single 
letter~. and va(+,p) and va(-,p) are positive 
and negative frequency solutions of the Dirac equa­
tion, i.e., they satisfy the equations 

pv1 (e, p) - imvz(e, p) = w (e, p) Vt (e, p), 

imv1 (e, p) - pvz(e, p) = w (e, p) vz(e, p); 

w(e, p) = el/p2 + m2 = ew(p) (3) 

( E -the "energy-sign" variable, which assumes 
two values ± 1 ) . 

The operators a+(p), a(p), b(p), and b+(p) 
satisfy the same commutation relations as 1p+ ( ~ ) 
and ¢( ~ ), and therefore (2) is a canonical trans­
formation. This transformation, however, is im­
proper. The latter means that there exists no uni-
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tary operator U which transforms a+, a, b +, b 
into 1/J +, 1/J. The Hilbert space in which the opera­
tors 1/J+ ( ~) and 1/J( ~) are creation and annihilation 
operators will be denoted by JCl/J and will be called 
the pseudoparticle space. The space of the physi­
cal particles will be denoted by JCa b· In this 

+ + ' space, the operators a (p), b (p), a(p), and 
b(p) serve as creation and annihilation operators. 
The space JCl/J is characterized by the presence of 
a vector I 0) (of the pseudovacuum ) , satisfying 
the equation 

"'m 1o) = o. (4) 

In the space JCa,b there exists a vacuum vector 
I 0) satisfying the conditions 

a(p) IO> = b(p) IO> = 0. (5) 

It is important to emphasize that in JCl/J there ex­
ists no vector satisfying the conditions (5), and in 
JCa,b there exists no vector satisfying Eq. (4). 
This is connected with the fact that the canonical 
transformation (2) is improper. 1> 

The operators H and H0, which are considered 
in JCl/J, are self-adjoint, and there exists for them 
a scattering operator Sl/J, defined in the usual 
fashion. We shall calculate this operator expli­
citly, and express it as a normal form in 1/J + and 
1/J, after which we shall make use of formulas (2) 
to express it as a normal form in a+, b +, a, and 
b. At this stage there arise infinite terms due to 
the improper character of the transformation (2). 
Discarding these, we obtain the true elastic-scat­
tering operator. 

We now proceed to execute the outlined plan. 

l)We present a general definition. The canonical transforma­
tion 

1jJ(S) == fd-r[A(~i-r)cp(•) +B(~I•)cp+(•)], 
1jJ+(~) = fd•[B(~i-r)cp(,;) + A(~i•)cp+('t)] 

is called proper, if it has a generating operator U such that 

1jJ = UcpU- 1, 1jJ+ = Ucp+U- 1• 

In the opposite case it is called improper. It is known[2 • 3 ] that 
in order for the transformation to be proper, it is necessary and 
sufficient that the following integral converge: 

JIB(~ I•) i"d~dt <co. 

In our case 

s =(a, x), t = (e,p), cp(+,p) = a(p), cp(-,p) = b(-p); 

B(a,xl+,p) = 0, B(a,xl-,p) = (2n)-'J,eiP"va(-,p); 

~ IB(£1-r) 12d£d-r 

2. CONSTRUCTION OF EIGENFUNCTIONS OF 
THE HAMILTONIAN H IN PSEUDOPARTICLE 
SPACE 

In the pseudoparticle space JCl/J introduced 
above, the operators Hu and H commute with the 
operator of the total number of pseudoparticles N: 

N= ~ dx['¢1+(x)'ljJi(x)+'¢z+(x)'ljJz(x)]. 

It is therefore natural to seek the eigenvectors of 
these operators in the form 

1 FEN) = 1 S d£~, . . . asN FEN(£~, ... , sN) 
l'N! 

X 'ljJ+(£1)• ... , '1jJ+(£N) jO), (6) 

where the functions FEN ( ~ 1> ••• , ~ N) are antisym­
metrical. In (6), as everywhere below, the integra­
tion with respect to d~ implies summation over 
the discrete variables, I 0) is the vacuum vector 
in JCl/J [i.e., the vector satisfying (4)]. 

In order that the vector I FEN) be an eigen­
vector for the operator Hu, it is necessary that 
the functions FEN(~!> ... , ~N) satisfy the system 
of equations 

N z a 
- i ~ { 61, ak ~ [ 1\1, p k ox + liz, p k rn J 

k=1 h=1 k 

2 [ f) -6z,a. 13~L 6z,p, 0Xk +61,fl,m]} 

X FEN(Si; ... ; Sk-1; ~k, Xk; Sk+1;: .. ; SN) 

+2g ~ u(xk-Xi) 
1~k<j~N 

(7) 

Here C¥k and iJk = 1, 2 and oa,jJ is the Kronecker 
symbol. 

In the case of interest to us u(x)- o(x), the 
functions FEN( ~1> ••• , ~N) tend to the eigenfunc­
tions <I> EN ( ~ 1> ••• , ~N) of the Hamiltonian H. The 
functions <I> EN satisfy when x 1 ;e x 2 • . • ;e XN the 
free equations obtained from (7) with g = 0, and 
satisfy when Xk = Xj the boundary conditions 

<DEN (61; .. :; Sk-1; 1, xk; Sh+1; ... ; sH; 2, xi; Si+1; ... ; 

SN) lx.=x;+O = eig<DEN(£1; ... ; Sk-1; 1, Xk; Sk+i; 

... ; Si-1; 2, Xj; Si+1; ... ; SN) lx,=x;-o (7a) 

(see the Appendix). 

= 2
1:n: ~ 1 v1 (-, p) 12dxdp + 21Jt ~ 1 v2( _, p) j2dxdp = oo. We note that the free Hamiltonian has a com-

plete system of eigenfunctions in the form 
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<I>EN°(6t, ••• , SN I -c1, .•. , -cN) = ~ ± u(siN 1-ct) ... u(siN 1-cN). if the sign depends on the parity of the permutation. 
N Formulas (9) and (13) determine the solution of 

E = ~ e,_ -yp,_2 + mz, (8) the free equation with boundary conditions (7a) for 
"-=1 arbitrary complex Pi> ... , pN. However, the eigen-

where the sum is taken over the permutations of functions of the Hamiltonian determine only that 
~1> ... , ~N. the sign depends on the parity of the solution for which the eigenfunctions are bounded, 
permutation, and the corresponding energies are real. It is ob-

u(si-c) = u(a,xie,p) = (2n)-'heiPxva(e,p) 
vious that these conditions are satisfied by all real 

(9) values of the variables Pi> ... , PN· On going over 
to complex values of Pk. it is necessary to stipu­
late that the coefficients of the growing exponents 

and v a( E, p) is a solution of Eqs. (3) given by the 
formula 

. [ w(p)+ ep ]'12 
vt{8, p) =- ~8 Zw(p) , 

v -[w(p)-ep]'/, 
z ( 8, p) - 2w (p) . (10) 

We denote by 8(x1 > x 2 > ... > XN) a function 
equal to 

{ 
1 for X1 ~ Xz ~ ••• ~ XN 

8(xt>xz> ... >xN)= 
0 otherwise 

We now consider a function <I> EN in the form 

<!>EN= <!>EN (St, ... ' SN 1-c!, .•. ' 'CN) 

= ~±8(x,_,>x,_,> ... >x,_N) ~+K(-ci.,····'"'iN} 

(11) 

The outer sum is taken over permutations of Xk, 
and the inner over permutations of Tj. In both 
cases the sign depends on the parity of the permu­
tation. It is obvious that the functions (11) satisfy 
equation (7) with g = 0 when Xk ;;e Xj, no matter 
what the function K( T1> ... , TN) may be. In this 
case 

N 

E = ~ 8k -yp,_z + mz. 
k=1 

We now put 

K('tt, ... ,'CN)= IT K(-ckl'tj), (12) 
1«;;;k<i<N 

K(-c1l-cz) = eig/Zvt(-ct) Vz(-rz) + e-ig/Zvz(-ct) vt(-cz). (13) 

It turns out that with such a choice of the function 
K( T1> ... , TN), the boundary conditions (7a) are 
satisfied. The corresponding calculations are 
somewhat cumbersome and will be omitted. Thus, 
formulas (9) -(13) determine the eigenfunctions of 
the total Hamiltonian. 

We note that the function K( T1 1 T2 ) does not de­
pend on N. Below we shall frequently encounter 
sums over permutations, similar to (8) and (11). 
In order not to overcomplicate the indices, we 
shall agree to write such sums in the form 
.0 f( ~ 1 • . . ~ n I T 1 .•. T n ) , and .0 ± f( ~ 1 ••. ~ n I T 1 . . . T n ) 
~ i ~ 

vanish and that the energy E remain real. The 
functions obtained as a result of such a continua­
tion into the complex domain describe states with 
complexes of bound pseudoparticles. 

Let us consider by way of an example the third 
sector. The wave function of three independent 
pseudoparticles is according to (9) -(12) 

X 

X~ + K(-cd-c2)K(-cd-r3)K(-rziT3)va,('tt)Va,('tz)Va3 (T3) 
' 

(14) 

We go over into the complex domain, putting 

P1 = q1(2), Im qt(2) > 0; Pz = qz(2), 

P3 = qt(1), Im qi(1) = 0. 

In the region x 1 > x 2 > x3 the infinite terms in 
(14) are obtained from the terms that contain the 
following exponentials: 

From (12) and (14) it follows that each of the co­
efficients in front of the growing exponents will 
contain K ( T 2 I T 1 ) as a factor. By using the ex­
plicit form of this function [see (13)], we find that 
if we assume p3 to be an arbitrary real number, 

Pt = {P(2)- i~E(2)ctg~ ~ q1(Z), 

1 1 g 
pz = 2P(2) + i"2E(2)'Ctgz = qz(2), 

g [ g]~ E(2)= -- P 2 (2)+4m2sinL 
lgl 2 ' 

(15 )* 

then K( T2 1 T1 ) vanishes, and we obtain the wave 
function of two bound and one unbound pseudopar­
ticle 2 >, where P( 2) is the momentum of a com-

*ctg =cot. 
2 lOwing to the antisymmetry the function <I>E3(~1 , ~2 , ~,IT,, 72, 7,) 

is bounded not only in the region x1 > x2 > x3 , but in all other re­
gions of the form Xi > Xj > Xk, that is, in all of space. 
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plex of two pseudoparticles and is an arbitrary 
real number, while E(2) is its energy. 

To conclude this section, we note that the ob­
tained eigenfunctions are very strongly remini­
scent of the eigenfunctions of the simpler Hamil­
tonian 

This Hamiltonian describes a system of n non­
relativistic one-dimensional particles with zero 
spin and with point-like interaction. Its eigen­
functions were investigated in detail earlier. [4] 

3. EIGENFUNCTIONS OF SCATTERING THEORY 

The eigenfunctions of the Hamiltonian H ob­
tained in the preceding section, are closely con­
nected with the eigenfunctions <I>E± of scattering 
theory. In the case of scattering of N unbound 
pseudoparticles [ T = ( E, p )] 

<t>EN+(st, •••• sN ITt, .•.• TN) 

= ~8(BNPN > BN-IPN-1 > · · • > BtPt 

X <l>EN(SI.· .. 'SNIT!, ... ,TN) 
K(Tt, ... 'TN) 

(the sum is taken over all the permutations of 
T1, ... , TN) <l>EN differs from <l>EN in that 

(16) 

e( ENPN > ... > E1P1) is replaced by e( E1p1 > E2p2 
> · · · > ENPN). 

The scattering functions of n bound complexes 
of "h ... , "n pseudoparticles are residues at the 
poles arising in the analytic continuation of the 
functions (16) in the momenta. For example, the 
following functions describe the scattering of one 
pseudoparticle by a complex of two others, having 
positive energy 

<l>Ea+(st, s2, sa/P(2),T) 

= 8 (P(2) > ep) <l>Ea(st, S2, sa/ Bt, q1 (2); B2, q2(2); T) 
K ( T I Bt' q 1 ( 2) ) K ( T I B2, q2 ( 2) ) 

+ 8 ( ep > p (2)) <l>Ea (st, S2, sal Bt, ql (·2); B2, q2 (2); T) ' 
K ( B!, ql (2) IT) K ( B2, q2 (2) /-r) 

where P( 2) is an arbitrary real number and q1 ( 2) 
and q2 ( 2 ) are complex numbers, determined by 
formula (15) (we assume that g < 0 ). 

A check on (16) is in the general case cumber­
some. We therefore confine ourselves to an out­
line of the proof for elastic scattering at N = 3. 
We denote the eigenfu~ctions of scattering by <I>~N 
and show t~at <I>~N = <I>~N· We recall that the 
functions <I>~N are determined by means of a 
transition to the limit 

d>EN± = lim {+icr [E- H + icr]-1}<l>EN°, 
cr-++O 

where H is the total Hamiltonian, and <I> ENO is the 
eigenfunction of the free Hamiltonian. In our case 
<I> E30 is given by the formula [see (8) and (9)] 

<t>~,s (st, s2, sal-rt', T21
, Ta') 

= ~ ± Va,(T{)va,(T{)va,(-ra')ei(p{x,+p(x,+p,'x,), 

• 
E 1 = ro (Tt') + ro (T21 ) + ro (-rs1 ) = E (Tt', 1'21 , Ts1). 

Expanding <I> E130( ~ 1o ~ 2 , ~ 3 / Ti, T2, T3) in terms of 
functions <I>E3+ ( ~h ~ 2 , ~ 3 / T1o T 2, T3 ), we obtain 3> for 

E3P3 > E2P2 > E1P2 

<i>E'3+ (st, S2, sa/ T{, 1'21
, Ts1 ) = ~ dTtdT2dT3<l>Es+ (s~o S2, sa/'rt, 1'2, Ta) 

where 

A ( Tt, 1'2, -rsl-rt', 1'21, Ts1 ) = ~ d6td62dsa <l>Ea+ (s~o S2, sal Tt, 1'2, Ta) 

rn o t t I 1 1 1) " K(Tj"T_;,,Tj,) 
X ""E'a (;,t, S2, ;,a 't"! '1'2' 't"a = L.J + K( ) 

X~+~ ITva1 (T_;1)Va 1 (Tm 1) 

!'l;Ct:Ct3 1=1 

X 6 (p{ + p{ + Pa' - Pt - P2 - Pal_ . 
[Pm/- Pi, + iO] [pm/- Ph- iO] 

Tt, 1'2, Ta 

The outer sum extends over the permutation of the 
indices jk and ms. 

In order to verify that the functions <I>E3+ and 
<I> E3+ coincide, we must check the equality 

r . A{Tt,T2,-r3/Tt',-r2',Ta') 
"~~0 ~cr [E{-rt', -r{, Ta')- E(Tt, 't"2, Ta) + icr] 

= ~ ± 6(-rt-Tt')6(T2--r{)6(-ra--ra1 ). 

~' 

The required relation follows directly from the fact 
that the functions v a ( T) are orthonormal 

2 

~va(e,p)va(B1,p) = 6ee' 
ct=1 

and from the following general relation 

J) A complete autonormal system is made up of the functions 

<I>E,+ (~,. ~2, ssl Tt, -r,, Ts), <I> E3+ (~t. S2, ssl Pt + P2, T), 
<I>Ea+(st, S2, ssiPt + p, + Ps), 

but the contribution to the expression for <I>E3+ will be given 
only by the retained terms of the expansion. 
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lim -;-:--:-:-.,---,----,ia,...,-6::-'-( k-c-1--c+--c-k·-c-z +-c-k_s~-=-cp_1 --=-p_2 __ -_p=-3-=--) -----,,--

6-++0 U(ki) + f(kz) + f(ks)- f(pi)- f(pz)- f(Ps) + ia] 

1 
x-.~--~~~---~ 

[k;, -Pi! + iO] [k;,- Ph- iO] 

= (2n) 2 8 (f'(pi,) > f (Pi,)) 8 (f (Pi,)> f (Ph)) 

(17) 

Here f'(p) = df(p)/dp. 
We present a proof of (17) for i 1 = h = 1, i2 = h 

= 2, and i3 = h = 3. We first make use of the fact 
that 

1 
6(k1 + kz+ ks- PI- pz- Ps) = -2 . 

l'tL 

( 11 
X k1 + kz + ks - P1 - Pz - Ps - iO 

- k1 + kz + ka - !1 - P2 - Pa + iO ) ' 

Using this equation, we represent the right side of 
(17) in the form of two terms. We transform the 
first term, using the partial fraction expansion: 

ia/ {2ni [k1 + kz + ka- P1- Pz- par- iO][k1- P1 + iO][kz- Pz- iO] U(k1) + f(kz) + f(k3)- j(p1)- f(p2)- f(p 3 ) + ia]} 

= (ia/{2ni[(kl- P1) 2 R1 +(kz- Pz) 2 Rz + (ks- Pa) 2 Ra + ia]}) 

x( 1 _ f(p.)-f'(Ps) ) 

k.-p.-iO /(k•)-/(P•)-f' (Ps) (k2-P2)+ (k1-p,) 2R,+ (k3-p3) 2R 3+i0' 

Ri denotes here the expression 

R; = [f(k;) - f(p;) - f'(p;) (k;- p;)] I (k;- p;) 2• (18) 

We note that the first factor in the limit as a- 0 
differs from 0 only when 

(k1- P1)2R1 + (kz- Pz) 2Rz + (ks- Ps) 2Ra = 0. (19) 

Let us find the limit of the second factor as a- 0. 
We note that 

f(kz) = f(pz) + f' (Pz) (kz- Pz) + (kz- PzFRz. 

Taking this identity into account, we transform 
the denominator of the second term: 

f(kz) -f(pz) -f'(Ps)(kz-Pz) + (k1-p1)2R1 

+ (ka- Ps)2Rs + ia = (kz- Pz) (f'(pz) - f' (Ps)) 

+ (k1- P1) 2R1 + (kz- Pz) 2Rz + (ks- Pa) 2Ra + ia. 

From this, taking (19) into account, we obtain the 
limit of the second factor as a- 0. This limit is 
equal to 

2nib ( kz - Pz) 8 (f' (pz) > f' (Ps)). 

Taking (19) and (20) into account, we obtain in 
analogous fashion the limit of the third factor. 
This limit is equal to 

(20) 

-2nio ( k1 - p1) 8 (f' (pa) > f' (PI)). (21) 

Taking (19)-(21) into account, we find the limit of 
the last factor: 

2nib (ks- Pa) 8 (f' (ps) > 0). (22) 

Thus, the limit of the first term as a- 0 is equal 
to 

(2n) 28 (f' (pa) >0) fj(f' (pz) > f' (pa) 

> f' (Pi)) 6 ( k1 - Pi) fJ ( kz - Pz) 6 ( ka - Ps). (23) 

In analogous fashion we find that the limit of the 
second term as a- 0 is equal to 

(2n)20(0> f' (pa)) 8 (f' (pz)'> !' (Ps) > f' (Pi)) b (k1 -PI) 

X6(k1J-Pz)6(ka-pa). (24) 

Adding (23) and (24), we obtain the right side of 
(17). 

4. SCATTERING AMPLITUDE FOR PSEUDOPAR­
TICLES AND THEIR COMPLEXES 

We proceed to construct the scattering ampli­
tude 

~ d£1 ... asNtPEN+ (£1, ... , sN 1 'tt, ... , .. N) 

X <DEN~(£~, ... ' SN l't/, ... 'tM1 ) 

= ('tt, ... ''tN ISI't/, .... ''tM'). (25) 

We consider the scattering of unbound pseudo­
particles, that is, the so called elastic channel. In 
this case it follows from (16) that 
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(26a) one unbound one is described by the following am­
plitude (g < 0 ): 

S3 (P(2),<)= Sa(et,qi(2); ez,qz(2); <) 

(26b) K(T/et,qi(2))K(</ez,qz(2)) 
= S(P(Z) > ep) K(e~, qt(2) /<)K(ez, q2(~ 

Using the explicit expression (12) for 
K(r1, .•. TN) and taking into account (13) and (10), 
we obtain a final expression for the S-matrix of 
elastic scattering of N independent pseudopar­
ticles by one another 

Su(Tt, ... ,Tu)= IJ Sz(Tm,Tn), (26c) 
i~m<n~N 

where* 
K(Tz/Tt) 

Sz(Tt, <z) = 8(etP1 > EzPz) K(Tt/Tz) 

K(<t/Tz) + 8(ezpz > Et, pi) K(,;z/Ti) 

[ . g Pt - Pz J _, 
X i-ltg2w(Tt)+w(<z) (26d) 

is the matrix element for the scattering of two 
pseudoparticles: w(r) = w(E,p) = E(p2+m2) 1/2. 

With the aid of (26) it is easy to prove the uni­
tarity relation 

f(,;/, .. . , Tu'/SJ,;{', ... , Tu") 

X(,;/, .•. , 'tu'/S/Tt, ... , 'tu)d't/ ... d'tN 1 = i, 

which denotes the absence of transitions between 
states with and without bound complexes during 
scattering. This circumstance enables us to con­
sider the elastic channel separately from the re­
maining channels, a fact of which we shall make 
use later. 

In inelastic channels, which include bound com­
plexes, the scattering amplitude can be obtained 
by substituting in (25) the corresponding scattering 
functions. It turns out here that the number of 
complexes of a given type is conserved during 
scattering, and the corresponding matrix elements 
of the scattering operator can be obtained as resi­
dues in an appropriate analytic continuation of the 
matrix elements (26). For example, in the third 
sector scattering of two bound pseudoparticles and 

*tg =tan. 

5. SCATTERING MATRIX OF PHYSICAL PAR­
TICLES 

In the preceding section we found in the unphys­
ical space JCI/! all the matrix elements of the scat­
tering operator Sl/J. We now carry out a transition 
to the space of the physical states JCa,b. construct­
ing with the aid of the improper canonical trans­
formation (2) the elastic scattering operator for 
true particles. This transition will be realized in 
two stages: we first express the elastic part of Sl/J 
in terms of the creation and annihilation operators 
of pseudoparticles cp + ( T) and cp ( T): 

1 2 

cp('t) =-----= ~ dx ~e-iPxva('t)'IJa(x). 
f2:rt CG=i 

We then carry out transformation (2) on the ob­
tained operator; this transformation is written in 
terms of the operators cp + ( T) and cp ( T) in the 
form 

cp ( +, p) = a (p), cp ( -, p) = b+ ( -p); 

cp+(+,p) =a+(p), cp+(-,p) = b(-p). (2a) 

In order to express Sl/J in terms of the creation 
and annihilation operators, we write down the op­
erators with the aid of functionals. Let A be an 
arbitrary operator in normal form 

A = ~ ~ Kmn ('tt, ... , Tm I a~, ... , an) cp+(Tt) 

... cp+(,;m)cp(ai) ... cp(an)d't da, 

where cp + and cp are the creation and annihilation 
operators satisfying the Fermi commutation rela­
tions. We set in correspondence with this operator 
the functional 

B(a*, a)=~ s Kmn('tt, ... ,Tm/<rt, ... , crn)a*('tt) 

... a* ('tm) a ( cri) ... a ( <Jn) d1:da, (27) 

where a* and a are functions with anticommuting 
values: 

{a*('t), a*(cr)}+ = {a*('t), a(cr)}+ = {a(T), a(o·)}+ = 0. 

It is obvious that knowing the functional B ( a*, a) 
we can reconstitute the operator A. 
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Further, let ( Tt. ... , Tm I Amn I O"t. ... , an) be 
the matrix elements of the same operator A in the 
Fock representation: if 

are Fock columns corresponding to the vectors <I> 

and 'It = A <I> respectively, then 

= ::3 ~ ('t!,···•'tm[Amn[crl,···•<Jn)'<Dn(G!, ... ,<Jn)da. 
n 

We set in correspondence with the matrix II Amn II 
the functional 

E(a",a)= ::3 i ~ ('ti, ... ,'tm[Amn[G!, ... ,<Jn) 
l'm!n! 

X a*(1:1) ... a*('tm) a(a1) ... a(an)d'tda. (28) 

It turns out that a simple connection exists between 
thefunctionals B(a*,a) and B(a*,a)C5J: 

B(a*, a) = E(a*, a) exp (-fa*{T)a{T)d't). (29) 

Formula (29) enables us, if we know the matrix 
elements of the operator A to find its normal form 
and, conversely, knowing the normal form it en­
ables us to find the matrix elements. We apply for­
mula (29) to our case. Formulas (26a)-(26d) de­
termine the matrix elements of the elastic scatter­
ing operator. Starting from these formulas, we ob­
tain the matrix elements of the logarithm of this 
operator: 

( 1:1, ... , TN [InS NM I 1:/, ... , 'tM 1 ) 

= l)NM ~ ln Sz (1:;, T;) b (Ti-T/) ... b (TN- TN'). 
i<i . 

Going over to functionals, we find, using the anti­
commutativity of a*(r) and a(T), the functional 
B corresponding to the matrix of the logarithm of 

SI/J: 

11 = ~i~ lnSz(,;~,-rz)·a"(Ti)a*(-rz)a('tt)a(Tz)dTtdTz 

X exp { ~ a* (T) a (T) dT} 

Using formula (29), we find that the functional 
B corresponding to the normal form of the loga­
rithm si/J is equal to 

B = ·~ · ~ ln Sz ( Tt, Tz) a* ( 1:!} a* ( Tz) a ( Tt) a ( Tz) d'ttdTz. 

Consequently 

S,p = exp [ -1 ~ lnS2(T!,T~)<p+(Tt)<p+(Tz)cp(Ti)<p(Tz)dTt dTz J. 
(30) 

Substituting (2a) in (30), we now carry out a 
canonical transformation. The argument of the ex­
ponential, obtained as a result of such a substitu­
tion, we reduce to a form that is normal with re­
spect to the operators a+, b +, a, and b. This gives 
rise to several infinite terms of the type 
const • 6 ( 0). Discarding these terms, we obtain the 
operator for the scattering of physical particles. 
In order to write it in compact form, let us consider 
in place of the operators a(p) and b(p) the oper­
ators c(T) where, as usual, T = (E,p), 

c(+, p) = a(p), c(-, p) = b(p). 

The scattering operator is written in terms of c ( T ) 

in the form 

where the variable E:i =+,-now has the meaning 
of the sign of the charge, which distinguishes the 
particle from the antiparticle. 

Let us show that the operator given by formula 
(31) is the sum of the usual series of perturbation 
theory. In fact, we introduce temporarily mom en­
tum cut-off, and consider the ordinary perturbation 
theory series for the scattering operator: 

:V(ti)::V(tz): ... :V(tn):dtf ... dtn, 

: V (t): = eit:H0: : V: e-it:H0:, (32) 

where :V: and :H0: are the operators obtained 
from the interaction and free-field operators 
[see (1)] by transposing a+, b +, a, b into normal 
order, and discarding the infinite terms. 

It is obvious that the same result can be obtained 
by replacing in the series (32) :V: by V, and :H0: 

by H 0, and then reducing the entire series (32) to 
a normal form in a+, b +, a, b and discarding the 
infinite terms. This is precisely the method used 
here: the series obtained from (32) by replacing 
:V: and :H0: by V and H0 is the perturbation­
theory series for the S-matrix in pseudoparticle 
space. 

The infinities that have been discarded on go­
ing from V and H to :V: and :H0: have the spe­
cific form c ( p) 6 ( 0 ) , where the function c ( p) 
( p is the momentum) can depend also on the cut­
off parameter. It is important that no terms oc­
cur that are finite for a finite cut-off parameter 
and tend to infinity with the latter. Because of 
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this, the connection between the S-matrix in 
pseudoparticle space and the true S-matrix is 
retained when the cut-off parameter goes to in­
finity. Thus, the absence of infinities in formula 
(31) offers evidence that all the infinite Feynman 
diagrams in our model cancel out and there are 
no infinite renormalizations. 

We note in conclusion that, as can be seen from 
(31), the operator for the scattering of physical 
particles has the same structure as the operator 
for pseudoparticle scattering 4 >. Therefore, re­
versing the arguments that lead to (30), we obtain, 
starting from (31), the matrix elements of the 
true scattering operator. 

6. CONCLUSION 

The method used in this paper for solving field­
theoretical problems has two attractive features. 
First, it enables us to find the exact elastic-scat­
tering S-matrix, the derivation of which with the 
aid of perturbation theory, even in the simplest 
model considered here, entails extraordinary com­
putational difficulties. Second, in the investigation 
of our model this method discloses clearly the dif­
ficulties in principle, the resolution of which will 
apparently contribute to the understanding of more 
realistic models of quantum -field theory. Let us 
stop to discuss them in greater detail. 

1. The theory is based on the Hamiltonian Ha,b 
obtained from the Hamiltonian H by means of the 
canonical transformation (2) with subsequent re­
duction to normal form and discarding of the in­
finities. The Hamiltonian H, like the free Hamil­
tonian H0, is a self-adjoint operator in the space 
of the pseudoparticles JC¢. Because of this, H has 
a complete system of eigenvectors 5> and there ex­
ists a scattering operator which can be determined 
by any of the universally known methods, which in 
this case are equivalent. We made use of the fact 
that 

( i I s I !) = (<I>- U), <I>+ U) ) , (33) 

where <1>-(i) and q,+(f) are the scattering-theory 
eigenfunctions of the operator H. We could use 
with equal success the formula 

4 )In particular, there are no transitions between states with 
different numbers of particles. The latter circumstance is a con­
sequence of the fact that the scattering operator in pseudopar­
ticle space is a multiplication operator in the p-representation 
[see (26)]. 

S)More accurately-generalized eigenvectors, since the oper­
ator H has a continuous spectrum. 

(34) 

or the perturbation theory series, or the formula 

(35) 

where '~tin and '~tout are the solutions of the 
Heisenberg equations with known asymptotic 
conditions as t- 'f 00 • (The latter method deter­
mines the operator S accurate to an arbitrary 
phase factor. ) If we were able to carry out the cal­
culations based on any of these methods, we would 
obtain an answer coinciding with ours. 

The situation is different with the Hamiltonian 
Ha,b in the space of the physical particles. Ha,b 
is not an operator in the Hilbert space Jea,b· This 
means that there is no vector <I> "'- 0 in the state 
space such that Ha,b<P is also an element of Hilbert 
space 6>. Since Ha b is not an operator, it is mean­
ingless to speak of' its spectrum and eigenvectors 
(even generalized). Therefore a determination of 
the S-matrix based on formula (33) is meaningless. 
Further, there exists no operator eitH, so that it 
is meaningless to have a determination based on 
formula (34). 

We are left with perturbation theory and with 
formula (35). Our paper can be regarded as a 
summation of a perturbation theory series, car­
ried out by a roundabout way. It would be of inter­
est to investigate formula (35). It is shown in the 
paper by one of the authors C7J that in the case when 
m = 0 the operators '~tin and '~tout exist, and this 
formula can be used in spite of the fact that Ha,b 
has in this case, like in the case when m "'- 0, no 
operator meaning. 

2. Closely related to questions touched upon in 
the preceding item is also the question of inelastic 
scattering. In the space JC¢ we can give two inde­
pendent determinations of the inelastic scattering 
amplitude, one is formula (19) and the other by 
means of an analytic continuation of the elastic 
part of the S-matrix. In the space JCa,b we have 
constructed the operator of elastic scattering of 
physical particles, and we can construct by means 
of an analytic continuation the amplitude of inelas­
tic scattering. Now, however, we have no other in­
dependent determination, since Ha,b has no 
discrete-spectrum eigenfunctions even after the 
total momentum is separated. 

In conclusion the authors thank V. M. Finkel'­
berg and E. S. Fradkin for useful discussions. 

6 )This circumstance is the basis of the known Haag 
theoremJ•J 
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APPENDIX 

DERIVATION OF BOUNDARY CONDITIONS 

The Hamiltonian H in pseudoparticle space, 
corresponding to the case of a pointlike interac­
tion, was defined in the introduction as the limit 
of the operator Hu as u(x)- o(x). We must first 
refine the meaning of lim Hu as u(x)- o(x). To 
this end we specify in explicit form the limiting 
operator H, i.e., we first describe the set of func­
tions forming its domain of definition, and then 
indicate the formula in accordance with which it 
acts. 

We denote by H&N) the value of the operator Hu 
in the subspace N of pseudoparticles, and by H(N) 
the value of H in this subspace. 

1. Let Du the domain of definition of the oper­
ator H&N), F u E Du, and let there exist the limits 

<P = lim F u E ~. lim H uF u E L2. 

The domain of definition of the operator H(N) is 
made up of the functions 

<P = limFu. 

2. The formula according to which H operates 
consists in the following: 

fl(N)$ = limHu<NWu. 

We denote by L~N) the space of all the functions 
(not necessarily skew-symmetrical) with sum­
mabie square. The operator Hf?> extends in natu­
ral fashion over all of the space L~N) 7>. It is ob­
vious that when x 1 """' x2 """' . . . """' xN the operator 
H(N) acts like the free operator H~N). We now 
consider the function FN,u(~ 1 •••• , ~N), which dif­
fers from zero only in the vicinity of Xi= Xj. Hf?> 
acts on such a function like an operator with sepa­
rable variables: 

Hu<N>FNu(St, ... , SN) = Ho<N>FNu(St, ... , SN) + 2gu(x;- Xj) 

XFNu(£t, ... ,£N)[6 6 +ll 6 J 
1a.1 2ai 2ai 1ai ' 

and therefore FNu (~to ..• , ~N) can be represented 

FNu(St, · · ·, SN) = fd-r:t ... d-r:NF2u(£;, Sjj't;, Tj}u(6tl'tt) 

••• U (Si-d Ti-t) u(£HdTi+t) · · · ll (Sj-d Tj-!) u (SJ-i-11 'tj+!) 

... u(£Nj'tN)A(Tt ... 't'N), (36) 

where F2u(~i• ~j I Ti, r;) are the eigenfunctions of 
the operator Hu in L~ >. 

We choose the form factor u(x) in the form of a 
rectangular well. In this case we can calculate ex­
plicitly the eigenfunctions of the operator H~2 > and 
their limits as u ( x) - o ( x), which are the eigen­
functions of H(2). From the explicit form of these 
functions it follows that they satisfy the boundary 
condition (7a). Taking this into account, we obtain, 
starting from (36) that the function <I> = lim FNu 
as u- o satisfies the necessary boundary condi­
tions. It follows from this in obvious fashion that 
the eigenfunctions of H(N) satisfy the same bound­
ary conditions (7 a). 
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