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Paramagnetic resonance in a neutron beam is analyzed by taking into account the interaction 
between the neutrons and the target nuclei. The effect of polarization of the target on the 
width of the resonance line is investigated. It is shown that the width of the resonance line is 
determined by incoherent processes resulting in the escape of neutrons from the beam. The 
results are analyzed under the assumption that paramagnetic resonance may be regarded as 
a photon absorption and emission process during transitions between levels of finite width. 

IN our preceding papers [1' 2] we considered cer
tain resonance phenomena that occur in beams of 
slow neutrons. The purpose of the present paper 
is to elucidate the effect of the width of the levels 
on these phenomena. 

Let us consider the paramagnetic resonance of 
neutrons passing through a substance. The reso
nance transitions take place between levels that 
correspond to different potential energy of the 
neutrons in the external de magnetic field, regard
less of the magnitude of the kinetic energy. The 
total energy of the neutron does not change when it 
enters a target; there is only a redistribution of 
the energy between the kinetic and potential ener
gies of the particle. Since the neutron wave func
tion in a crystal decays with penetration, the neu
tron has an uncertainty in its momentum and 
therefore in its kinetic energy as well. Consider
ing the constancy of the total energy of the pene
trating neutron, this leads to an uncertainty in the 
potential energy of the interaction between the neu
tron and the de magnetic field, and to the appear
ance of some width in the levels between which 
transitions take place. Hence, in the case of para
magnetic resonance of neutrons we have to do with 
a two-level system with a finite width of the levels 
that interact with the external ac field. 

The equations that determine the behavior of 
this system with time have the form 

idCp(t) I dt = WpCp(t) + bei"'tCq(t), 

idCq(t) I dt = be-irotCp(t) + WqCq(t), 
(1) 

where Cp, Cq are the components of the spin func
tion of the neutrons; Wp,q"" Ep,q- iyp,q• where 
Ep,q and Yp,q are respectively the energy and 

damping of the levels p,q; b is the energy of inter
action of the neutron with the transverse magnetic 
field, and w is the frequency of this field. 

The magnitude of the damping Yp,q is deter
mined by processes that cause neutrons with spin 
parallel to the field (level p) and with spin anti
parallel to the field (level q) to escape from the 
beam. In particular, for cold neutrons Yp,q 
= pvup,q• where p is the density of nuclei in the 
substance, v is the velocity of the neutrons, and 
up,q is the total cross-section for incoherent 
scattering in levels p and q, respectively. 

If all the neutrons are initially polarized along 
the field, then Cp(O) = 1, Cq(O) = 0, and from the 
known solutions of these equations [ 3] it follows 
that the probability of observing at time t a neutron 
in level q is 

lc ( )12- 1 (2b)2 t t t (e- rm a+ e rm a 
q -4- (He a)2 +(1m a)2 

a= [(wo-w) 2 + (2b)2J'i', wo =Eq-Ep-i(vq-Vp). 
(2) 

It can be shown that Eqs. (1) and (2) are valid 
for packets with dimensions Z' » ~, but much less 
than the dimensions of the region in which the mag
netic field acts. Therefore in transforming to 
spatial coordinates it is sufficient to substitute 
into Eqs. (1) and (2) the quantity t = z/v, where z 
is reckoned in the direction of motion of the neu
trons. In particular, the probability of reorienta
tion of the spin of the neutron as it leaves the in
teraction region is determined by Eq. (2) with 
t = Z/v, where l is the length of this region. In the 
latter case the result of (2) is true also for plane 
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waves; this is because we can use scattering theory 
to treat the problem of the flipping of a neutron 
spin after its passage through the interaction 
region. On the other hand, it is known that in the 
theory of scattering the packet and wave approa
ches are equivalent. [ 4] 

The expression for the transition probability 
(2) has a rather complex dependence on the width 
of the levels between which transitions occur. 1) 

We consider a few special cases. Let Yp = Yq = y, 
which corresponds to paramagnetic resonance in 
an unpolarized target. Then 

Ima = 0. 

From the general expression (2), we obtain 

lc (t)12- (2b)_2 e-2yt 

. q - (Eq-Ep-w) 2 +(2b)2 

X sin2 ~[(Eq- Ep- w)2 + (2b)2]'/.. (3) 

The dependence of the probability I Cq(t)i 2 on the 
frequency of the applied field w at a given time is 
the same as in the absence of damping. It follows 
that a measurement of the intensity of the pene
trating beam at some point of the target as a func
tion of the frequency does not give any information 
about the attenuation of the beam. 

Now let the following condition be satisfied: 

lvq-vpl ~2b, 

which is realized in a partially polarized target 
when the amplitude of the ac field is sufficiently 
small. The solution of (2) can then be written in 
the form 

If Yp » Yq or Yq » Yp• then, as can be seen, there 
are values of the time t such that the expression 
contained within the curly brackets in Eq. (4) takes 
a value close to unity. The dependence of the 
probability I Cq(t)i 2 on w then has a Lorentz shape 
with a width determined by the difference in the 
widths of levels p and q. 

It is easy to verify that the difference of the 
widths is 

1 >we note that due to the relation 11 t 11 E > Ii., the effec
tive width of the resonance depends also on l. When 
vI l > Yp- yq and vI l > b, this dependence becomes the 
decisive factor. and if vI l > Eq - Ep, the width becomes 
so large that the resonance effects cannot in general be de
tected. 

where fP is the degree of polarization of the tar
get. In the special case of the scattering of cold 
neutrons by a partially polarized target, a = p vu H , 

where utt is the cross-section of incoherent 
scattering of the neutron by a nucleus with a spin 
antiparallel to the neutron spin. 

In steady state the total number of neutrons in 
level q for a sufficiently thick target equals 

00 

N=lo f1Cq(t)i2dt~ A · 
o (Eq- Ep- w)2 + r2' 

..:t = !!._ (2b)2(yp + yq) .rz- ( + )2( 1 + b2 ) 
8 ' . - 'YP 'Yq - , (5) 

'(p'Yq 'Yp'(q 

where J 0 is the intensity of the incident beam. Ob
viously, the dependence of the total number of 
neutrons N in level q on the frequency of the ap
plied field w in the general case has the Lorentzian 
shape with the width determined by r. For a 
sufficiently small field, when b2 hpYq « 1, the 
width r is determined purely by nuclear damping 
effects and equals the sum of widths of levels p 
and q. 

Experimentally the magnitude of r can be de
termined, for example, by measuring the depen
dence on the frequency w of the number of scat
tered cold neutrons with the original polarization. 
Actually, in a crystal the cold neutrons can scatter 
only with a flipped spin. [ 5] Therefore only neu
trons that have first undergone a spin flip in the 
ac magnetic field can possess the original spin 
direction after scattering. Clearly, the number of 
such neutrons will depend on the frequency w in 
resonant fashion with a line width equal to r. 

Paramagnetic resonance is frequently regarded 
as a process in which emission or absorption of a 
radiofrequency photon takes place. It is then as
sumed that the incident radiation is not monochro
matic and has a certain scatter of frequencies 
L\w in the region w = Ep - Eq. It can be shown that 
this approach is possible when this inequality is 
fulfilled: 

IEq -Epl-'~t~b-1 • 

In accordance with the second part of the inequality 
it is always true in the photon approach that 
L\w » b. Let us consider paramagnetic resonance 
in our case from this point of view. 

If the frequency scatter L\w is greater than the 
width of the levels, then the width of the resonance 
is determined solely by the magnitude of L\w and is 
independent of Yp and Yq· Let us now consider the 
case when L\w « Yp,q· Under these conditions the 
radiation can be considered to be monochromatic. 
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To be specific, let there be a transition from level 
p to level q. The rate of change of the population 
of the q level is 

diCq(t) 12 = ~!!_- IC (t) 12 (6) 
dt dt V<I q ' 

where the term dP/dt represents the change in the 
population of the level q due to photon absorption, 
and the term -yql Cq(t)1 2 represents the decrease 
in the population due to the presence of a width Yq· 
From this, 

The transition probability per unit time from 
level p to level q, averaged over the lifetime of 
level p, takes the form 

(7) 

1 < ddP) = ypyq ~ ICq(t) l 2 dt+ VpiCq(t) 12, t~~' 
t. 0 ~ ~ 

b2(yp+yq) 

2[(Eg-Ep-w)2+(vp+yq)2J' ( 8) 

It is clear that the number of absorbed and emitted 

photons is proportional to ( 8). Obviously, the de
pendence of ( dP /dt) on the frequency of the ap
plied magnetic field has a Lorentz shape with a 
width equal to the sum of the widths of the levels. 
It is easily shown that Eq. ( 8) is valid also in the 
case when one of the levels has zero width. 
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