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fact of absence of an asymmetry in the decays 
I:+ --mr+ and I:- --n7f-. SU(6) symmetry dis
tinguishes between the two possibilities dictated 
by experimental evidence, predicting pure p-wave 
in the decay I:+-- n1r+. This can be checked ex
perimentally [9]. Since expression (4) contains only 
one undetermined constant we find the following 
relationships between the S-amplitudes of all 
hadronic decays of baryons ( b -- b1r, d -- d1r ) : 

(A-+pn-)s = -(8--+An-)s = l'3/2(I:--+nn-)s 
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= -1'3 (I:+-+ pn°)s =--=- (Q--+ 8°"n-)s. 
1'2 

From (4) naturally, there also follow the relations 
connected with the rule I .6.1 I = 1/ 2 

11 B. Sakita, Phys. Rev. Lett. 12, 379 (1964). 
12 Stevenson, Berge, Hubbard, Kalbfleisch, 
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(8--+ An-) = -1'2(8°-+ An°), 

(A-+ pre-)= -l'2(A-+nno), 

(Q--+ 8°n-) = -l'2(Q--+ g-•n°). 

Equations (5) satisfy the triangle relation between 
the amplitudes for A-, :=:- and I:- decays found in 
several articles [10 •11 • 7] and agree with experi
ment [12] 2 ) 

SU ( 6) symmetry with the help of (5) fixes a 
relation between the projections of this triangle 
on the S axis. Within the limit of experimental 
error (5) does not contradict the given data al
though a final decision may be made only by 
appreciably improving the measurements of the 
parameters of hadronic decays of hyperons 
(particularly the parameter y of the decay 
I:+ -- p7ro ). 

The author greatly thanks E. V. Gedalin and 
0. V. Kancheli for comments. 

1lThis result becomes clear if one thinks in terms of 
quarks: the strange quark A0 cannot give rise to a rr+ meson 
regardless of whether the quark is in a symmetric state 
(baryons described by representation 56) or an antisymmetric 
state (baryons described by representation 20). The quark 
picture is inapplicable to the p-wave amplitude, which vio
lates SU(6). 

2)It is interesting to note that in[10 ' 11 ] in order to find 
this relationship it was necessary to assume that 
(~+ __, nrr +)s = 0. For (~+ __, nrr +)p = 0 there is a different 
relation between the S and P amplitudes of the triangle, 
disagreeing with experiment. 
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1. It is well known that metals with equal num
hers of electrons ne and holes nh can exist only 
owing to the overlapping of bands. From Fig. 1., 
in which the shaded areas indicate filled states, 
it is clear that a shift of the band boundary by an 
amount 6 E equal or greater than b.E = E2 - E1 

would transform at absolute zero a metal (a) into 
a dielectric (b) 1 '· 

If the metal has not only one type of carrier 
(not one band), but ne ~ nh, then a shift of the 
boundary might "deplete" one of the bands (see 
also (2)). At the moment of disappearance of 
carriers from even only one band, all the elec-

e, 
Cz -- e: I'; 

a b 

FIG. 1. 



LETTERS TO THE EDITOR 805 

tronic properties of the metal would exhibit at 
T = 0 a singular behavior that vanishes gradually 
with increasing temperature. For metals of the 
type of bismuth and for a few anomalous empty 
bands in other metals, the required shift in energy 
is of the order of a few hundred degrees (for the 
ground state band of good metals it is of the 
order of 104-105 oK ). 

2. To displace the boundary of a band it is possi
ble to use a constant magnetic field H. We ex
plain this effect with the example of electrons 
with a quadratic dispersion law Ee = E1 + p2/2m:, 
where m: > 0 is the cyclotron effective mass of 
the electron. In a magnetic field directed along the 
z axis we have 

1-te = I e lli I me" c, 1-ts" = I e IIi I 2ms"c; 

(1) 

(2) 

m~ > 0 is the spin effective mass, which deter
mines paramagnetic splitting of the Landau levels. 

The magnetic field shifts the end point of the 
spectrum from Ee = E1 (for H = 0 ) to 

8e = 8/(H) = 81 + (1/21-te- ~-t/)H, 

and thus there are no states with energy less than 
Ef (H) at all. The continuity of the spectra for 
Ee > Ef (H) is preserved; the presence of the dis
crete k in the formula for Ee leads only to singu
larities in the density of states ve (E)= dne (E)/dE 
at points equidistant in energy. (This can be shown 
by direct calculation, using the well known formulas 
for the number of states ne ( E) with energy not 
greater than Ee.) For holes with a quadratic 
dispersion law En = E2 - p2/2mh' (where m{i is 
the absolute value of the negative effective mass 
of the hole) in a magnetic field, the upper boundary 
of the band is displaced from Eh = E2 to 

8h = 82' (H) =• 82- (1/21-th- 1-tsh)H. 

The slbectrum is continuous for Eh < Ez (H); 
~h and ~s are given by formula (2) by changing 
the index e to h; ~~ > 0. A necessary condition 
for the transformation of a metal to a dielectric 
in a magnetic field in the examined case is evi
dently the fulfillment of the inequality: 

A = 1 /me"- 1 / m.• + 1 / mt:- 1 / msh > 0. (3) 

The resulting formulae allow an estimate of 
the magnetic field necessary for observation of 
the described singularities. For "convenient" 
(corresponding to a maximum c5 E) directions of 
the magnetic field and unusually small bands, and 
for metals of the type of bismuth, a field of 
strength H ~ 10 - 106- Oe is necessary. 

We stress that a change of the number of free 
charges is impossible in the presence of only one 
band. If a given band "contracts" in a magnetic 
field (the lower boundary of the band rises, and 
the upper boundary drops), the number of states 
contained in it does not change (see also [3] ) owing 
to the increase of the density of states, just like 
the number of particles in a liquid does not 
change upon contraction 2 >. Since the number of 
electrons also does not change, the number of un
occupied states in the band does not change. A 
change in the number of carriers in a band is 
possible only if they "flow" from band to band, the 
way a liquid flows into a vessel when a neighboring 
connected vessel is raised or lowered. The 
' 'holes'' are analogous here to voids over the 
liquid. 

3. We now determine the dependence of differ
ent electronic characteristics on the magnetic 
field. 

It is clear, that so long as H « Hk ( Hk is the 
field for which the edges of the bands touch), the 
magnetic field has little effect on the number of 
carriers. When Hk - H ~ Hk the number of 
carriers changes smoothly3 >. When Hk - H « Hk 
a relatively small change of the field must lead to 
an abrupt decrease of ne,h• as a result of which 
the initially degenerate gas of electrons and holes 
becomes non -degenerate and ne ,h are determined 
only by the temperature. When 

B = (IeiiiA/ ckT) (H- Hn) > 1 

the number of carriers decreases exponentially as 
e-B as the magnetic field is increased or the 
temperature is decreased. For T = oo K, naturally, 
there is a singularity at the point H = Hk. 

For simplicity we assume that T = 0°K4 ). Let 
H = Hk + H' and I H' I « Hk. For H' < 0 the 
chemical potential is 

(this form of dependence of ne,h on ~ is due to 
the singularity of ve h ( E) near the border of the 
band), and thus ne = ~h = Y1 I H' 1112 • 

The thermodynamic potentials are proportional 
to 

ne, h[S- s(Hn)] ~ IH'I''' 
(for the energy this is obvious, and the small ad
ditional terms related in this case to ne,h coin
cide for all potentials [S] ). 

When H' > 0 the current carriers vanish 
ne, h(Hh + H') = 0, 

6(Hn + H') = 82' = s(Hn)- 6H', 
and the additional terms in the thermodynamic 
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FIG. 2. 

potentials are evidently equal to zero. 
Since the conductivity is proportional to the 

number of carriers, for H = Hk it becomes zero, 
having discontinuities with infinite derivative 
(Fig. 2.)5l. 

It is clear that when ne "'- nn the conductivity 
suffers a discontinuity if the carriers vanish 
from one of the bands, but it does not go to zero. 

The thermodynamic potentials and their de
rivatives (except derivatives with respect to the 
magnetic field) are continuous at H = Hk· The 
magnetic moment has the same singularity and 
the same dependence on H' as does a. Thus the 
magnetic susceptibility x = -oF /oH ( F is the 
free energy) experiences at T = OoK an infinite 
jump when H = Hk· A similar type of singularity 
results also when the chemical potential ~ (H) 
goes through values of the energy that are singu
lar for the given band (for which there appears a 
new equal energy surface, for which a change 
takes place from an open surface to a closed one 
and vice versa, etc.). 

These singularities resemble singularities in 
the electronic characteristics of metals under 
high pressures, predicted by I. Lifshitz.[t1] 

If A < 0, then for H » cD.E I I e InA the number 
of carriers must increase in a magnetic field (in 
proportion to H3/ 2 for a quadratic dispersion law). 
A calculation of the resulting effects will be the 
subject of a future paper. 

4. Thus, the change in the chemical potential 
in a magnetic field can be used to investigate the 
dispersion law and its singularities in a large 
energy interval (of the order of ~H). 

l)A decrease in the number of electrons and holes might, 
as shown by Arkhipov['), change a metal into a dielectric 
abruptly when [)( < L'.f even at finite temperature. 

2lconservation of the number of states and of the total 

charge makes the charge of any quasi-particle (electron or 
hole) equal to the charge of a free electron (with the accuracy 
with which the charge commutes with the quasi-mo.mentum). 

3) A change in the number of carriers in a relatively weak 
magnetic field was observed in bismuth[._,). 

4)For a quadratic anisotropic dispersion law one may write 
exact equations for arbitrary H. However, a strong spin-orbit 
coupling leads to a more complicated form of E(p even near 
the edge of a band (see[8 ]). A non-quadratic E(p results also 
from degeneracy; in this case it is necessary to take into 
account the "interaction" between bands and it is impossible 
to quantize them independently in each band. As far as finite 
temperature is concerned, its effect may be taken into account 
in the general case in a manner analogous to that described 

in[2
]. • • • • 

S)The possibility of bismuth transforming In pnnciple In-
to a dielectric in very strong magnetic fields was first 
pointed out by Davydov and Pomeranchuk[' 0]. They did not, 
however, examine the singularities of the electronic charac
teristics in such a transition. 
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