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The author considers relativistic partial amplitudes with prescribed orbital momenta and 
realizes their analytic continuation in the complex angular momentum plane. As a result of 
an analysis of the many-particle unitarity condition, expressed in terms of these partial 
amplitudes, it is shown in explicit fashion that both negative and positive integer values of 
the orbital angular momentum, which satisfy, however, definite inequalities, participate in 
the formation of the branch points of the scattering amplitude of scalar particles, corre­
sponding to exchange of N reggeons. 

THE present paper is aimed at explaining the 
role played by the usual orbital angular momentum 
in the investigation of analytic properties in many­
point diagrams; this momentum is not involved 
directly in investigations of asymptotic values of 
amplitudes of elastic and inelastic processes,[t-4] 

in view of the use of the helicity-amplitude for­
malism.[5] 

We consider the simplest of the inelastic proc-
esses: 

a+ b-+c + d+ e, 

a + b-+c + d + e + f. 
(1) 

(2) 

For simplicity, all particles are assumed identical, 
spinless, and scalar. Let Pa• Pb• Pc• Pd• Pe• and 
Pf be respectively the 4-momenta of particles a, 
b, c, d, e, and f. We denote by p the 3-momentum 
of the complex of particles c and d in the c.m.s. 
of the colliding particles; by Pt we denote the 3-
momentum of particle c in the c.m.s. of particles 
c and d; by p2 we denote the 3-momentum of 
particle e in the c.m.s. of particles e and f; by 
Pa we denote the 3-momentum of particle a in 
the total c.m.s., and by p; the 3-momentum of 
particle a in the c.m.s. of particles c and d; we 
also put 

t = (Pa + Pb)2, t1 = (Pc + Pd)2, t2 = (Pe + PtP· 

We denote by Zt ( Z-for a 5-point diagram) and 
Z2 the relative orbital angular momenta of parti­
cles c and d and particles e and f. Let L be 
the orbital angular momentum of the complex of 
particles c and d with respect to particle e for 
process (1), and with respect to the complex of 

particles e and f for process (2). Then the total 
angular momentum j + L + 1, in the case of a 5-
point diagram, and j = L + 1 = L + 1t + 12-for a 6-
point diagram. The addition of orbital momenta 
must be taken in the sense in which it was intro­
duced in the papers of Yu. Shirokov[s, 7] and 
MacFarlane. [BJ 

The total amplitude A2_ 3 of the 5-point dia­
gram in question is expanded in relativistic par­
tial amplitudes in the following fashion: 

j, L, l j,, M, m 

where na, n, and fit are unit vectors along the 
momenta Pa• p, and Pt. respectively, and·. 

cr·'YMz z are Clebsch-Gordan coefficients, 
D, ; ,m 

Ylm(n(O, cp)} 

=(-1)m'12l+-1 [ f(l-m+i) J';,P1 (z)eimfjl 
f f(l+m+i) m ' 

dmPl(z) 
Pzm(z) = (1- z2)m/2 ____ _ 

dzm 
Analogously, for the 6-point diagram 

(3) 

(4) 
X Yjj, (na) Y ut(n) Yz,m, (nt) Yz,m, (nz) fiLII, I, (t, t1, tz), 

where n2 is a unit vector along the momentum p2• 

The choice of the quantization axis along the 
direction of the momentum p leads to the helicity­
amplitude formalism.C2J We choose the angular 
momentum quantization axis along the momentum 
Pa· Then the expansion (3) assumes the form 
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00 00 oo, 

A2~3 (t,t1 ,z,z,,<p)= ~ ~ ~ (2l+1) 
I=OL=Om=O 

(5) 

L+l 2" + 1 
m ~ [ 7 w Ll ( t, ti) = . LJ ( 2l + 1.,--) -:-::( 2-::-L-.,.+-1:-:-) 

J=IL-11 

r(L + m + 1)r(l + m + 1) ]'!, Cj,o 
X f(L-m+ 1)r(l-m+ 1) t,m;L,-mliu(t,t,). 

(6) 

The prime denotes that when m = 0 a factor 1/2 is 
introduced in the corresponding term of the sum 1). 
We have introduced new amplitudes lJ!"~z ( t, t1 ) 
which are the analogs of the helicity amplitudes. 
In expansion (5) z =cos 81, where 81 is the angle 
between the momenta p1 and p~, while qJ is the 
azimuthal angle between the planes (p, p~) and 
(Pt. P~ ). 

From (6) we have 

. 1 _ [ (2£+ 1) (2l+ 1) ]'/, ~ 'Cj,o 
/ 1L(t,ti)- 2.+ 1 '"-I l,m_L,-m 

7 m=O 

[ r(L-m+1)r(Z-m+1) ]''' 
X r(L+m+1)r(l+m+1f WLzm(t, tl). 

Analogously, for a 6-point diagram 

tJ~1'(t,t~,t2 ) = [ (2L+1)(2l,+1)(2l2+1) ]''' 
2i+ 1 

oo, oo, 
~ ~ Cj,O C l,m X .L.J LJ l, nt; L, -m l~,m,; l:!, m.1 

m 1=0 m2=0 

X [ r(L- m + 1)r(l1 - m, + 1)r(l2- m2 + 1)_]';, 
r ( L + m + 1) r ( l, + m, + 1) r ( l2 + m2 + 1) 

(7) 

(8) 

In order to avoid the appearance of root singulari­
ties in the continuation into the complex angular 
momentum plane, we introduce the amplitudes 

F· l(t t )- /jLI(t, ti) 
JL ' 1 -[(2L+1)(2l+1)]'hli(j,L,l)' 

In the analytic continuation of the Clebsch-Gordan 
coefficients we shall make use of the Racah 
representation 

Ci. i,. = "J'2j + 1 Li(j, L, Z)[r(L +M + 1)r(L -M + 1) 
L,M,l,m 

X r(l + m+ 1)r(l- m+1)f(i+ iz + 1) 

x ru- i + 1)]'"Gi· i. z L,M;l,m., (10) 

00 

cj.j,. = ~ (-1)k[r(k+1)r(L+Z-i-k+1) 
L,M,l,m 

k=O 

X f(L-M- k + 1) r(Z+ m- k+ 1) 

X r (j - l + M + k + 1) ;r (j - L - m + k + 1) ]-1• ( 11) 

We introduce the notation n = j - L. For integer 

j,jz . 1 t" f t" l, the function Gj-n,M;l,m IS an ana y 1c unc wn 
of j in the region Re j > -1. 

The following representations will be the ana­
lytic continuation of amplitudes (9) into the right 
half plane of the complex variable j for Re n 
~ 0: 

00 I • Q 
I(±) ~ J, • 

Fj, f-n (t, t,) = r (j + 1) LJ Gz, m; j-n, -m r (J- n- m + 1} 
m=O 

m(±l 
X r(l- m + 1)Wi-n;z(t, t1), (12) 

oo 1 co 1 

F 11'1'C±l ( ) r ( . + 1) ~ ~ G i. 0 G 1' j, j-n t, ft, f2 = 7 LJ L.; l, m; L, -m 11, m,; !,, m, 
m,=On£2=0 

xr(Z-m+1}r(Z+m+1)f(j-n-m+1) 

' I 1} nrmrn,m,(±) ( t t t ) x~r(l1 -m,+1}r(l2-mz+ -rj-n,z,l, , ,, 2. 
(13) 

The amplitudes of w~?)(t, t1) with specified 

signature L are the analytic continuation of the 

amplitudes 'I!~z (t, t1) in the complex L plane. 

The method of analytic continuation into the com­
plex angular momentum plane of integrals of the 
type 

L1 (j, L, l) (with j in lieu of L) was given in the paper of 

= [ r(i+L-l+1)r(i+Z-L+1)r(L+l-j+1) ]'!', Popova and Ter-Martirosyan.[2] We therefore 
r(j + L + l + 2) present the final result 

!l,l, ) qr Lim(±) = W Llm(l) + qr Llm(2); 
FjL (t, t,, t2 

/ 11 '1' ( t ) 1 "" 
_ -t-JL t,t~, 2 . W m(il(t t)- -~"am< 1>(t t, z)e-imnQLm(z)dz 
- [(2L + 1) (2l + 1} (2l1 + 1} (2l2 + 1)]'i•L1(i, L, l)Li(l, l1, l2) • Ll ' 1 - n: 1 ' ' ' 

R 

(9) 
1 co 

qtLim(2l(t, t1} = - n) azm(2l(t, f1, -z) e-inmQLm(z) dz. (14) 
ZL 

1>rn the derivation of (5) we used the symmetry property of 
the amplitude 

Atm (t, t,, z) = J dQ 11 ,A,~, (t, ft, z, z,, <!') Ytm * (n') 

with respect to the substitution m -> - m. 

for af~ and af~ are the absorption parts of the 

amplitude 
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1 +1 2n 

azm ( t, tt, z) = - ~ dzt ~ d<pPzm ( Zt) cos m<pA2-+s ( t, tt, z, Zt, <p) 
4n_t o 

(15) 
respectively on the right and left cuts with respect 
to z. We note that the amplitudes (14) are not a 
complete analytic continuation of the amplitudes 

m . 
ifLZ (t, t1 ), but only of that part whiCh plays an 

essential role in the determination of the singu­
larities that determine the behavior of the ampli­
tudes at large energies in the crossing channel. [2] 

The amplitudes if~?) ( t, t1 ) with specified L 
1) analytic functions of L in the region Re L > v 

where v determines the degree of growth of the 
amplitude azm ( t, tt, z) as z- 00 ; 2) decrease 
exponentially as L - oo along any straight line in 
the right half-plane L; 3) coincide for integer L 
with the partial amplitudes if~z ( t, t1) of the am­
plitudes azm (t, tt, z) from which the part con­
nected with the complex singularities in z is 
separated; 4) vanish for integer L = n < m.C2J 
The amplitudes ifMLZl1m2 ( t, t1, t2 ) are continued 

1 2 
in the complex L plane in similar fashion. 

It is easy to show that the representations (12) 
and (13) with Re n ~ 0 are analytic functions on 
the right of some _value Re j = h with an asymp­
totic value ~ e -aJ (a > 0 ). The amplitudes 

F~i) ( t, t1 ) of the proper signature L for integer 

j, L, and l satisfy the triangle relation 

by virtue of the properties of the amplitudes 

if~/±) ( t, t1) of the proper signature L, which 
vanish for integer L < m. The amplitudes 

FfL)( t, t1) of the improper signature L do not 

(16) 

satisfy relation (16)2). This is precisely the rea­
son for the difficulties that arise in the analytic 
continuation of the many-particle unitarity condition. 

Let us examine the 3-particle unitarity condi­
tion of the elastic scattering amplitude fj ( t ), 
corresponding to the production of three spinless 
particles in the intermediate state. The corre­
sponding jump through the 3-particle cut will be 
of the form 

11 co HI 

/1g/i(t) = --~ dtt ~ ~ fiLI(t, ti) 
3! 2i C1 l=O L=lj-1) 

X / (3) 2p (t, t1) 2pt2Z+I 
JLI (t, tt-) --

yt yt! 
'11 co+l 

= 31 2i ~ dt1 ~ ~ (2j- 2n + 1) (2l + 1) 
C1 I=Dn=-1 

2 )We shall henceforth, for simplicity, not indicate the sig­
nature. 

r ( 2j - n - l + 1 )T ( l + n + 1) r ( l - n + 1) X ~~--~~ 
f(2j- n + l + 2) 

I 1(3) 2p ( t, t!) 2pt2Z+! 
X Fi, i-n (t, ti)Fi.i-n (t, tt-) - , (17) 

yt yt! 

where the contour C1 is chosen the same as in[3,4]. 

Analytic continuation in the plane of complex j of 
a function of the form 

co HI 

~ 2} <l>jL1(t), 
I=OL=)j-1) 

which is contained in the right side of (17) is 
generally speaking not unique. However, the only 
possible analytic continuation of (17), for which 
the function 

L=Jj-1) 

is an analytic function in some region in the right 
half-plane of j for fixed l, will be 

+I -oo co 

~ <D],j-n(t)= 'Z,<DL-n(t)= ~<D],Hs-l(t). 
n=-1 n=l s=O 

We then have 
1 1 ~ 00 

113/i(t) = -1 --: ~ dtt~ 2} (2j- 2l + 2s + 1) (2l + 1) 
3. 2£ Ct 'I=O s=D 

f(2j-2l+s+1) . 1 
X r (2j + s + 2) J' (2l- s +1)T (s + 1 )Fu+s:::1(t, t1) 

X F I(S) (t t ) 2p (t, tt) 2pt2l+l 
j, J+•-1 ' 1- ,, ,, • 

r t r t1 
(18) 

However, the presence of poles of the function 
r ( 2j - 21 + s + 1 ), contained in (18), leads to a 
difficulty in the analytic continuation of the uni­
tarity condition in the form (18).[3] Mainly, for an 
amplitude of foreign signature j in the complex j 
plane there arises an infinite number of poles, 
located at integral positive points. Physically this 
is not admissible (see the paper of Gribov et 
al. [3] ) . 

An attempt to circumvent this difficulty con­
sists in realizing the analytic continuation of the 
right side of (18) in the complex j plane not in the 
form of a series in Z, but in the form of a contour 
integral with respect to the variable l with suit­
able choice of the contour: 

11i idl""' 
11ali(t) = -31 (2.) 2 J dtt J ---;;--z ~ (2j- 2l + 2s + 1) (2l + 1) 

• L c, L tb l't s=O 

f( 2j- 2l+s+ 1) f(2l-s+1)f(s+1) 
X f(2j+s+2) 

I 1(3) 2p ( t, t!) 2pt2Z+I 
X Fi. i+s-l(t, tt)Fi. Hs-z(t, tt-) -~---=-, (19) * 

yt yt! 
*tg =tan. 
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where the contour L encircles not only the entire 
real l axis, but also the singularities of the inte­
grand connected with presence of the function 
r ( 2j - 2Z + s + 1 ) . 

Such a continuation, as in [3], is not unique. The 
unitarity condition (19), continued analytically in 
the complex j plane, contains amplitudes 

l 
Fj,j+s-l (t, t1 ), which are analytically continued 

in the complex j and l plane simultaneously. 
Such amplitudes are given as before by formulas 
(12) and (14), the only difference being that in 
formula (14) the aj~2 l(t, t1, z) are the absorption 

parts of the amplitude azm (t, t1, z) which is ana­
lytically continued in the plane of complex Z, hav­
ing in lieu of (15) the integral form 

af!>(t, tl, z) = ~ ~ Am(l)(t, tl, z, Zt)e-irtmQzm(zi)dzl 
ZIR 

1 co 

+ ( --;{") ~ Am<2l(t, t1. z, -z1)e-irrmQzm(zi)dzl. (20) 
ZIL 

Then the analytic continuation of the unitarity con­
dition in the form (19) is possible for definite 
values of t, for which cosh-1 z1R- cosh- 1 ZR > 0. 
However, the result of the investigations can be 
extended to arbitrary values of t. 

Let us assume that for l = a ( t1) = a there is 

a pole of the amplitude of the 5-point diagram 

F j LZ ( t, t1 ) : 

F ( ) f(j+1)Riu{t,tt) 
jLl t, t1 = l ( ) . -a t1 

Then the singular part t.i fj ( t) of the integral 
(19), due to the pole at l = a ( t1 ), will take the 
form [3] 

!l//;(t) = ~1 (2
1.) S dt1-t 1 (t-)!~ (2j- 2a + 2s + 1) 

' · ~ c, g :rta 1 s=O 

(2a+1) f(2j- 2a+s+ 1)r(2a-s+1) 
X f(2j + s+ 2) 

X f(s + 1) f 2 (s + 1) Rf Hx+s(t, t1) 

«(3) 2p ( t, tl) 
X Ri, i-«+s (t, tt-) yt . 

(21) 

(22) 

The amplitude RjL ( t, t1 ) can be regarded as a 

partial amplitude of the transition of two particles 
into a particle and a reggeon. It is determined by 
formulas (12) and (21) 

co, 

Rj; H'+s(t, tt) = ~ G~.':n; j-a+s, -m r (j- a+ s- m + 1) 
m=O 

(23) 

Using (11), we obtain 

R ~. ( )- ~' ~ k ru-a+s-m+1)f(a-m+1) 
J,J-a+s t, l1 - L.J L.J {-1) .· ----=----

m=O k=O f ( k + 1) f ( S - k + 1 }'f {7 - a + S - m - k + 1) 1f (a - m - k + f) 

rf~':x.+s(t, ti) 
X f{j- a+ m + k + 1)f(a- s -i- m + k + 1)' 

where the function 

amplitude -v?ml J- +S 

r?m is the residue of the J -a +s 
at the pole l = a ( t 1 ), and has a 

representation of the form (14) with suitable re-
placement of the drops aj~ and aj~ of the ampli­

tude of the 4-point diagram (20) by the drops of 
the amplitude of the transition of two particles 
into a particle and a reggeon, that is, the function 

rf-~ +s ( t, t1) is represented by an integral of the 
form 

It is easy to see that the amplitudes 
R~j -a +s ( t, t1 ) have no "kinematic" singularities 

with respect to j. 
The integrand in the right side of (22) which is 

00 

a series 6 , containing the function ( 2j - 2a 
s=o 

+ 2s + 1)r (2j- 2a + s + 1 ), has poles at the 
points 

f (t1) = a (tt) - '1 - k I 2, k = 0, 1, 2, .... 

(24) 

As shown in [3] these poles are the cause of the 
branch points of the amplitude fj ( t) at the follow­
ing values of j: 

j(t) = a((l1t- 11)2) -1- k/2 (k = 0, 1, 2, ... ). (25) 

The branch points (25) correspond to values of the 
orbital angular momentum 

L = i- a+ s = -1- k I 2 + s 

(s=0,1, ... ,k+1; k = 0, 1, ... ). 

These values of L can be either positive or nega­
tive. Expression (22) shows, however, that only 
those states for which the values of L satisfy the 
inequalities 

j-l~L~l-j-1 
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participate in the formation of the branch points, 
or, taking into account the parity conservation re­
quirement for scalar particles, 

j - l ~ L ~ l - j - 2. 

Let us consider the 4-particle term of the 
unitarity condition: 

(26) 

00 

(27) 

The analytic continuation of the 4-particle con­
dition of unitarity (27) is carried out in a form 
analogous to (19): 

~ (2j- 2Z1- 2Zz+2s1 + 2sz+ 1) f(2j- 2Z1-2lz+ 2sz+s1 + 1) 
sh s2·=0 

The contours L1 and L2 circuit respectively not 
only the real positive axes of the complex vari­
ables Z1 and Z2, but also the singularities of the 
integrand which are brought about by the presence 
of the function r ( 2j - 2Zt - 2Z2 + 2s2 + St + 1 ). 

Representation (28) is apparently unique, satis­
fying the following two requirements: a) that the 

00 

double series I; be an analytic function of j 
St,S2=0 

in some region in the right half-plane of j at 
fixed values of Z1 and Z2 for definite values of t; 
b) that the amplitude of fj ( t) have no infinite 
number of poles for positive integer values of j. 

Let us assume that the amplitude of the 6-point 
lltl2 

diagram FjL ( t, t1, t2) has poles of positive 

signature at 11 = a ( t1 ) = a 1 and l 2 = a: ( t2 ) = a 2 : 

F u,z,( )- ,r(j+1)R]~1'(t,ti.tz) 
JL t, t1, t2 - -. 

(l1- a(t1)) (lz- a(tz)) 

Then the calculation of the singular part of the 
jump A~ fj ( t) yields: 

, 1 1 1 [ a(t1) a(tz) ]-1 
11di(t)= 2 (Zi) 2 ~~dt1 ~'dtz tg:n:-2- ·tg:n:-2-

"" 

(29) 

(30) 

The partial amplitude R(t, t 1, t2) of the transi­
tion of two particles into two reggeons on the basis 
of formulas (13) and (29) is represented in the 
following fashion: 

(28) 

X f ( U! + U2- Sz + m + 1) 

X r (j- Uj- az + Sj + Sz- m + 1 )r ( Ui- m! + 1) 

X f ( a2- mz + 1) r}~-':,'~~,+s,+s,, a, a, (t, t1, tz), (31) 

where m = m 1 + m 2, r ( t, t1, t2 ) is a double residue 

of the amplitude wmLl~1m2 ( t, t1, t2 ) at the poles 
1 2 

11 = a ( t1 ) = a 1 and Z1 and Z2 = a: ( t2) = a 2 for 
L = j - at - a:2 + s 1 + s 2, having an integral repre­
sentation of the form 

~ dz ~ dz1 ~ dz2Qr.m(z)Qa,m,(z!)Qa,m,(Zz)Bm(t, t1, Z, ZJ, Zz). 

The amplitudes (31), like the amplitudes (23) have 
no "kinematic" singularities in j. 

The poles of the function r (2j - 2a:t - 2a 2 

+ 2s2 + s 1 + 1 ), which is contained in the double 
series of the integrand of (30), lead to the occur­
rence of branch points of the elastic scattering 
amplitude fj (t) for the following values of j (t): 

j(t) = 2a(tl 4) -1- kl2 (k = 0, 1, 2, ... ). (32) 

These branch points correspond to values of the 
orbital angular momentum 

L = j(t) - 2a(t I 4) + s1 + Sz = -1- k I 2 + s1 + s2 

(k,s1,s2=0,1,2, ... ; s1+s2~k+1). (33) 

According to (33), both positive and negative 
integer and half-integer values of L participate 
in the formation of the branch points (32), pro­
vided that they satisfy the inequalities 

j(t)- 2a(t I 4) ~ L ~ 2a(t I 4) - j(t)- 2, (34) 

as can be readily seen from (30). 
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In the limiting case, when t - 4!J 2 (in this 
case t1, t2 - !J 2, a (tt) =a (t2)- a (!J 2) = 0 and 
L- j ), the amplitude for the production of two 
reggeons R ( t, t1, t2) becomes equivalent to the 
amplitude of scattering of two identical scalar 
particles. It is to be expected that in this case the 
arguments presented by Gribov and Pomeranchuk[s] 
will be valid for the amplitudes r ( t, t1, t2). The 
symmetry property of the reggeon spectral func­
tion with respect to the substitution s ~ u (here 
s and u are the Mandelstam variables) will lead 
to the vanishing of the residues of the integrand in 
(30) for odd k and odd k/2. If these properties 
are conserved not only as t - 4!J2, then the am­
plitude fj ( t) has branch points 

j(t) = 2a(t I 4)- k, where k = 1, 3, 5, .... 

In the more general case of exchange of N 
reggeons, the many-particle terms of the unitarity 
condition lead to the occurrence of branch points 

jN(t) = Na(t I N2) 
- (N- 1) - k I 2 (k = 0, 1, 2, ... ) , (35) 

which correspond to the addition of N reggeons 
with the N - 1 orbital angular momenta L1, 
L2, ... , LN-1 which arise during the consideration 
of the problem, and assume integer and half inte­
ger positive and negative values. However, the 
symmetry of the spectral functions with respect 
to the substitution s ~ u causes the vanishing of 
residues for half-integer and odd k/2. 

Thus, by turning to relativistic partial ampli­
tudes with specified orbital angular momenta we 
were able to show directly the values of the orbital 
momentum corresponding to the branch points ob­
tained in [3, 4] (see also [1o] ). It is not excluded that 
the use of the amplitudes FfL and \J.II_£1, the ana­

lytic properties of which at complex values of the 
momenta were investigated in the present paper, 
may turn out to be convenient in the analysis of 
certain problems of "reggistics" of many-point 
diagrams. In particular, on the basis of formulas 
(12), (13), and (14) it is easy to see that the am-

. l ll1l2 . 
plltudes FjL(t, t1) and F.L (t, t1, t2), like the 

m J mm1m2 
amplitudes 'llu(t, t1) and 'llu1z2 (t, t1, t2 ) have 

a threshold behavior of the type ~ pL for arbi­
trary complex L, which agrees with the result ob­
tained in [11], if account is taken of the linear rela­
tion between the amplitude FfL ( t, t1 ) with the 

helicity amplitudes.[G] This circumstance can 
mm1m 2 

cause the amplitudes rLZZ ( t, t1, t2) to have 
1 2 

poles that condense as p - 0 towards a certain 
value j in the complex plane (see the paper of 
Gribov and Pomeranchuk [12J). Inasmuch as in 
formulas (22) and (30) pinching of the contour, 
which leads to the appearance of branch points in 
the elastic-scattering amplitude, takes place at 
p = 0 (the reggeon production threshold), the 
aforementioned condensation of the poles can lead 
to the appearance of branch points of a new type in 
the elastic-scattering amplitude. 

In conclusion I am sincerely grateful to K. A. 
Ter-Martirosyan for suggesting the research topic 
to S. G. Matinyan for continuous interest in the 
work and for valuable advice, to Ya. I. Azim~v for 
critical remarks, and to 0. V. Kancheli and E. V. 
Gedalin for fruitful discussions. 
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