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Using the previously developed theory [1] of phase transitions we find the cross section for 
the scattering of slow neutrons in He near the A.-curve. The results obtained make it possible 
to check experimentally the main assertion of the theory about the form of the fluctuation 
spectrum, E = Aq312• We obtain some general relations between thermodynamic quantities 
and the neutron scattering cross section. 

THE average occupation number of low-momen­
tum states increases near the curve of the second­
order phase -transition in liquid He I, and as a con­
sequence there occurs a correlation between coor­
dinates and velocities of particles over large dis­
tances. Such long-wavelength fluctuations are mi­
croscopic regions of a superfluid phase. Although 
these fluctuations are damped rapidly, one may 
speak of their momentum q and characteristic 
energy E(q). The spectrum E(q) is the most im­
portant characteristic of the fluctuations for knowl­
edge of the spectrum enables us to construct the 
thermodynamics and kinetics of the A.-transition. 
The occurrence near the A.-curve of long-wave­
length fluctuations is the cause of the anomalous 
behavior of the heat capacity and of other thermo­
dynamic quantities. On the other hand, one should 
also expect near the A.-curve anomalous scattering 
of light and of particles by the fluctuations. 1> Since 
the physical cause of these phenomena is the same, 
there must exist a relation between the thermody­
namic quantities and the particle (neutron) scat­
tering cross section. The present paper is de­
voted to the elucidation of this connection. We 
shall also explain the connection between the neu­
tron scattering cross section and the fluctuation 
spectrum. 

In a paper by Patashinskii and one of the au­
thors [1] we constructed a theory of second-order 
phase transitions in a Bose liquid, an essential 
feature of which was the characteristic form of 
the fluctuation spectrum, E ( q) = Aq312• An ex­
perimental check of this statement would be an 

1)The anomalous scattering of neutrons by density fluctua­
tions near a critical point was considered by Van Hove.[2 ) Some 
of the ideas in Sees. 2 and 4 of the present paper are close to 
the ideas given in his paper. 

important argument for or against the theory. 

1. GENERAL RELATIONS 

We consider a macroscopic volume of a Bose 
liquid at temperature T, which is a target for the 
scattering of cold neutrons. The differential cross­
section a(q, E) for the scattering of neutrons is in 
the well-known way connected with the Fourier 
transform K(q, E) of the two-particle Green func­
tion K(r -r', t -t') (see, for instance, [3]): 

) - -( mn+mHe ) 2 2:n:2q V 2 ImK(q,e) (1. 1) 
a(q, E - 2 a 1 + IT • mHe p e-e 

By a(q, E) we understand here the twofold differ­
ential cross section d2a/dq dE involving a momen­
tum transfer q and an energy transfer €; mn and 
mHe are the masses of a neutron and of a helium 
atom; V is the volume of the system, a the scat­
tering amplitude for the scattering of a neutron by 
a separate helium nucleus, and p the momentum 
of the incident neutron (we put .11 = 1 ). 

The Green function K( r - r', t- t') is connected 
with the functions for density correlations in dif­
ferent space-time points: 

"K( _, t-t')={<n(r,t)n(r,t')>-n2, t>t' (1. 2) 
l r r' <n (r', t') 11 (r, t)> -112, t<t' • 

The symbol ( ) indicates averaging over an en­
semble. Landau's well-known dispersion relation 
holds between the real and imaginary parts of 
K(q, €) 

R K ( ) _ 1 g Im K ( q, w) h w d e q, e - - t - w. 
:n; <0- E 2T 

Using Eq. (1.1) we find a relation between 
a(q, E) and Re K(q, E): 

*th =tanh. 

(1.3)* 
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C a(q, co) (1'- e-co!T) dco 
j ro-e 

=-(mn+mHe)22n3qVa2ReK(q,e). (1.4) 
mHe p2 

From the definition (1.2) it follows that 

K(r-r',t-t') =K(r'-r,t'-t), 

K(r- r', t- t') = K(r- r', t'- t). (1.5) 

Hence it follows that the Fourier transform K(q, E) 
satisfies the relation 

K(q, e) = K(q, -e). (1.6) 

From (1.1) and (1.6) we find 

cr(q, -e) I a(q, e) = e-•tT. (1. 7) 

Equation (1. 7) expresses the principle of detailed 
balancing. 

It is useful to introduce general relations con­
necting K(q, E) with the thermodynamic quantity 
( 8n/ BJL >v, T (n is the density and JL the chemical 
potential ) . By definition 

00 

K(O, e)=-i~dte-iet~dV(<n(r, t)n(O, 0))-n2) 
0 

0 

-i~dte-iet~dV((n(O, O)n(r, t))-n2). (1.8) 
-oo 

The quantity J dV n(r, t) = N(t), the number of 
particles in the system, is conserved, i.e., does 
not depend on time. Therefore 

(N(t), n(O, O)> = (N(O),n(O, O)) = (n(O, 0), N(O)), 

and we get from (1.8) 

K(O, e) = -2nio (e) V-1 ((N2)- (N)2). (1.9) 

It is, however, well known that 

(N2)- (N)2 = T(aN 1 af.l)v, T, (1.10) 

so that 

ImK(O,e) = -2no(e)T(8ni81J)v,T. (1.11) 

Now substituting (1.11) into the dispersion relation 
(1.3) we get 

{ 0, 8 =I= 0 
ReK(O, e)= -(8nf8fl)v,T, 8=0· (1.12) 

At first sight it seems physically meaningless 
to isolate a finite value of a function in an isolated 
point. In fact, the value of Re K(O, E) given by 
Eq. (1.12) is the limit to which Re K(q, 0) tends as 
q- 0. Indeed, for small non-vanishing q instead 
of an infinite o-peak there occurs in Eq. (1.9) a 
sharp peak with a finite, albeit narrow width. In 
order that we may substitute in Eq. (1.3) 

th(ro/2T) 1 
ro-e ~ 2T' 

the width of the peak must be much larger than E 

which is clearly satisfied when E = 0 and q >" 0. 
We get thus 

lim Re K ( q, 0) = -(an I a f.!) v, T. (1.13) 
q~O 

ReK{O,e)=O (e=I=O). 
(1.14) 

Far from the point where ( Bn/BJL)v T tends to 
infinity (the phase transition point), th~ quantity 
Re K(q, 0) can apparently be expanded in a power 
series in q2• However, near the phase transition 
curve [ ( 8n/ BJL) v, T - oo ] the q -dependence of 
Re K(q, 0) changes: a singularity occurs in 
Re K ( q, 0 ) as q - 0. 

On the other hand, for fixed non-vanishing E, 

the function Re K( q, E) does not have a singularity 
as q- 0. We show in Appendix A that for a rela­
tively large class of systems of interacting par­
ticles the following formula holds: 

ReK(q, e) = -nq2 I e2, (1.14') 

We not consider the behavior of Im K(q, E) for 
small q. In that region Im K(q, E) is a <)-function­
like function of E with a wide peak depending on q. 
When E » q../ T/m the function Im K(q, E) de­
creases exponentially. Indeed, the maximum en­
ergy transfer to a particle in the liquid with mo­
mentum p for a given momentum transfer q is 
equal to pq/m. The average momentum of a par­
ticle in the liquid p ~ ..f Tm and the number of 
particles in the liquid with momenta p » ..f Tm is 
exponentially small. Of course, these considera­
tions are not true for very low temperatures when 
quasi-particles with a dispersion law different 
from p2/2m play the main role. 

2. ANOMALOUS SCATTERING BY FLUCTUATIONS 

Near the phase transition curve the quantity 

ReK(q,O)= -(8n/81J)v,T 
q~o 

has a singularity connected with the growth of the 
long-wavelength fluctuations. The energies com­
parable with the fluctuation energies E ( YJ, q) give 
the main contribution to (Bn/BJL)v,T in the integral 
(1.4). Here, q is the momentum of the fluctuation 
and 

is the distance from the A.-curve. On approaching 
the A.-curve ( YJ - 0) the characteristic dimension 
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r of the fluctuations increases and the character­
istic momentum q and characteristic energy 
E ( 7J, q) decrease. A neutron moving with speed v 
passes through the fluctuation region r in a time 
T = 1/qv. If the fluctuation spectrum E ( 7J, q) for 
q ~ q is proportional to qf3, the characteristic 
fluctuation energy E ( 7J, q) will be proportional to 
q_f3 and the average life time of the fluctuation 

't n ~ 1/ e ('I'], q} ::::::; 1/ q~. 

If (3 > 1, in the fairly immediate vicinity of the 
A.-curve the time of passage T of a neutron may 
become arbitrarily small compared to the life time 
Tfl of the fluctuations, i.e., during the time of 
passage of the neutron the fluctuation does not 
manage to undergo essential changes and the scat­
tering becomes elastic. The scattering takes place 
as if by static potential fields. 

We consider the scattering kinematics in detail. 
Let a neutron with momentum p be scattered at 
a given angle e with a momentum transfer equal 
to q. The energy transfer ~E is then determined 
in terms of p, q, and e by the equation 

~e = pZ- (p - q) 2 = L{ 2 ( sin2 e + cos e 
2mn 2mn 

(2.1) 

where mn is the neutron mass. For small angles 
e Eq. (2.1) becomes 

p2 
E(p)=-. 

2mn 
(2.2) 

For elastic scattering q0/p = 2 sin( 8/2) ~ e. 
The energy transfer of the neutron when scattered 

'by fluctuations has a characteristic value ~E 
~ q clE ( 7J, Q )/ BQ. The value of the derivative is 
taken in the point max ( q, q). Indeed, if q » q the 
scattering of the neutron is accompanied by the 
creation (or absorption) of a fluctuation with mo­
mentum of the order q. If, however, q « q the 
main role in the scattering is played by fluctua­
tions with momentum of the order q. In both these 
cases the fluctuation group velocity 

ae ('I'J, Q) I 
vn = 8Q 

max (q, q) 

is small compared to the neutron speed v. It fol­
lows from Eq. (2.2) that the difference between the 
momentum transfer ~q = I q - q0 I from the value 
of the transfer q0 for elastic scattering is given 
by the quantity 

~q"' ( p~e )2"' ( vn )2 -"' --- "' - ~1. 
qo qoE(p) v 

(2.3) 

In other words, we may assume that for all energy 
transfers which are important in the present prob­
lem the angle of scattering of the neutron remains 
unchanged for a fixed momentum transfer q. We 
assume here that Vfl ( q) decreases as q- 0. 

It now turns out to be possible to connect in the 
vicinity of the phase transition curve the differen­
tial scattering cross section for a given angle 
da/dS1 =a( e) with Re K(q, 0 ). Indeed, for small 
q and E = 0 the integration region w « T con­
tributes to the integral (1.4). After replacing 
1-e-w/T by w/T we get thus 

d 00 

cr(q) = d a=~ a(q, w)dw 
q -oo 

=- T ( mn + mHe )2 2n3q Va2 Re K (q, 0). (2.4) 
\ mHe P2 

Experimentally, however, one measures the scat­
tering a( e) for fixed angle e rather than the scat­
tering for fixed momentum transfer a(q). As we 
have shown, on approaching the A.-curve the scat­
tering by the fluctuations becomes elastic, i.e., to 
each fixed scattering angle there corresponds a 
well-defined momentum transfer q 0 = 2p sin ( 8/2 ). 
For the cross section for the anomalous scattering 
by fluctuations the following relation will therefore 
be valid 

da pp' da 
cr(G)=-=- -· 

dQ 2nq dq 

=-T( mn+mHe )2n2p' Va2ReK(q,O). 
mHe p 

(p' = I p -q I is the momentum of the scattered 
neutron). 

(2.5) 

Substituting from Eq. (1.13) for Req-.0 K(q, 0) 
into (2.5) we find for the forward scattering cross 
section 

cr(O) = r( mn + mHe )2 n2Vaz( on) . (2.6) 
mHe O!.t v. T 

Nearthe A.-curve (on/B.u)v,T- 00 andthefor­
ward scattering cross section also tends to infi­
nity. We note once again that Eqs. (2.5) and (2. 6) 
refer not to the total cross section, but only to its 
singular part connected with the scattering by fluc­
tuations. Equations (2.5) and (2.6) refer to the total 
cross section only when the neutron energy p2/2mn 
is much larger than the average thermal energy of 
the target particles. 
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3. CORRELATION FUNCTION OF A PERFECT 
BOSE GAS NEAR THE EINSTEIN CONDENSA­
TION POINT 

The present section has an illustrative charac­
ter. We show with a perfect gas as an example how 
the correlation function K(q, E) possesses a singu­
larity for small q and E in the vicinity of the 
phase -transition point. The function K ( r, t) for 
a perfect Bose gas can be written as an integral 

iK(r,t) 

r r d3pd3q 
= J J (2n)" np(nq+1)exp{i(ep-eq)t-i(p-q)r}, 

np = (e<•p-~t)/T -1)-'. (3.1) 

For t = 0 this function has the form (see [ 4J, 
p. 385) 

iK (r, 0) = n6 (r) + v (r), 

where n = N/V is the density of the system. For 
Boltzmann statistics of distinguishable particles 
( -p/T » 1) the first term in Eq. (3.2) describes 
the correlation between the positions of one par­
ticle, and the second the position correlation in 
the positions of two different particles. 

Near the phase transition point the function v ( r ) 
has for small !J (- p/T « 1, r » n/m T) the form 

I 
r d3p exp (ipr) 12 

v(r) ~ 2mT J (2n)3 p2- 2m!L 

m2T2 exp ( -l'- 8m11 r) 
----- -- (3.3) 

(2:n)2 r2 

We see that when we approach the phase transition 
point the characteristic dimension of the fluctua­
tions r increases as 1/~. The corresponding 
characteristic momentum q - 1/r decreases as 
0". Hence it follows that the time, characteristic 
for the fluctuations 

Tn ~ 1/e(!L,q) ~ 2m/q2 

increases as - 1/ fJ. when the phase transition 
curve is approached, i.e., much faster than the 
time of passage T >:::: 1/ ..f=!; of the neutron through 
the characteristic fluctuation region. 

Let us now investigate the function K(q, E). 
Taking the Fourier transform of both sides of 
Eq. (3.1) we get 

X [6 (ep -ep+q +e)+ 6 (ep -ep+q -e)]. (3.4) 

We can write the imaginary part of K(q, E) in the 
following form 

m2T ( e q2 11) 
ImK(q, e)=- 4:rtq (1 + e-efT)F \ T' 2mT' - r- (3.5) 

F(x,y,z) = 
oo ez+G 

J d£, (ez+s -1) (ex+z+s -1) 
(x-y)'/4y 

(3.6) 

The anomalous scattering near the A.-curve is con­
nected with small values of q and E. We are inter­
ested in the case of small values of the arguments 
x, y, and z. The value of the lower limit in (3.6) 
then remains undetermined. 

We consider two limiting cases: 
1. (x -y )2/4y » 1 ( E » qy' T/2m ). The asymp­

totic form of Eq. (3.6) is then 

F(x, y, z) ~ e-<x-y)'/4y ~ e-x'f4y = e-me'/2q'T. (3. 7) 

2. (x-y)2/4y « 1 (E « qv'T/2m ). Equation 
(3.6) can be approximately written as 

co 

F(x,y,z)= ) 
(x-y)2/4y 

d£, 

(z+s)(x+z+£) 

=! ln (x+y)2+4yz . 
x (x-y)2+4yz (3.8) 

The argument of the logarithm in (3.8) is a homo­
geneous function of degree zero in x, y, z and has 
no well-defined limit as x, y, z - 0. For fixed y 
and z the function F (x, y, z) as a function of x has 
a maximum, equal to 4/(y+4z), at x = 0. Its graph 
has the form of a peak, the width of which is deter­
mined by the largest of the quantities y and /YZ. 

Changing from the quantities x, y, z to E, q, fJ. 

and from the function F(x,y,z) to Im K(q, E) we 
can formulate our conclusions as follows. For 
small I !J I « T and q2 « 2m T the quantity 
Im K(q, E) as a function of E has two character-
istic dimensions 

8 ' = qv 2~ • 

The physical meaning of E 1 is that it is the char­
acteristic energy transfer to a neutron when scat­
tered by a separate atom. When E » Et the quan­
tity Im K(q, E) decreases exponentially, in accord­
ance with the general considerations given in Sec. I. 
The smaller dimension E2 determines the width of 
the peak, in the center of which K(q, E) has the 
value - 2m3T2 I nq ( q2 - 8mp), increasing when 
q, - !J- 0. One easily verifies that E2 is the 
same as the fluctuation energy E(q) = q2/2m when 
q » q = v' - 2mp and the same as the quantity 
q8E(Q)/8QJQ=q when q«q (cf. Sec. 2). Here 
E( 1J, q) = - !J + q2j2m. The physical meaning of E2 

is that it is the characteristic energy transfer of 
the neutron when scattered by the fluctuations. 

It follows from Eq. (3.4) that when fJ. = 0 the 
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6(8) 

-tn(T-1-;) - Ln8 

FIG. 1. 

quantity Re K(q, 0) has a singularity of the form 
const/q in accordance with the general conclusions 
of Sec. 1. When JJ. ""' 0, the function Re K(q, 0) 
can be expanded in a power series in - q2/2mJJ.. 

4. THE CORRELATION FUNCTION AND SCAT­
TERING CROSS SECTION IN He I 

The most complete information about the fluc­
tuation spectrum can be obtained by studying the 
inelastic scattering cross section u(q, E) for 
small transfers q and E. As shown in Sec. 2, 
the characteristic energy transfer E2 when a neu­
tron is scattered by fluctuations ~qvn is much 
smaller than the average energy transfer when 
scattered by He atoms. This transfer E2 is so 
small that at the present time it is impossible to 
measure it. 

Let us now study the scattering cross section 
for a given angle [ see Eq. (2.5)]. The theory con­
structed in [l] predicts the following behavior 
near the A.-curve:2> 

max (TJ, Aq'l•) 
ReK(q,O)=Bln T +ReKreg(q,O), (4.1) 

~ 

where A and B depend solely on the position of 
the transition point on the A.-curve, Re Kreg(q, 0) 
is a regular function of T, JJ., q. From Eqs. (2.5) 
and (4.1) we find the angular differential cross 
section: 

cr(8) =- r( mn + mHe )2 n2Va2Bln max(TJ,Aq'l,) 
mHe r~. 

(4.2) 

Equation (4.2) can be checked experimentally. In 
the limiting cases of small and large angles, (4.2) 
becomes 

cr(B) = -c In (T- T~.) + c' (O< TJ'/, I A'lsp), (4.3) 

a(8) = - 3f2cln8+c" (B>TJ'IsfA'fsp). (4.4) 

2>In['] the value of Re K(q,O) was given only for q = 0 (see 
Eq.(S.4) in(']). 

One should construct from the experimental data 
the curves giving the dependence u( e) for fixed 
e and u( e) for fixed T where along the abscissa 
axes we must plot, respectively, the logarithms of 
T- TA. and of e. The curves thus constructed will 
have linear sections (as is schematically indi­
cated in Fig. 1). The slopes of those sections 
must, according to the theory, differ by a factor 
%. 

We now give some quantitative estimates start­
ing from the existing experimental data on the 
thermodynamics of the A.-transition. [5- 7] We 
elucidate how closely we must approach the A.­
curve in temperature or pressure in order that the 
logarithmic singularity in CT( 8) becomes percepti­
ble. Unfortunately, experiments show that the sin­
gular part of the compressibility kT 
=- v-1(&V/&p)T is a small quantity compared 
with the regular part of the compressibility. In 
the vicinity of the point TA, = 2.023°K, VA, 
= 24.2 cm3/mole, and PA. = 13.04 atm, Lounasmar's 
experiment gives in the interval (p -pA.)/pA.,... 10-3 

to 10-4 a relative change in the compressibility of 
3 to 4% in He I and 10 to 12% in He II. [G] Chase, 
Maxwell, and Millett's data on the relative change 
in the compressibility near the A.-point give 1 to 
2% in He I and 2 to 3% in He II for a change 
(T-TA,)/TA."" 10-3 to 10-4.[7] 

As the compressibility kT is connected with 
( &n/&JJ. )y T by the simple relation 

' 
kr = -n2Q"'"' = n-2 (8n I 8tt) v, r, (4.5) 

one must thus expect on the basis of Eq. (1.12) and 
(4.3) the same relative change in the differential 
cross section u(e). The at present attainable ac­
curacy in measuring the differential cross section 
of neutron scattering makes it possible to detect 
such a change in the scattering cross section. 

There remains the consideration of the problem 
whether the ranges of angles shown in Eqs. (4.3) 
and (4.4) are experimentally accessible; to see this 
we must give a numerical estimate of the quantities 
A and ry=a(JJ.-JJ.A,) +b(T-TA,). Unfortunately, 
we can only give a most tentative estimate. Ex­
perimentally only the ratio of the coefficients b/a 
= - ( &JJ./&T )A, is known; it changes in the range 20 
to 45 when one moves along the A.-curve. It is rea­
sonable to assume that the coefficient b is of the 
order of unity. The coefficient a will then be of 
the order Y30 • The basis for such a statement is 
that the quantity a is proportional to the univer­
sal numerical factor 1-P(oo) (see [iJ). One 
must think that this quantity is small through ac­
cidental circumstances. In the opposite case one 
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cannot explain why the ratio a/b is small along 
the whole of the A.-curve. 

Taking the magnitude of b of the order of unity 
and determining A from the experimental data on 
the specific heat (A ~ 5 x 1014 cgs esu) we can 
find a connection between the range of angles 1::;.8 
and the range of temperatures i:lT inside of which 
one can trace the logarithmic dependence of the 
differential scattering cross section O"( 8 ). To do 
this, we use the relation 

A (pM)'",...., MT (4. 6) 

(p is the momentum of the incident neutron). Tak­
ing the wavelength of the neutron to be "' 1 A and 
i:lT"' 10-2 °K, we get i:l8 of the order of tenths of 
a degree. If it is possible to measure at angles of 
the order of tens of seconds (corresponding to ap­
proaching the transition point at temperatures 
T- TA. "' 10-5 to 10 -G °K) then the change in the 
logarithmic part of the cross section O"( 8) is a 
quantity of the order of 5% of the total cross sec­
tion. To elucidate the character of the spectrum 
E ( q) we need thus a very delicate experiment with 
a very accurate thermostatic arrangement. It 
seems to us, though, that the requirements of ex­
perimental accuracy may be made easier if one 
approaches the A.-curve from the He II side. 

5. NEUTRON SCATTERING NEAR THE A.-CURVE 
IN Hell 

As before, we start from the basic formulas 
(1.1) to (1.4). Following BelyaevC8J we write the 
wave function operator lj;(r, t) as a sum 

(5.1) 

where n0 is the density of the condensate, and 
~(r, t) the wave function of the uncondensed par­
ticles. Substituting (5.1) into (1.2) we get (x= (r,t)) 

iKll (x- x') = {j{ (x- x') + n0 [ (T (:;jl+ (x) ;ji (x'))) 

+ (T (;ji (x) ;ji+ (x'))) + (T ('F+ (x) 'lJ+ (x'))) 

+ (T (;ji(x)"'(x')))]i+ Vno [(T (;ji+(x);ji(x);ji+(x'))) 

+ (T (;ji+ (x) 'iJ (x) 'iJ (x'))) + (T ('F+ (x) 'lJ+ (x') "'(x'))) 

+ ( T ( 'lJ ( x) ~+ ( x') "' ( x')))] , 

(!( (x- x') = (T ('J)+ (x) 'lJ (x) ~+ (x') "'(x')))- ii"2 • (5.2) 

Taking the Fourier transform of (5.2) and using 
the usual definition of the Green function (see 

~] ' e.g., , p. 280 ), we get 

Kn(q, e) = K(q, e) + n0 (G(q, e) + G(q,- e)+ F(q, e) 

+ F+(q, e)) + 2l'no(P(q, e) + P (q, -e)); (5.3) 

iG (x- x') = (T (f (x) "'+ (x'))), 

iF (x- x') = (T ('F (x) 'lJ (x'))), 

iF+(x-x') = (T(f+(x)'J)+(x'))), 

iP (x, x') = (T ('J)+ (x) ;ji+ (x') 'F (x'))). (5.4) 

The first term on the right-hand side of (5.3) cor­
responds to the scattering of a neutron by the un­
condensed particles, the second term to the scat­
tering of a neutron by the particles in the con den­
sate accompanied by a transition into an uncon­
densed state (or vice versa), while the third term 
is an interference term. 

When we approach the A.-curve from below, the 
appearance of fluctuations, when a neutron is scat­
tered by the condensate, becomes energetically 
much easier but, on the other hand, the number 
of particles in the condensate, n0, diminishes, 
so that the total probability for the scattering of 
a neutron by particles in the condensate tends to 
a finite limit when the A.-curve is approached, as 
shown in Appendix B. We shall now determine the 
differential scattering cross section O"( 8 ). 

Using Eq. (2.5), we get 

(5.5) 

Using the properties of Kn(q, 0) which are given 
in Appendix B we find the relation 

Kn(q, 0) = Kr( q, 0)- Ll ( :: ) v,T ;§ ( A~"f, ); (5.6) 

11( i:Jn ) =lim( i:Jn('I'J) - i:Jn(-'I'J))' 
Of.l V,T 1]-+0 \ Of.l Of.l (5 .6') 

where ;§(x) is a function with well-known limiting 
values: 

;g (0) = 0, ;§(co) = 1. (5. 7) 

We change now again to the cross section O"( 8 ). 
It then follows from (5.5) to (5. 7) that, for instance, 
for fixed pressure the difference O"r( 8) - O"n( 8) 
depends only on the ratio ( T- TA. )/ 8312• Judging 
from the available experimental data on the com­
pressibility, the jump i:l ( 8n/8f.l)y T is not large: 
10 to 12% according to Lounasmaa'•s dataC6J and 
1 to 2% according to the data of Chase et al C7J. 3> 
However, the quantity O"I( 8) - O"II( 8) changes ap­
preciably faster when 8 and T - TA. are changed 
than the logarithmic part of the cross sections 
O"I( 8) and O"JI( 8) which makes the experimental 
verification of the theory easier. 

3)We remind the reader that the data of["] and[7 ] refer to 
different points on the A-curve. 
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CONCLUSIONS 

A study of neutron scattering near the A.-curve 
can give direct information about the fluctuation 
spectrum. Experimental ~ata on the compressibil­
ity show that the scattering of neutrons by fluctua­
tions will be rather weak. It is therefore necessary 
to measure in a very narrow range of angles (from 
tens of seconds to one degree ) with very accurate 
thermostatic apparatus while the cross section 
a( e) itself must be measured with a very high ac­
curacy (better than 1%). The experiments are 
greatly facilitated by the fact that it is not neces­
sary to measure the twofold (in angles and energy) 
differential cross section a( e, E), but that it is suf­
ficient to measure only the differential cross sec­
tion a(e). 

Most promising is a measurement of the cross 
section a( e) in He II, where a fast changing part 
due to the interaction of the neutrons occurs be­
sides the slowly changing logarithmic part. The 
fast part of the cross section a( e) depends only 
on the ratio (T- T71. )je312• The logarithmic part 
of the cross section varies like 

max(Ap'f, 8'1', T- T'A) 
ln T'A -. 

By comparing the slopes of the linear parts of the 
curves in the a(e), ln(T-T71.) and the a(e), ln e 
planes we can judge whether indeed the fluctua­
tion spectrum has the form Aq312• 

It was shown in [s] that when one approaches 
along the A.-curve from the He I-He II-gas triple 
point (A.-point) to the He I-He II -solid point the 
relative magnitude of the singular part of the com­
pressibility kT increases. The relative magnitude 
of the anomalous scattering increases, therefore, 
too. It would therefore be desirable to perform 
measurements in that part of the A.-curve which 
is close to the He I-He II-solid point. We ob­
tained in the pre sent paper a general relation 
[Eqs. (1.13) and (2.5)] which connects the cross 
section with the compressibility. It would be use­
ful to check this relation experimentally. 

We thank V. M. Galitski1 for discussions. 

APPENDIX A 

We consider Re K(q, E) for large E. We 
showed in Sec. 1 that Im K(q, E) decreases ex­
ponentially when E » q../ T/m . From Eqs. (1.3) 
and (1.6) it follows then that Re K(q, E) for 
E » q../ T/m has the form 

Re K(q, e) = --B / e2, 

1 00 

B = -;j w ImK(q, w) th 2wT dw. 
-oo 

(A.1) 

(A.2) 

On the other hand, the asymptotic behavior of 
Re K(q, E) can be obtained directly from the defi­
nition (1.2). To do that we turn our attention to 
the fact that the function K ( r, t) itself is continu­
ous at t = 0 but its derivative dK(r, t )/dt has a 
discontinuity at t = 0. Th~ same is also true of 
its Fourier transform 

K(q, t) = ~ K(r, t)eiqrdV. 

For large E we have 
eo 

K(q, e)=~ K(q, t)e-•t dt::::::: 
-00 

). 
1=-0 I 

According to the definition (1.2) 

dK(r, t) = {<dn(r, t)Jdt, n(O, 0)), 
dt <n (0, 0), dn (r, t) J dt), 

Applying the well-known formula 

dn(r,t) /dt= i[H,n(r,t)], 

we get 

(A.3) 

K(q, e)=- ; 2 ~eiqr([[H, n(r, 0)], n(O, O)])dV. (A.4) 

Comparing (A.1) and (A.4) we find 

! 8 w Im K ( q, w) th ; dw 

= ~ eiqr ([[H, n (r, 0)] n (0, 0)1) dV. (A.5) 

In the case of a potential interaction or in the 
more general case when the interaction Hamilto­
nian is a functional of the density n ( r ) we can re­
place in the right-hand side of (A.5) the total Hamil­
tonian by the kinetic energy Hkin· After that all 
operations indicated in the right-hand side of (A.5) 
can be performed explicitly, using the well-known 
commutation relations 

[1Jl(r)1Jl+(r1 )] = b(r-r'). 

The result of the calculations has the form 

1 00 

-;l8 wlmK(q,w)th ;T dw=nq2, (A.6) 
-00 

ReK(q, e)= -nq2/e2, e";J>q-yT jm. 

We note that in the case considered Eq. (A.6) is 
valid for arbitrary q. 

APPENDIX B 

The functions G(q, E), F(q, E), and F+(q, E) 
are real for E = 0 and can be expressed in terms 
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FIG. 2. 

of the self-energy parts ~1 (q, 0) and ~2 (q, 0) in 
the well-known way (see [3]): 

(B.l) 

(B.2) 

Because of the relation J.1. = ~1 ( 0, 0) - ~ ( 0, 0) 
(see [3]) the functions G(q,O) and F(q,O) be-
come infinite at q = 0, but their sum 

G(q, O)+F(q, 0) 
1 

(B.3) 

is finite. Using the properties of ~1 (q, 0) and 
~(q, 0) found in [1] we can write G(q, 0) + F(q, 0) 
in the form 

G(q, 0) + F(q, 0) = TJ-1g(TJ I Aq'l'), (B.4) 

where g(x) is a universal function with the fol­
lowing limits 

( ) = {1/2, X ---> 00 
g X 0, X--> 0 ' (B.5) 

Using now for n 0 Eq. (6.10) from [1]: 

no = T)Xo I Vo, (B.6) 

where V0 is a constant characterizing the interac­
tion between He atoms and X0 a universal numeri­
cal constant. The second term on the right-hand 
side of Eq. (4.3) can thus be written in the form 

n0 (2G(q, O)+F(q, O)+F+(q, 0))= 2~0 g(A;h ). (B.7) 

We now consider the quantity K(q, 0 ). It can 
be represented as a sum of diagrams, the general 
form of which is depicted in Fig. 2. The circle in­
dicates here a multipole with four uncondensed and 
an arbitrary number of incoming condensate lines.4> 

This multi pole can be split into parts not contain­
ing condensate lines, those containing two, four, 
etc. condensate lines. The totality of diagrams 
not containing a single condensate line corresponds, 
as function of its arguments to the function KJ(q, E). 

We now consider an arbitrary term of the series 
for K(q, E) containing 2m condensate lines (the 

4 >we note that we are considering here diagrams constructed 
from bare (and not complete) Green functions and bare vertices. 

c 

FIG. 3. 

diagrams corresponding to the term with m = 2 
are given in Fig. 3 ). As an example we give the 
analytical expression for the term of the type 3a: 

nrT2 ) d3pd3p'Gx(p)GI(p')Gx(P- q)Gx(P'- q) 

X r!.+2(P, p', p- q, p'- q). (B.8) 

rk<Pt. ... ,pN) indicates here a 2N-pole without 
any condensate lines, i.e., beingthesameasafunc­
tion of its arguments to a simular multipole for 
He I. In Eq. (B. 8) we have omitted the sum over 
the frequencies wn ;" 0 as it leads to small cor­
rections. 

According to [tJ, rk(P1• ... pN) is a homoge­
neous function of degree % ( N- 2) of its argu­
ments Pi and the quantities Cry/ A) 2/ 3• From this 
it follows that the integral (B.8) is a homogeneous 
function of degree 3m/2 of the arguments q, 
( ry/ A )213• Taking into account all dimensional 
factors in rfn+ 2 and GJ and using Eq. (B.6) for 
n0 we can write the integral (B. 8) in the form 

(B.9) 

where ;§m ( x) is a universal function which be­
haves as "'xm when x- 0 and has a finite limit 
as x - oo • One sees easily that any other diagram 
of order m in the condensate lines has similar 

"' properties. K has thus the form 

(B.lO) 

The interference term 2 ..fllo ( P ( q, E) + P ( q, - E ) ) 

is a sum of diagrams. The general form of these 
diagrams is given in Fig. 4a. Consider, for in­
stance, the diagram of Fig. 4b which apart from 
a factor ...[flo is given by the expression 

a b 
FIG. 4. 
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noGI(q, O)T ~ ~ d3p D (0, q, P, P- q) ~ (x) = ~ ~ m(x) + 2X0g(x) + 2qJ(x). 
(B.16) 

"' n 

(B.ll) 

It was shown in [1] [Eqs. (4.14) to (4.16)] that 
the sum over the non-vanishing frequencies only 
leads to a renormalization. We can thus write 
EQ;. (B.ll) in the form 

no(Gr(q, 0) (c + (1 -~c)Q(TJ / Aq'12)); 

Q ( :q'lcl)= T ~ D (0, q, p, p- q)GI(P- q, O)dap, 

GI(q, 0) = TJ +1 Aq'lz' (B.12) 

where Q(x) is a universal function of its argu­
ments, c a renormalization constant. It is well­
known that Q(x)- const. as x- 0. The contri­
bution from the diagram of Fig. 4b has thus, apart 
from a factor ..fn;, the form 

(B.13) 

where <P 1 (x) is a function which tends to zero as 
x when x - 0 and tends to a finite limit as x - oo • 

One sees easily that one can also describe the 
remaining diagrams for the term ..;n; P(q, E) in an 
analogous fashion as V01cpn ( TJI Aq312) where all 
<Pn (x) tend to zero as xn when x- 0 and to a 
finite limit as x - oo • The interference term can 
thus be described by the formula 

1 00 1 
-Vo ~ qJ,,(x) = -V qJ(x), x = ~ (B.14) 

n=1 Aq'lz' 

where <P (x) -ex as x- 0 and <P (x) - const. as 

Equation (4.3) can now be written in the form 

(B.15) 

m=1 

The function ~ (x) is proportional to x for small x 
and tends to a consta:q.t as x - oo • One can normal­
ize ~ (x) such that ~( oo) = 1. The quantity 1/Vo 
attains then, according to Eq. (4.6), the meaning of 
the jump ~ ( 8n/8J.1. )v, T· 
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