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We consider the interaction between electromagnetic waves and a turbulent plasma consisting 
of cold ions and hot electrons moving at supersonic velocities with respect to the ions. Com­
bination scattering of transverse electromagnetic waves by acoustic oscillations is treated as 
is the conversion of longitudinal waves into transverse waves as a result of the interaction 
with the acoustic waves. It is shown that in the presence of turbulence the strength of these 
processes is much greater than in the case of an equilibrium or quasiequilibrium plasma. 

The dependence of the energy flux of scattered radiation on the frequency and direction of 
propagation of the incident and scattered waves is established. It is shown that this depend­
ence is determined to a large extent by the spectral and angular distribution of the turbulent 
oscillations. In principle, this effect should make wave scattering and conversion useful for 
the experimental determination of turbulence spectra. Finally, we consider the spontaneous 
"emission" of a plasma due to the conversion of longitudinal waves into transverse waves 
as a result of the interaction with turbulent oscillations. 

1. INTRODUCTION 

IT is well known that the scattering and conver­
sion of electromagnetic waves in a plasma are 
determined by the level of the fluctuations in the 
plasma. 1 l In cases in which the plasma is charac­
terized by a high fluctuation level the intensity of 
the scattered radiation can be appreciable. In 
particular, scattering and wave conversion are 
very 2ntense in a plasma approaching instabil-
ity. [5 7] 

In the present work we treat the interaction of 
electromagnetic waves with a plasma consisting 
of cold ions and hot electrons moving with respect 
to the ions at velocities greater than the velocity 
of ion -acoustic waves. If nonlinear effects are 
neglected, the acoustic oscillations in such a 
plasma are growing oscillations. Nonlinear ef­
fects do limit the growth of the random acoustic 
waves, however, and as a result there is estab­
lished a stationary distribution of fluctuations 
characterized by high-amplitude random acoustic 
waves-this is the so-called state of stationary 

!)Scattering and wave conversion in a plasma have been 
treated extensively in the literature (cf.['--•]). In all of this 
work, however, it has been assumed that the plasma is not 
highly unstable (although the plasma is not necessarily in 
equilibrium). 

turbulence .2 ) The high fluctuation level in a turbu­
lent plasma leads to intense scattering of electro­
magnetic waves and to the strong conversion of 
longitudinal waves into transverse waves. The 
present work is devoted to an investigation of 
these phenomena. 

In Sees. 2 and 3 we investigate the scattering 
of transverse electromagnetic waves in a turbu­
lent plasma. In particular, by measuring the 
frequencies of the acoustic satellites it should be 
possible to find the temperature of the electrons 
in the plasma. We show that the satelite intensity 
given as a function of the incident-wave frequency 
is very sensitive to the details of the turbulence 
spectrum. Hence, experiments on scattering of 
electro-magnetic waves in a turbulent plasma 
should be useful for verifying various theoretical 
conclusions concerning the nature of plasma 
turbulence. 

In Sec. 4 we study the conversion of longitudinal 
waves into transverse waves as a result of the 
interaction with turbulent acoustic waves. As in 
the case of transverse-wave scattering, it appears 

2)The mechanism responsible for the establishment of the 
stationary distribution of fluctuations in the case of the ion­
acoustic instability has been treated by Kadomtsev and 
Petviashvili[8] and the spectral distribution of steady-state 
fluctuations has been studied by a number of authors.[•--lo, 14] 
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that this effect can also be used for plasma diag­
nostics and for the experimental establishment of 
the turbulence spectrum. We also consider the 
spontaneous "emission" from a turbulent plasma 
due to the conversion of"random Langmuir waves 
into transverse waves; the energy "loss" from 
the plasma associated with this mechanism is 
also estimated. 

2. SCATTERING OF TRANSVERSE ELECTRO­
MAGNETIC WAVES 

We first consider the scattering of transverse 
electromagnetic waves on a turbulent plasma con­
sisting of cold ions and hot electrons. The scat­
tering coefficient du is the ratio of the scattered­
wave intensity to the Poynting vector of the in­
cident wave; this coefficient is related to the cor­
relation function for the plasma electron density 
< on2 ) by the familiar expression 

du = ___!__ ( ~ )\ 1 + cos2 {}) < bn2)q 6-w do' du/, 
4n mc2 

(1) 

where q =k'- k; ~w = w'- w; k, w (k', w') are 
the wave vector and frequency of the incident 
(scattered) wave and ~ is the scattering angle (the 
angle between k' and k). 

The correlation function for the electron density 
at "intermediate" frequencies and long wave­
lengths [ q ( T/M )112 « w « q ( T elm )1/ 2, aq « 1] 
can be written in the form 

e2(cSn2)qw = n3a4 {I(q)c5(w- qs) + l(-q)cS(w + qs)},(2) 

where Te and Ti are the temperatures and m and 
M are the masses of electron and ion respectively, 
s = ( T /M )1/ 2 is the acoustic velocity, 
a = Tur ( 4ne2n) - 112 is the De bye radius and the 
function I ( q) characterizes the level of the fluc­
tuations of the scalar potential. 

In a plasma in which the electrons have a 
directed motion the function I ( q) is a sensitive 
function of the angle x between the wave vector 
q and the electron velocity u. In the stability 
region (cos x < s/u) this function is given by a 
familiar relation from the linear theory [5•11 •12] 

( u )-1 
I(q)=a2Te(2n)-2 1-8 -cosx . (3) 

Near the boundaries of the stability region, where 
cos x- s/u, the quantity I increases sharply. 

In the turbulence region (cos x > s/u) the 
function I ( q) is of the form [1o] 

a2T { ( s ) }-1 I(q)=--·-B(aq)-3p(x) 1-cosx+ 1-- /,.(x) 
(2n) 2 u 

(4) 
(we assume for simplicity that 1 - s;U « 1 ). 

Here, x = aq 

B = aTe2ue(4e2T;s)-1 (nm/2M)'h, (5) 

while p and A are functions defined by the equa-
tions 

'¥1=D-1 {In ( 1 + -~) +"-(\ ~ '-!.)}, 

D=ln2 (1+1/!.) -1//,.(1+"-), (6) 

and E is a small parameter which characterizes 
the slope of the plateau of the electron distribu­
tion function [13] (in order-of-magnitude terms 
we have E ~ ( e2TiA )112 (aT~ )- 112 ; A is the 
Coulomb logarithm). Equation (4) holds when 

q ~ (sT;)-1 (1- s I u)-1 (M / m) 'i•, 

where T i 1 is the ion collision frequency. 
It has been shown earlier [1oJ that the functions 

p and A are periodic functions of ln x with 
period 

(7) 

where Po is a constant determined by the initial 
distribution of fluctuations 

00 -oo 

c+ = ~ 'l'o-1 exp {f+(/,.) }d/,., c_ = ~ 'l'o-1 exp {!-(/,.) }dl.; 
0 -1 

~ 

j± = ~ 'l'1'l'o-1d/,., '-+ = 1, 'A-= - 2. 
~± 

Hence, the function q 3 I ( q), in accordance with 
(4), is a periodic function of the quantity ln ( aq ). 
At certain definite values of q, [ln ( q/q1 ) = np 
where q1 is a quantity given by the initial distri­
bution of fluctuations and n = 0, ± 1, ... ] the am­
plitude of the turbulent wave is independent of the 
angle x 
I(q) =a2Te(2n)-2B(aq)-3p0 (1-s/u)-1 (cos:x:>s/u). 

(8) 

If ln (q/q1 ) = p (n + v), where v = c+ (c+ + c_ )- 1, 

the angular distribution of the turbulent acoustic 
waves is highly singular: the turbulent waves propa­
gate either along the electron stream or along the 
surface of the Cerenkov cone 

a2Te 
J(q)=~2 \2B 

' n, 
( b(i-cos:x:)ln(q/qi)-+p(n+v)-0 

Xi(aq)-3po ~ 
l cS(cos:x:-s/u) ln(q/ql)~p(n+v)+O. 

(9) 



776 I. A. AKHIEZER 

We note that in contrast with the angular dis­
tribution of fluctuations averaged over angle the 
intensity of the fluctuations varies monotonically 
as the wave vector changes: 

1 
l(q) = 2 ~ l(q)dcosx. ~ a2T.(2n)-2B(aq)-ap0• (10) 

Substituting (3)-(9) for I in (1) and (2) we ob­
tain the coefficient for scattering of transverse 
electromagnetic waves on random acoustic waves. 
In this case the quantity du will depend differently 
on the wave vectors of the incident and scattered 
waves and assumes completely different orders 
of magnitude, depending on whether the condition 
I k · u - k'u I ~ I k - k' Is is satisfied or not. Intro­
ducing the angle 8 ( 8') between the vectors k ( k' ) 
and u and the angle cp between the planes defined 
by ( k, u) and ( k', u) we can write this condition 
conveniently in the form 

( 8 + 8' - n )2 + cp2 tg2 8 ,s; 8 ( 1 - s 1 u) . ( 11) 

The inequality in (11) is evidently the condition 
that the acoustic wave participating in the scatter­
ing event must be turbulent. 

If (11) is satisfied then the relation in (4) can 
be used for the function I. Substituting (4) in (1) 
and (2) we can find the scattering coefficient per 
unit solid angle and unit frequency interval for 
the scattered wave: 

_d~- = J:_ ( ~ )2nB 1 + cos228 x 
do' dw' 4 \ nc2 I aft cos 8J3 p ( ) 

x{ (8+8'-n) 2+cp2 tg28+l8( 1- : )A.(x) r1 

x{6 (nw-2kssin ~ )+6(~w+2kssini)} (12)* 

where X= 2ak I cos e I. 
If (11) is not satisfied, using (3) for I we ob­

tain the scattering coefficient which follows from 
the linear theory:[5J 

~- 1 ( e2 l2 2 
d 'd ,- ~~4-- - 2 ) n(1 +cos ~) 

o w , me 

X {(1- u(cos 8'- cos 8) )-1 6 (~w- 2ks sin-~) 
2ssin(W2) 2 

+ ( 1 +u(cos 8'- cos 8) )-1 ( + . ~ )} (13) 
2ssin(~/2) 6 ~w 2kssm 2 . 

In closing this section we note that the fre-
quency shift in scattering I L\w I is uniquely de­
termined by the frequency of the incident wave 
and the scattering angle. Hence, if L\w is meas­
ured it should be an easy matter to compute the 
acoustic velocity s and thus to obtain the electron 
temperature Te. 

*tg =tan. 

3. ANGULAR DISTRIBUTION OF THE SCATTERED 
RADIATION 

Integrating (12) and (13) with respect to u/ we 
obtain the scattering coefficient per unit solid 
angle. If (11) is satisfied then 

da 1 ( e2 ) 2 1 + cos2 28 
do' = 4 mc2 nB I ak cos 8 13 p (X) 

x{ (8 + 8' -n)2 + cp2tg2 8 + 8( 1- : )A.(x) r1
. (14) 

If (11) is not satisfied then 

dcr 1 ( e2 ) 2 -- = - n(1 + cos2~) 
do' 2 \ mc2 . 

{ ( ~ )-2}-1 X 1 - u2 (cos 8 - cos 8')2 \ 2s sin 2 (15) 

The relations in (14) and (15) determine the 
angular distribution of the scattered radiation. Let 
us consider some of the characteristic features of 
this distribution. 

1. If the angle 1r - 8' is not too close to 8 or 
if the angle cp is not too small, the quantity du/do' 
is independent of the frequency of the incident 
wave. In this case the scattering coefficient is of 
the same order of magnitude as in the absence of 
turbulence. 

2. The scattering coefficient increases sharply 
as the vector k' approaches the surface of the 
critical cone defined by the equation 

( 8 + 8' - n )2 + cp2 tg2 8 = 8 ( 1 - s 1 u). ( 16) 

The intensity of the scattered waves propagating 
inside the critical cone is, in order-of-magnitude 
terms, B ( ak )- 3 times greater than the intensity 
of the waves propagating outside this cone. 

3. The energy flux associated with the scat­
tered waves is almost completely concentrated 
inside the critical cone. Introducing the inte­
grated scattering coefficient CJ, which character­
izes the total energy flux of the scattered radia­
tion, and using (10), we have 

cr = _!!__ (~ )2nB 1 + cos2 28 0 
16 m& 1 ak cos 8 Ia P · 

(17) 

The contribution to the quantity CJ from inside the 
critical cone exceeds the contribution outside the 
critical cone by a factor of approximately B (ak)- 3• 

We note that the integrated scattering coefficient 
is proportional to ( w cos 8 )- 3 and that it reaches 
a peak at 

( k cos 8) -! ~ S't i ( m I M) 'f, ( 1 - s I u) . 
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4. If the vector k' lies inside the critical cone 
the scattering coefficient per unit solid angle is 
proportional to ( w cos (})- 3 and the coefficient of 
proportionality (for fixed values of e, (}', and q;) 

is a periodic function of ln w. At certain values 
of w it follows from (9) that almost all of the 
scattered waves are propagated along the surface 
of the critical cone or along its axis: 

da 1 ( e2 ) 2 1 + cos2 28 
-do' = 4 mc2 nB I ak cos 8 13 

{ 6([8 + 8'- n)2 + cp2 tg2 8) 
X Po 6([8+8'-n)2+cp2 tg2 8-8[1-s/u]). (18) 

On the other hand, at other values of w the 
flux of energy of the scattered radiation, as fol­
lows from (8), is uniform for all directions inside 
the critical cone 

da = __!__ ( __!____. )2 nB 1 + cos2 28 PJ 1 _ su_ )-t 
do' 32 mc2 I ak cos 8 13 \ 

(19) 

5. The period p of the oscillating scattering 
coefficient as a function of ln w is, in accordance 
with (7), determined by the initial distribution of 
fluctuations in the plasma. Regardless of the 
initial distribution of fluctuations, however, the 
following relation must be satisfied: 

_16 ( e2 )-2 ( B)-i lakcos8l 3 l + 1. p - -a -- n c+ c 
n mc2 1 + cos2 28 - ' 

(20) 

this expression relates the period of oscillation 
of the angular distribution of the scattered radia­
tion to the integrated scattering coefficient. 

Thus, the nature of the functions dcr/do' and u 
is intimately related to the details of the turbu­
lence spectrum. It would then appear that an ex­
perimental investigation of the angular distribu­
tion of the scattered radiation should serve as a 
valuable means of verifying various aspects of the 
theory of plasma turbulence. 

In closing this section we note, as pointed out 
earlier, [14] that in addition to the stationary dis­
tribution of fluctuations in a turbulent plasma it is 
also possible to have an "oscillating" distribu­
tion of fluctuations, in which case the correlation 
function I ( q) is a periodic function of ln t. All 
of the conclusions stated in Sees. 2 and 3 also 
hold for the oscillating distributions of turbulent 
acoustic waves. In this case oscillations in the 
angular distribution of the scattered waves are 
observed as the frequency of the incident wave is 
changed and are also observed as periodic fluc­
tuations in time for fixed values of w. 

4. CONVERSION OF LONGITUDINAL WAVES 
INTO TRANSVERSE WAVES 

In addition to causing scattering of transverse 
waves, fluctuations in a plasma are responsible 
for other scattering and conversion processes in 
which longitudinal waves are involved: for example, 
conversion of Langmuir waves into transverse 
waves (and vice versa) or scattering of Langmuir 
waves on acoustic waves. It is evident that all of 
these processes will be much stronger in a turbu­
lent plasma than in an equilibrium or quasiequili­
brium plasma. 

In the present work we limit ourselves to con­
version of Langmuir waves into transverse waves 
as a result of interaction with acoustic waves. 
The power P produced as a result of the conver­
sion radiation is related to the correlation func­
tion I ( q) by the familiar expression (cf. for 
example tsJ): 

P= V(2n)-3 ) Qdk', 

Q = n3e2Q2(8Te2)-1 sin2-friEol2{/(- k) 

( c2k'2 3 \ 
x 6 --- Qa2k2-ku-sk 1 +I(k' 

2Q 2 ; , 

X 6.(c2k'2 - ~ Qa2k2 - ku + sk l} 
2Q 2 ) ' 

(21) 

where E0 is the amplitude and k is the wave 
vector of the incident longitudinal wave, J is the 
angle between k' and k; Q = ( 4ne2n )1/ 2 m - 112 is 
the plasma frequency (V is the volume of the 
plasma). The relation in (21) is obtained under 
the assumption that k is not too small, a2k2 
» s2Te(mc4 )-1. 

Greatest interest attaches to the conversion of 
Langmuir waves for which the angle (} between 
the vectors k and u satisfies the condition 

cos2 8? (1-s/u)2. (22) 

This inequality represents the condition that the 
acoustic wave participating in the conversion must 
be turbulent. Assuming that (22) is satisfied and 
substituting (4) ·in (21) we find: 

- ne2 Q . 2 ' 2 B 
Q -32mc2 k±'sm 8 lEo I (ak)3 

p(x) 6 (k'- k±') 
x--~~-~----~--

(1 +cos 8) + (1- s/u)A.(x) ' 
(23) 

where x = ak, (}' is the angle between k' and u 

k±'2 = 3k2 ::2 {1 + ~ ( ; ) If, ( ak) - 1 ( + 1 + ~ cos 8)} 
and the upper (lower) sign corresponds to the 
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case cos 8 < 0 (cos () > 0 ). The total radiated 
power is then 

P=e2QJEoJ2V B p(x)k±'{t±cos8+(1-~)A.(x)}-l· 
128nmc2 (ak)3 u 

[If ak < %(m/M)112 [(u/s)lcos () l-1] then 
k~ < 0; in this case the quantities Q, and P 
vanish when cos 8 < 0 .] 

(24) 

If (22) is not satisfied then, in accordance with 
(3) and (21), the quantities Q and P assume the 
form 

Q = ~~sin2-frJEoJ2{ b(k'- k+') + _6(k'- k_')~ 
32mc2 k' 1+(u/s)cos8 1-(u/s)cos8 

e2Q JEoJ 2V { ( u )-! ( u '-ll 
P = 12Snmc2 k+' 1 + -;cos 8 + k_' 1 - s cos 8 ) f 

(25) 
[if ak < % ( m/M )1/ 2 (1 - ( u/s) cos ()) the second 
terms in these expressions are omitted]. It is 
evident from a comparison of (24) and (25) that 
when (22) is satisfied the radiated power is ap­
proximately B ( ak )- 3 times greater than in the 
case in which (22) is not satisfied. 

Let us now consider briefly the dependence of 
the radiated power on the wave vector of the inci­
dent wave, assuming that (22) is satisfied. It is 
evident that the radiated power is especially large 
when k is small and that a maximum is reached 
when 

Further, in accordance with (24) the quantity P 
is proportional to k~k- 3 and the coefficient of 
proportionality is an oscillating function of ln k. 
For certain values of k intense radiation of 
transverse waves occurs only when cos () ~ ±1 
or cos () ~ ± s/u. For certain other values the 
radiated power is uniform for all angles satisfy­
ing (22). 

We note that an experimental investigation of 
the conversion of Langmuir waves into transverse 
waves would be of especial interest in connection 
with plasma turbulence since the quantity P ( k) 

(if the k~ factor is neglected) is proportional to 
I ( -1=k ); hence, the measurement of this quantity 
should yield a direct representation of the turbu­
lence spectrum. 

The conversion of longitudinal waves into 
transverse waves can also be of interest as a 
possible mechanism for the loss of energy from 
a plasma, the point being that there are always 
random Langmuir waves in the plasma and the 
amplitude of these waves is determined by the 
temperature of the plasma electrons. By inter­
acting with turbulent acoustic waves the random 
Langmuir waves can be converted into transverse 
waves which can then be radiated from the plasma. 

The intensity of this spontaneous emission is 
easily determined by substituting IE~ I k ~ T e in 
(21) and carrying out the integration over k. 

Without giving the details of the calculations 
here we wish to note the following characteristic 
features of this emission: 

1. The power radiated in connection with this 
emission (for one particle species) is of order 

!_ ~ QT;R R "'(~)s;, ( mA )'/' 
nV ' amc2T; M J 

This power is ( aT~mA)112 ( e 2TiM )- 1/ 2 times 
greater than the power carried away by trans­
verse waves in the absence of turbulence. 

2. The function Q (k' ), which gives the spec­
tral and angular distributions of the radiated 
transverse waves, is proportional to sin26' where 
()' is the angle between k' and u. 

3. Waves characterized by small values of k' 
are of special interest. The maximum radiated 
power is . 

Q"' TeQZr; ( eZA )''' ( 1- ~) Mm sin2 8', 
\ aTi u 

which is reached when 
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