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The state of a system comprising one, two, or three two-level molecules and a radiation field 
is investigated in the interaction representation. It is shown that the interaction of molecules 
via the radiation field is decisive in the case of a self-consistent field and vanishes in a strong 
field. In the presence of a strong field, the oscillation spectrum consisting of integer har­
monics is obtained for an arbitrary number of molecules. 

ALEKSEEV, Vdovin, and Galitskil [ 1] have demon­
strated the existence of a collective effect in the 
radiation of a system of two-level molecules. It 
was also shown [ 2] that the effect can be described 
by introducing basis functions of the unperturbed 
Hamiltonian H0 of the system comprising two-level 
molecules and a radiation field, with subsequent 
application of the perturbation-theory series for 
the evolution operator S(t). It turned out that 
many-photon radiative transitions arise in the 
system, with a maximum order (without ''reab­
sorption" of the photons) determined by the den­
sity of the excited molecules (or of molecules in 
the ground state). The probabilities of the many­
photon transitions increase with their order in ac­
cordance with a power law, so that the character­
istic times of the collective processes turn out to 
be much shorter than the time of spontaneous emis­
sion of individual molecules. Taking this into ac­
count, we shall henceforth neglect the effect of the 
spontaneous emission on the dynamics of the sys­
tem. 

It was indicated in papers by the author [ 2] and 
by Dicke [3] that the probability of coherent emis­
sion does not depend on the wavelength. The same 
result is confirmed below. We confine ourselves 
in the exposition to an analysis of the interaction 
between the molecular system and only one type of 
photon. It is known that, as a rule, gas lasers and 
masers operating in the radio band operate in a 
single mode. The line width of gas lasers is ex­
ceedingly small and can lie in a region :S 1-2 cps. 

Recent communications report single-mode 
operation also in ruby lasers in the transient mode. 
We shall assume below that the width of the emis­
sion line (of both the self-consistent and strong 
field) is much smaller than the distance between 
the natural frequencies of the cavity, which can 

fluctuate as a function of the geometry in the range 
~ ~ 1011-109 sec-1 at a transition frequency 
w 0 ~ 1015 sec-1. 

Starting out with the same premises as in the 
already mentioned papers, let us consider a sys­
tem of molecules and a radiation field contained in 
a volume V. We shall investigate the case of a 
self-consistent field, when at the initial instant of 
time the system of molecules was excited and there 
were no photons, as well as the case of a strong 
external field, when the contribution made to it by 
the molecular subsystem can be neglected. The 
behavior of the system will be different under 
these limiting conditions. Neglecting, as before, 
the translational motion of the molecules and in­
troducing the basis functions of the unperturbed 
Hamiltonian introduced by the author, [ 2] we ob­
tain in the interaction representation a system of 
equations of motion for the amplitudes of the states 
of the unperturbed system (ti = 1): 

i ac;t(t).= ~ <n!Hintln')Cn•(t)~ 
n' 

(1) 

where n denotes the aggregate of the quantum num-
bers which determine the state of the system of 
molecules and of the radiation field. 

In the case when the volume V contains one 
molecule which is excited at the initial instant of 
time and N photons, solution (1) takes the form 

Wz, N(t) = 1- Wt, NH(t), (2) 

W t _ 2lai 2(N + 1) 
t,N+t( )-e2+4lai2(N+1) 

x { 1-cos[ 2(~e2 +1ai 2 (N+1) ft ]}; 

e=ro-roo, ( 2:rt )''• e a= - -(se), 
\ rooV m 
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where ~ is the matrix element and e the polariza­
tion vector. 

In the case when N » 1.41 a 12N » E2, Eq. (2) 
goes over into the well-known expression (see [ 4J, 
page 173): 

We note that by virtue of (5) the final results do 
not depend on the wavelength. The corresponding 
determinant yields in the general case three differ­
ent irrational real roots, so that in a system of 
two molecules, generally speaking, there are os-

W2,N(t) = 1- Wt,N(t), 

Wt, N(t) = 1f2{1- cos [2(1ai 2N)'i•t]}. 

cillations of the state probabilities with three non­
(2') commensurate frequencies 

Assume now that there are in the volume two 
molecules which are excited at the initial instant. 
We have altogether four state amplitudes, C22 ,N, 
C21,N + 1• C1 2,N+ 1• and Cu,N + 2; the first figure 
stands here for the state of the first molecule, the 
second for the state of the second molecule, and the 
last index represents the number of photons. We 
have for the amplitudes the following system of 
equations of motion: 

+ a 'If N + 1 eikR,+i•t C N r 12, +11 

i &C21, N +1 = a• y N + 1 e-ikR,-iEI C N 
&t 22,0 

+ a V N +2 eikR,+i•t C 11. N +2, 

i &C12, N+I = a• Jf N + 1 e-ikR,-iEI C 
&t ~.N 

+ a 'If N + 2 eikR,+iEI C N r u. +2, 

/Cu, N+2 = a• 'If N + 2 e-ikR,-iEt C 
&t r 21. N+1 

+ a* lf N + 2 e-ikR,-iEI C N r 12. +1 , (3} 

with the amplitudes satisfying the initial conditions 

c22, N (O) = 1, 

Making a substitution which is universal and 
feasible for an arbitrary number of molecules: 

c _ -ikR,-ikR,-2iEI c' 
11. N+2- e 11, N+2• 

(4) 

(5) 

(R is the coordinate of the center of gravity of the 
molecule), we arrive, taking into account the fact 
that by virtue of (4) C 21 ,N+ 1(t) =+ C12,N+ 1(t), at the 
system ac' 

i- 2;~N = 2aiN + 1 Czt,N+I. 

( & \, --, --, 
i &t-ie) c21, N+! = a* iN+ 1 c22, N +a iN+ 2 Cu, N+2, 

( a )' -, i 7ft- 2ie Cu, N+2 = 2a* iN+ 2 Czt, N+t· (6) 

Thus, even in such a simple system, the motion is 
nonperiodic and the initial state does not repeat. 

In the case of a self-consistent field (N = 0) and 
exact resonance (E = 0), we have 

(7) 

If the radiation field is assumed strong, so that 
in the case of exact resonance (E = 0) we have 
N » 1, or else N » 1 and laiN112 » 2E (E ;o' 0), the 
frequencies are 

(7') 

Since there are only two different frequencies, 
one of which is equal to zero, the motion is under 
the conditions indicated above periodic. The proba­
bilities of the states of the molecules and of the 
self-consistent radiation field are given by the ex­
pressions 

W22,o = 1fg[2 +cos Qt)2, 

W11,2 = 2fg[ 1 - cos Qt)2 

Wz1,1 = 1fa sin2 Qt, 

and the time-averaged probabilities are 

W22,o = 1f2, Wz1,1 = 1ftz, Wu,2 = 1fa. 

(8) 

( 8') 

Thus, the system "stays" longest in the initial 
state. Inasmuch as the amplitudes C12 and C21 do 
not interfere, the normalization is of the form 

W2z,o + ZW2t,1 + Wu,2 = 1. (9) 

When a sufficiently strong radiation field falls 
on the molecular system from the outside, so that 
N » 1 and in addition (Nial 2)112 » 2E, if E ;o' 0, the 
contribution made to it by the molecules can be 
neglected, and we arrive at the following state 
probabilities: 

W22, N = 1f,[1 +COS Qt)2, W21, N = 1f, Sin2 Qt, 

Wu,N= 1/.[1-cosQt)2, Q=2la1N''·· (10) 

Comparing (10) with (2'), we see that the follow­
ing relations are satisfied 

W22, N = Tf'z~ N, 
2 

w21, N = Wz, NW!, N, Wu, N = WI, N, 
(10') 

i.e., the probabilities of the collective states are 
equal to the product of the probabilities of the 
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states of the isolated molecules but, as we shall 
show below, with allowance for the initial condi­
tions. Indeed, Eqs. (10) correspond to the case 
when both molecules were at the upper level at the 
initial instant; (10') confains the "single-molecule" 
state probabilities, when each molecule is at the 
initial instant of time at the upper level. 

We now change the initial conditions. Assume 
that. at the instant t = 0 only the first molecule is 
in the upper level, i.e., the initial conditions are 
of the form 

c21, N(O) = 1, c22, N-1 = Ct2, N =Cu. N+! = 0. (11) 

By virtue of the different initial conditions, the 
amplitudes C21 and C12 are now different, and the 
corresponding system of equations of motion is 
obtained from (8) by replacing N with N- 1. 
Making a well-known substitution, in the case 
when E = 0 and N = 0 (self-consistent field and 
exact resonance), we arrive at a solution of the 
form 

C21, 0 (t) = 112[1 +cos Qt], 

c12,o(t) = 1!2[1- cos Qt], 

Cu,i(t) =-i(Q/2a)sinQt, Q=2'hlal. (12) 

In this case, as before, we have the frequencies 

so that we see that the change in initial conditions 
in the case of a self-consistent field changes the 
frequency spectrum, and furthermore in a definite 
direction. Namely, the frequencies observed in a 
self-consistent system should decrease with de­
creasing "quantity of excitation," as is indeed the 
case. 

Squaring the modulus of the amplitudes (12), we 
obtain the probabilities of the states 

W12,o(t) = 1/,[1- cos Qt)2, W21,o(t) = 1/.[1 +cos Qt)2, 

Wu,1 (t) = 1/2 sin2 Qt. (13) 

It is interesting to note that a phase shift equal to 
rr, the same as in the initial conditions (11), is 
conserved in the probabilities, so that the mole­
cules oscillate, interchanging places in the level 
occupation-number space. Averaging (13) over the 
time we get 

W21,o = 3/s, W12,o = 3/s, Wu,1 = 1 /~.. 

In the presence of a strong external radiation 
field (N » 2, N1/ 21 al » 2E) a solution of the equa­
tions of motion satisfying (11) is of the form 
(Q = 21 al N1/ 2) 

c22, N = - 1/2sin Qt, Cu. N = - 1/2sin Qt, 

The probabilities of the states will be described 
by the expressions 

w22, N = 1/.sin2 Qt, Wu, N = 1/,sin2 Qt, 

W21,N = 1/,[1 + CosQf)2, W12,N = 1/;[1- COS Qf)2. (15) 

Comparing (15) with (2'), we see that (15) can be 
written in the form of a product of "single-mole­
cule" probabilities with allowance for the initial 
conditions 

w22, N = wJ, NwJ. N' 
w12. N = wi, NwJ. N, 

Thus, the system "remembers" its initial state 
also in the case of a strong radiation field, and the 
molecules move in a connected fashion. It is clear, 
however, that in a situation wherein it is meaning­
less to speak of initial states of the amplitudes, for 
example when the times of all kinds of relaxation 
processes (interaction with phonons, with other 
levels, collisions between molecules) are of the 
same order of magnitude or smaller than the char­
acteristic period of the oscillations of the mole­
cules in the radiation field, the solutions obtained 
above are meaningless. In such a situation, the 
system in question should ''fall apart,'' so that 
each molecule will oscillate in a strong field com­
pletely independently of the others. 

When the molecular system is in a strong ex­
ternal radiation field, the frequency spectrum ob­
viously should not change with the initial conditions. 
Indeed, it can be shown that the determinant which 
determines the frequencies in the case of an arbi­
trary number of molecules and a strong radiation 
field does not depend on the initial conditions. If 
we consider the interaction of three molecules 
with the radiation field, when at the initial instant 
of time all three molecules are at the upper level, 
then in the general case oscillations will take place 
with six frequencies: 

IQ1- Q2l; 
IQ1- Q,l; 

since the solution of the corresponding equation 
for the frequencies yields four real irrational roots. 
We note that in general, for n molecules, one ob­
tains n + 1 different frequencies (in the state am­
plitude), one of which is always zero when the num­
ber of molecules is even. 

In the case of a self-consistent field and exact 
resonance, only two different frequencies remain 

Q1 = (10 + l'73) lal;;:;,4ial, 
Q2 = (10 -1'73) lal~lal, 

and the state probabilities will contain three fre-
C21, N = 112[1 +cos Qt], C12; N = - 112[1- cos Qt]. (14) quencies: 
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Q~, Q2, Q1 - Q2, 

which are noncommensurate, so that the motion is 
not periodic. 

Since the probabilities themselves are repre­
sented by cumbersome and obscure expressions, 
we present here only the time-averaged probabili­
ties of the collective states: 

lF222,o;;::; 1/g., 3W221,1 _. 1/4, 
3W211,2 _. 1/12, Wm,a _. 1/4. 

(17) 

We see that the system is for a rather long time in 
an excited state. 

When solving the corresponding system of equa­
tions of motion, again with inclusion of the initial 
conditions [ C222, 0(0) = 1, all others equal to zero], 
we made use of the equality 

c221,1 = c212,1 = c122,1, C2u,2 = C121,2 = Cu2,2. 

When there is a strong external field, the state 
probl}bilities of the three molecules are 

W222, N = 1/1s[COS2 Q1t + 6cos Q1t COS Q2t + 9cos2 Q2t], 

W221,N = 1/ts[sin2 Qtt + 2sin Q1t sin Q2t + sin2 'M], 

W211, N = 1/1s[cos2 Q1t- 2cos Q1t cos Q2t + cos2 Q2t], 

Wm, N = 1/1s[sin2 Q1t- 6sin Q1t sin Q 2t + 9sin2 Q 2t], 
where 

(18) 

Comparing (18) and (2'), we can easily verify 
that (18) can be represented again in the form of a 
product of "single-molecule" probabilities (with 
allowance for the fact that all three molecules are 
at the initial instant at the upper level): 

w222,N = Wi,3N, Wm,N = wt~N, 

Finally, let us consider the case when there are 
n molecules in the volume. We assume that they 
are all at the initial instant of time either at the 
upper or at the lower level. When the radiation 
field is sufficiently strong, so that N » n in the 
case when E = 0, or N » n with N1121al » NE, when 
E -;e. 0, the determinant giving the frequencies as­
sumes the form 

Dn(Q) 
Q naN'1• 0 0 0 

a"N';, Q (n -1) a*N'1• 0 0 

0 2a*N'1' Q 0 0 

0 0 (n-1)a*N'1• Q aN';, 

0 0 0 na"N'f, Q 
(19) 

The determinant contains only terms propor­
tional to an integer power of I a! . Redefining Dn 
by introducing in it in place of a and a* the quan­
tity Ia! and making the substitution n = U'laiN112, 

we arrive at the determinant Du(U'), the calcula­
tion of which is carried out with the aid of the 
recurrence formula 

Dn(Q') = (Q' + n)Dn-1(Q'- 1). 

Applying this formula successively n times, we ob­
tain ultimately 

r fL[Q'2 _ (2k)2], n =2m. 

Dn(Q') = { 
I n [Q'2 - (2k + 1) 2], n =2m+ 1. (2o) 
l k=O 

Thus, oscillations (of a collective character) 
arise in the system with multiple harmonics of the 
type 

Q= 

( 0, +2laiN'I•, ±4la1N'", ... +nialN'", 
J n =2m; 

ll +laiN'", +3lai.IV'i•, ... ±nlaiN'I•, 
n =2m+ 1. (21) 

The probability of the states contains in addition 
to n also difference frequencies, and in the case of 
an odd number of molecules the entire spectrum 
should be observed. As indicated above, the spec­
trum obtained is not sensitive to initial conditions. 

The author is grateful to B. A. Trubnikov and 
A. A. Vedenov for fruitful discussions. 
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