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The dependence of the conductivity of a semiconductor on the electric field was investigated. 
Semiconductors were considered with a sufficiently narrow energy band. In this case the 
heating of the electrons in the strong electric field (the effective temperature of the elec
trons exceeds the width of the allowed band) leads to inverse proportionality of the current 
and the electric field intensity. 

THE behavior of semiconductors in strong elec
tric fields has been the subject of many theoretical 
and experimental papers, a sufficiently detailed 
review of which can be found in the paper by 
Gunn. [i] However, the theoretical analysis was 
limited to the case of a quadratic carrier disper
sion, and no account was taken of the finite width 
of the energy band. As will be shown below, al
lowance for the latter circumstance leads to an 
entirely different dependence of the current j on 
the field intensity E. Namely, in sufficiently strong 
fields, when the effective temperature Teff of the 
electrons becomes larger than the width of the 
allowed energy band, the current decreases with 
increasing electric field, and when Teff » ~ we 
have j ~ 1/E. 

Let us trace qualitatively the transition from 
the relation j ~ E to j ~ 1/E. As is well known, 
a noticeable deviation from Ohm's law occurs 
when the energy acquired by the electron per unit 
time in the electric field, j · E, becomes compara
ble with the energy given up in inelastic collisions. 
For concreteness we shall consider collisions be
tween electrons and phonons. Scattering by im
purities is taken into account analogously and 
leads to similar results. We shall assume that the 
initial temperature T0 of the electrons and the 
phonons (the latter is assumed to be invariant) is 
small compared with the De bye temperature ®. 
Then for Teff « ® we can disregard the scatter
ing by the optical phonons. In scattering by 
acoustical phonons, the electrons lose on the av
erage per unit time an energy equal to 
ms2ET/ rkT0 ( ET is the thermal energy of the 
electrons, the factor ms2/kT0 « 1 determines the 
degree of inelasticity of the collision, s is the 
speed of sound, and m is the electron mass). 

For simplicity we consider first a model in 
which the electrons have a quadratic dispersion 
law, but the assumed values of the energy are 
bounded from above by a certain value ~ (width of 
the band). Assume that the field is already strong 
enough to satisfy the equality 

n ms2 
Ej :=:::::---8T 

't' kTo ' 

where n is the number of carriers. We set 

't' = z I v, 

(1) 

(2) 

and assume the mean free path to be independ
ent of the energy. Using (2) and the expression 
for the current 

j = e2n't'E I m, (3) 

we obtain from (1) 

( 
kTo \'/, 

BT:::::::: eEl -- 1 • 
ms2 1 

(4) 

We see therefore that VT ~ /E, and consequently 
j ~ /E. In the intermediate region, a transition 
takes place from j ~ E to j ~ /E. 

With further increase in the field, Teff be
comes ~ ®. This leads to a turning on of optical 
phonon emission processes. The electron can 
then lose per unit time an energy nw0/ r op ( r op 
is the radiation time of the optical phonon and 
nw0 is its characteristic energy). As seen from 
(1 ), the following inequality is satisfied 

Ej < nnwo I 'top 

and the dependence of the current on the field 
again becomes linear. 

(5) 

With further increase in the current, Teff re
mains ~ ® until the inequality (5) turns into an 
equality. Then we see from (3) and (5) that the 
current in this region does not depend on the field 
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(saturates). The electron energy ET continues to 
increase in this region, and this in usual semi
conductors leads to one of the forms of breakdown. 

We wish to call attention to an effect which can 
occur in semiconductors with a narrow allowed 
band, separated from the next allowed band by a 
wide gap. In this case, the electron energy can 
become comparable with the width of the allowed 
band even in the pre-breakdown region. The en
ergy which the electron can transfer to the lattice 
per unit time (C) will then be determined by 
characteristics that are averaged over the band, 
and ceases to depend on the field. From the en
ergy balance we then obtain 

j ~ C IE, (6) 

i.e., the current in this region of fields should de
crease in inverse proportion to the electric field. 

Let us now proceed to a quantitative analysis 
of the problem. We assume that the drift velocity 
vD is much smaller than the thermal velocity vT. 
This enables us to represent the electron distri
bution function in the form 

dto( e) 
t=to(e)-eEvr:~==to+!t, t1~to, (7) 

where f0 ( E) is the sought function, which depends 
only on the electron energy. In the case of weak 
fields f0 = exp ( -E/kT0 ). The problem consists 
of finding f0 (E) and the coefficient T ( E) con
nected with the drift velocity of an electron 
possessing an energy E. 

To this end we write down the kinetic equation1 l 

eE at + ( at ) + ( at) _ 0 
ap at ac at op - ' 

(8) 

where (of/at )ac is the integral of collisions with 
the acoustical phonons, which has the following 
form ( q = p - p' ) 

(~nac = ~[cqac[2{f(p)(Nq+1)<'1(ep-ep'-n(!)q) 

+ f (p) Nq<'l (ep- ep' + 1iroq) 

- f (p') (Nq + 1) <'I (ep'- ep -fi(!)q) 

- f (p') Nq<'l (ep'- ep + 1iroq)} dp' 

and ( of/ot )op is the integral of collisions with 
optical phonons, equal to 

~ [ Cq0 Pj 2 {/ (p) <'I (ep- ep' -1iro0) 

- f (p') <'I (ep'- ep -1iro0 )} dp' 

Here lc ac,op 12 is the suitably normalized 
square o~ the modulus of the transition matrix 

(9) 

(10) 

l)The scattering of the electrons by the impurities is taken 
into account in analogy with scattering by acoustical phonons. 

element, w is the frequency of the acoustical 
phonon, w0-the frequency of the optical phonon 
which for simplicity is assumed to be independent 
of q. In (10) we have taken into account only ef
fects connected with the spontaneous emission of 
the optical phonon, which is valid when T0 « ®. 

Substituting (7) in (8) and separating the sym
metrical and asymmetrical parts, we obtain two 
equations for the two corresponding functions of 
the energy f0 ( E) and T ( E). In the derivation of 
the asymmetrical part of the equation we disre
gard in ( 8f/8t )ac the small inelasticity, that is, 
we put w = 0. As to (10), we shall assume that 
I c0 Pj 2 =A does not depend on q, and that the 
equal-energy surface of the electron has a center 
of inversion. 

Under these assumptions, the asymmetrical 
part of (8) reduces to an equation for 

where dN/dE-density of the number of states, 
and 

If we put 

6(x) = {1, x>O 
0, x<O 

(roq = sq) 

and recognize that 
n(!)q s Yme 1 
kTo ~kT;~ ' 

then we obtain from (13) 

- 1- = 2BkT0 dN(e) . 
't'ac de 

To derive the symmetrical part of equation 

(11) 

(12) 

(13) 

(14) 

(8), it is simplest to average it over the constant
energy surface. We have 

eE ~ :: <'I ( ep - e) dp = E a: j( e), ( 15) 

where 
j(e)= -~u2E~ dto(e) dN(e) 

3 de de 

is the current density in energy space. In the 
derivation of (16) we have put 

Averaging the integral of collisions with the 
acoustic phonons, we obtain 

---
- d [ 1 s2 (p- p')2 1 J 

-d -2to(e) kT - • 
8 o lac 

(16) 

(17) 
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In the derivation of (1 7) we have assumed for 
simplicity that wq = sq, and, since we shall be 
henceforth interested only in the case Teff » T0 , 

we have discarded the term ~ kT0df0/dE compared 
with f0• The averaging of the integral of collisions 
with the optical phonons yields 

A [t ( ) dN(e) dN(e -liw0) li 
o e ~ de 8(e- roo) 

-fo(e+liwo) dN(e) dN(e+liwo) l· 
de de (18) 

illtimately we obtain the following equation for 
fo ( E) 

!_{dN[ifo(e) s2(p-p')2 ~+ -r;e2E2!)2 dfo(e) ]'f 
de de 2 kTo Tac 3 de 

f dN(e -liw0) 
-Alfo(e) de 8(e-liroo)-/(e+liw0) 

x dN(e~liw0 ) J d:~e) =O .. (19) 

We now proceed to an investigation of (19). If 
kTeff « liwo, then we can disregard optical pho
nons. Then for a quadratic dispersion law 
(p- p' )2 = 4mE we get 

{ 3ms2e2 \. 

fo(e) = c exp - kTo(eElacP J ' (20) 

where lac is the mean free path on acoustical 
phonons. This expression for f0 leads to j ~ft. 
Formula (20) is valid so long as 

T eff == eElac( kTo )''• ~liw0• 
ms2 

(21) 

The case T eff -< liw0 can be considered only 
qualitatively. We note that we have here essen
tially different energy regions. When E < liw0 the 
principal role is played by collisions with acousti
cal phonons, and the solution of equation (19) in 
this region is of the form (20). This solution for 
E = liw0 must be joined with the solution for 
E > liw0• In the latter region, the principal role is 
played by processes of emission of optical phonons, 
owing to the appreciable energy lost by the elec
tron when it radiates optical phonons. Equation 
(19) reduces in this region to the following: 

d { dN(e) [ 1 s2(p- p;)2 1 -re2E2 -- df0 (e) ]} 
-·- -- --fo(e) --+--v2 __ 
de de 2 kTo 't'ac 3 de 

1 dN(e) 
- ---fo(e)= 0. (22) 

Top de 

This equation can be approximately solved in the 
region 

In this region all the quanti ties except Top vary 

little, and they can therefore be regarded as con
stant and the acoustical phonons can be neglected. 
Taking this into account, we write (22) in the form 

1 - 't' 

3-r2 (Ee)2v2/o"(e)--/o(e) = 0. (23) 
Top 

The coefficient of f({ ( E) in (2 3) has an order of 
magnitude ( eEZ )2, which for Teff ~ liw0 is equal 
to ~ ms2 (liw0 )2 /kT0• The quantity T/ Top is small 
when E - liw0 « liw0 and becomes of the order of 
unity when E - liw0 ~ liw0• 

Thus, for not too small E- liw0, equation (23) 
contains a small parameter preceding the higher
order derivative. Its "quasiclassical" solution is 
of the form 

e 

fo(e)=/o(liwo)exp{-1-( Jj2)-'f, ~ (2..\'i• de'}. (24) 
eE-r \ 3 <op) 

1imo 

We assume for simplicity that 1/ Top is propor
tional to ( E - liw0 ) 112 , and then obtain 

{ liwo ( e - liwo )"'} fo(e)=fo(liwo)exp -a- . 
eEl liw0 

(25) 

Here a is a number of the order of unity, which 
depends on the concrete structure of the energy 
band. 

Solution (25) is valid in the region where the 
exponent is large. We see from it that for kTeff 
~ liw0 the distribution function decreases rapidly 
when E > liw0• As can be seen from formula (7), 
this rapid decrease leads to an increase in the 
current, which, as can be seen from (3), is again 
linearly dependent on E. For further heating of 
the electrons it is necessary to have eEZ » liw0• 

In such fields, the distribution function will no 
longer decrease in the energy region in question. 
Then f0 ( E) will differ from zero even for 
E » nwo. To find the distribution function in this 
region, it is necessary to take into account the 
absorption of optical phonons. Collisions with 
acoustical phonons can be disregarded as before, 
owing to the small energy exchange. 

Expanding equation (10), we obtain for 
E » nwo 

-re2E21J2 dfo (e)+ nwo I (e)= 0 ro ~ 3Awo (26) 
de T 0 ' 0 ~ A + 2BkT 0 • 

Here w0 is the effective frequency, which is 
~ w0• The difference between w0 and w0 is due to 
allowance for the acoustical phonons. For a 
quadratic dispersion law we obtain 

- dfo 
nro0/ 0 (e) + (eEl) 2 de = 0. 

Assuming the mean free path to be independent 
of the energy, we find that 

/o (e)= exp {- (:;;)2 e}, e ;v. nw0 • (27) 
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Calculating the current with the aid of this distri
bution function, we find that the current is inde
pendent of the electric field (is saturated) if eEl 
» nwo. 

A further change in the behavior of the field 
dependence of the current is obtained in fields 
for which 

(eEl)2/liw ~ L1, (28) 

where ~ is the width of the energy band. The 
derivative df0/dE then decreases, which leads to 
a decrease in the current as a function of the 
electric field. The character of this decrease de
pends on the specific characteristics of the sub
stance, and cannot be calculated in general form. 
We can, however, find the limiting form of the 
dependence of the current on the field in very 
strong fields. 

When ( eEZ )2/nw0 » ~. the distribution func
tion tends to a constant value determined from 
the normalization condition. In this case the 
current tends to zero when df0/dE tends to zero. 
To calculate the current, it is necessary to take 
into account the difference between the distribu
tion function and a constant. Expanding expres
sion (27) for small values of the argument and 
substituting in (7), we obtain the following ex
pression for the current: 

- A 
. _ 1iwo (' dN (e) d 
I- 3El ~ v~ e. (29) 

0 

This expression has been obtained under the as
sumption that the mean free path is independent 
of the energy. We can write (29) in the form 

A -
jE = 'i. 1iwo dN (e) de, (30) 

J 't' de 
0 

The latter equation, which expresses the energy 
balance in an electron gas, is free of the assump
tion made above. Thus, in the (one-band) model 
considered, the decrease of the current in inverse 
proportion to the field is a universal law, inde
pendent of the characteristics of the substance. 

The question of the choice of substance in which 
one can observe experimentally the described de
crease of current with electric field calls for 
further study. The main requirements that govern 
the choice of substance are the following: a) the 
allowed energy band must be narrower than the 
forbidden band; 2) the breakdown field must be 
larger than the field determined from (28), at 
which the decrease in current begins. 

1J. B. Gunn, Progress in Semiconductors 2, 
211 (1957). 

Translated by J. G. Adashko 
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