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A two-mode laser model is considered and abbreviated equations are derived. Monochro­
matic (single -mode) and two-frequency (two-mode) steady states are obtained, and their 
stability is investigated. Unsteady (transient) processes are studied qualitatively. 

IN the investigations of transient laser processes 
the presence of only one cavity mode has usually 
been assumed. [l-4] This assumption is usually not 
justified for optical systems where the cavity di­
mensions greatly exceed the wavelength of the light; 
for real laser processes it is more appropriate to 
consider several (at least two) modes. Of greatest 
importance are the nonlinear interaction ( compe­
tition) of modes during transient processes and the 
conditions for the simultaneous generation of dif­
ferent modes. Only Haken and Sauermann, [5] ap­
parently, have cons ide red nonmonochromatic proc­
esses in a multimode laser .n However, they were 
concerned exclusively with steady-state oscilla­
tions, mainly when the oscillation threshold was 
only slightly exceeded. (In one instance their eval­
uation of stability is incorrect.) 

It was the aim of the present work to obtain a 
sufficiently complete picture of both steady-state 
and transient processes in our two-mode laser 
model. Our results are also applicable qualita­
tively to multimode lasers in general. 

1. FUNDAMENTAL EQUATIONS 

The equations of a two-level laser have been 
studied very thoroughly. In the case of two non­
vanishing modes these equations are [3, 7] 
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Osteady-state monochromatic oscillations in a two-mode 
maser were considered by Lugovo'l in[6]. 

(1) 

Here M is the magnetic or electric moment of the 
active molecules per unit volume, P, is the matrix 
of the molecular dipole moment <1112 = 11;1 ), ~ is 
the molecular density matrix (Pt2 = Ptt ), N = P22 
- p11 is the population difference of the energy 
levels, N0 is a parameter depending on tempera­
ture and the pumping field, nw 0 is the energy level 
separation, WA. are the frequencies of normal cav­
ity modes in the absence of an active material, T1 
and T2 are the relaxation times of the material, 
and TA_ is the damping time of a cavity mode. The 
magnetic or electric field strength H is repre­
sented by 

H = ~ q?..(t)H?..(r), 
?..=1,2 

where HA. are cavity resonator eigenfunctions 
normalized so that 

~ H?..2dv = 4nV' 
v 

(here V' is the volume of active material in the 
cavity and V is the cavity volume). 

As in the majority of investigations it is here 
assumed for simplicity that the field amplitude of 
each mode in V' is independent of the coordi­
nates. 2> In all real cases the nonlinear and relax­
ation terms in (1) are small, so that an averaging 
method can be applied, and the solution can be 
sought in the form 

q?.. = Q?..(t)eiwt + Q1.•(t)e-iwt, Pt2 = a(t)eiwt, 

where w is a constant frequency close to w0 and 
WA_ (the differences between these two frequencies 
in the interesting cases are always small compared 

2)In[7 ] Yakubovich and the present author obtained equa­
tions similar to (2) for an arbitrary spatial field distribution 
without an expansion in terms of the modes. 
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with the frequencies themselves); Q;>v a, and N 
vary slowly compared with eiwt. 

Averaging over the period 2rr/w in (1), we ob­
tain a system of "abbreviated" equations of lower 
order than the original system: 

ib, + [-r,.-1 + i (0- ffi))] Q,. = - 1/2 i0r/a, 

. i 
a+ [T 2- 1 +i (0- ffio)] a= TN ~ y,.Q,., 

A=1,2 

N+T 1- 1 (N-N0)= ~ ~ (ay,.•Q,.•-a•y,.Q,.). (2) 
A=1, 2 

We have here used the notation 'YA. = HAfl12 . 
Monochromatic laser oscillations correspond 

to the equilibrium of the system (2). Dropping all 
time derivatives, we can determine the possible 
frequencies w of these oscillations and their re­
spective amplitudes. It is an extremely compli­
cated problem to derive any additional information 
from (2), e.g., to determine the steady state that 
is actually established for any given initial condi­
tions, or to elucidate the possibility of establishing 
a nonmonochromatic periodic process. Thus, to 
arrive at a periodic two-frequency solution we must 
determine the limit cycle in a phase space of the 
system (2) with seven dimensions in the general 
case (because of the complexity of the equations). 
To be sure, the order of the system (2) can be low­
ered further due to the fact that the relaxation 
times in a laser satisfy the inequality 

(3) 

(In practice, for a solid state laser T2 ~ 10-10-
10-11 sec, T>., ~ 10-7-10-8 sec, and T1 ~ 10-2-
10-3 sec.) The smallness of T2 enables us to dis­
tinguish in (2) the equations of "fast" (with the 
time constant T2) and "slow" (with the time con­
stant T 1) processes. It is easily shown that in a 
time of the order T2 the fast processes bring the 
system into the region of slow movements. [G] For 
the latter (considered below) the derivative of a 
can be neglected and a can be expressed directly 
in terms of N and Q>.,. However, even after this 
has been done, there does not appear to be any 
fairly simple way of investigating unsteady oscil­
lations. 

Of more importance for the present problem is 
the assumption, also usually satisfied for lasers, 3> 

i.e., there is no overlapping of the frequency inter­
vals in which the resonant excitations of different 
modes are possible.4> Each mode has its own fre­
quency, and the characteristic time of transient 
processes is large compared with 1/ ( w1 - w2) 
(except, perhaps, for a process starting at a very 
high pumping level). 

The foregoing permits a second averaging pro­
cedure, now in the system (2) itself, over a period 
corresponding to the frequency difference of the 
modes. Taking into account the fact that these 
frequencies w1 and w2 differ somewhat from w1 
and w2 because of the active medium, and using 
the notation .6.1(t) = w1-w 0, .6.2(t) = w2 -wo, we 
shall solve (2) in the form 5> 

t t 

Q,. = v,.(t)exp( i) .!l,.dt), cr = ~ (JA(t)exp ( i) .!l,.dt ). 
0 '"=1.2 0 (5) 

The functions VA. and aA. are real except for con­
stant phase factors exp (icp A.) and vary slowly 
compared with 

t 

exp [ i) (Llt- Llz) dt J. 
0 

The form of the function N ( t) leads to a diffi­
culty in averaging. According to (5) and the last 
equation in (2), we have 

00 

N=N(t)+ ~ {Nz(t)eilOt+Nt(t)e-ilM}, (5a) 
1=1 

where 6 = .6.1 - .6.2 (for definiteness we shall as­
sume .6.1 > 0, 6 > 0); N and Nz are slowly varying 
functions, and in the general case all terms of the 
series (5a) are comparable to N, so that they 
would be determined by solving an infinite system 
of equations. Then a includes components of dif­
ferent combination frequencies; although the equa­
tions for the fields contain only the terms of (5) 
with the frequencies .6.>.,, the values of these terms 
depend on other components and all the quantities 
Nz. However, upon fulfillment of a condition to be 
introduced subsequently, each term of (5a) is 
smaller than the preceding term and we shall here­
after retain only the terms containing N and N1. 
Then in view of (3) and (4) (:N1 « 6N1 ) we obtain 

4>Thus, if in a plane cavity losses depend mainly on the 
(4) mirror transmittance D, then also for neighboring longitudinal 

modes we have 

3 >we note that (4) and subsequently (7) are also required 
for the correctness of the results given in[5 ], although this is 
not stated by Haken and Sauermann. 

5>Since w in (2) is arbitrary (the amplitudes are complex), 
we let w = w0 • It is possible, of course, to average directly 
over the period 2rr/ (w;- w 2') in (1). 
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(6) 

m,_ = 4T1Tz h,,_v, 12 I ft2, n = N I N0, 

a, = woT zlv" IZN o't'" !2ft. 

After separating out the real parts of (8), we ob­
tain a system of equations for rnA. and n: 

(9) 

This shows clearly the condition for the smallness 't'1m1 = 2m1{ai(1- T·}!!112 )n 
of the ratio NtfN; it is easily shown that this con-
dition also ensures the smallness of all the ratios Xi[1 + Tz(b +2~1)mzl2bTd -1}, 

Nz+dNz, i.e., the correctness of (6). · 2 { ( 't:zmz = mz az 1- Tz2~z2)n 
Substituting the values of YA,, we write the fore-

going condition in the instructive form X [ 1 + Tz ( 6- 2~z) mz I 2bTd - 1}, 

where WA. is the energy of the interaction between 
an active molecule and the field of the correspond­
ing mode. For the longitudinal modes of a solid 
state laser (o ~ 109-10 10 sec-1, H ;S 102 cgs emu) 
the ratio of the left- and right-hand sides of (7) is 
of the order 10-2-10-3• 

Substituting (5) and (6) into (2), averaging, and 
using (3), (4), and (7), we obtain the following equa­
tions for VA, and N: 

. { wTzs1IYd 2 [ 2iTz • J 
v1=V1 Zft N 1+ ftZ{j (st+sz)lyzv2 12 

- [,;1-1 + i(~1- ~10)] }, 

. {\DTzsziYzl 2 [ 2iTz • J 
vz=Vz Zft N 1- ftZ{j (s1 +sz)ly1v112 

4Tz ]} + ftZ(I (Re s1 + Re sz) (1m Sz- Im s1) I '\'1V1'\'zllzl 2 , (8) 

where ~A.o = wA.- w0• The terms in (8) that contain 
o explicitly result from fluctuations of the popula­
tion difference and are small when (7) is fulfilled. 

We note again that in the cases of practical in­
terest we have T~~~ « 1, i.e., the mode frequen­
cies are close to the center of the emission line of 
the active material; then the SA, are close to unity. 
This circumstance is unimportant for our subse­
quent discussion, but we shall employ it to simplify 
our notation: in the terms containing o we assume 

s,.. = 1 - iTz~,.., 

and in the remaining terms, 

s,.. = 1 - Tz2A,..2 - iTz~,... 

It is also convenient to use dimensionless terms 
in (8): 

(10) 

The imaginary parts of (8) give expressions for 
the frequency of each mode: 

~1 = A1o + 2atnmz/bTt'tt , 
1' + Za1Tzn/'t'1 

Consequently, each frequency depends on the am­
plitudes of both modes, and the expressions in (11) 
are, from a rigorous point of view, not explicit, 
since they contain o = ~1 - ~2 • It will appear sub­
sequently, to be sure, that the difference ~A.- ~A.o 

is usually small, but we cannot yet assume this. 
We note that even if ~10 = ~20 , i.e., degenerate 
modes are here interacting, this degeneracy is 
lifted ( o "" 0) because of the nonlinearity. In prin­
ciple o can become sufficiently large to satisfy (7); 
in this case (10) remains correct. 

It is now our problem to investigate the third­
order system (10) for the real functions rnA. and n, 
taking (11) into account. The advantage of (10) over 
(2) is clear from the fact that a two-frequency pe­
riodic state, if it occurs, does not correspond to a 
complicated limit cycle in (10), but, as in the 
single-frequency cases, to an equilibrium condition 
where both m 1 and m 2 are nonvanishing. 

2. ANALYSIS OF MODE INTERACTION 

We shall begin our investigation of laser proc­
esses by determining the equilibrium states of (10). 
It is easily seen that there are in the general case 
four such states, for which we give the respective 
values of mA. and n (dropping small terms wher­
ever they are not essential): 

I. m1 = mz = 0, n = 1; 

II. m1 = Ut- (1 + Tz2~t2), mz = 0, 

n = (1 + Tz2~12 ) I at; 

Ill. m1 = 0, mz = az- (1 + Tz2~z2), 

n = (1 + Tz2~z2 ) I az; 
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IV. 4m1 = (a.- 1) (1 + 2~~ I 1\) + (2T! I Tz)[ (a.1 I a.z- 1) 

+ Tz2(~z2- ~~2)], 

4mz = (a.-1)(1-2~zll\)- (2T!ITz) 

X [ (a.1 I a.2 - 1) + T22(~22- ~12)], 

n ~ 1 I a.1 ~ 1 I a.2 = 1 l a. (12) 

A laser is self-excited when the "zero" equi­
librium state I is unstable. The single-mode 
states II and III correspond to monochromatic 
oscillations in the first and second modes. Under 
real conditions ai\. is of the order 1-102, with the 
field amplitude H :S. 102 cgs emu. 

Both oscillatory modes are established simul­
taneously in the two-frequency state IV, which is 
possible only when the terms in square brackets 
are sufficiently small. Indeed, these are preceded 
by the factor (2TtfT2 ) ..... 107-108, and if there­
spective second terms in the equations of state IV 
in (12) exceed the first terms, then at least one of 
the mi\. cannot be positive. Specifically, the pa­
rameters a 1 and a 2 must be close to each other; 
this fact was utilized to obtain state IV in (12) 
( a1 , a 2 = a can be assumed in the first terms). 
For example, in the case of symmetric modes 
( ~1 = - ~2) state IV exists upon fulfillment of the 
condition 

(13) 

For longitudinal cavity modes having identical spa­
tial patterns S> we have I atf a 2 - 1 I ..... 10-5-10-7, 

and for a ..... 101-102 the two sides of (13) are of 
comparable magnitude. For unsymmetric modes 
the difference T~ ( ~~ - ~~) , 10-4-10-2 predomi­
nates in the last terms of state IV in (12); then 
two-mode steady-state oscillations are possible 
only at very high pumping levels. It is clear, in 
any event, that the condition for the existence of 
these oscillations is much more severe than the 
condition for the self-excitation of the two modes; 
this is accounted for by the emission from the me­
dium that is stimulated by the field of one mode, 
thus preventing growth of the other mode. 7> 

6 >Because of the difference in rA we have a, ~ a 2 , which 
results from frequency-dependent losses in the cavity mirrors 
or from diffracti ve losses ( [a,! a 2 - 1['"" o I w0). 

7)The practical conditions for the existence of a two-mode 
state appear to be somewhat more favorable than those that 
follow from IV in (12); this results from inhomogeneity of the 
active medium and of the field amplitude distribution in this 
medium.[5 • 8] The mutual stimulated emission of the modes is 
then reduced. The establishment of a two-mode state is also 
aided by the splitting of a level of the active molecules.[9 ] 

X 

FIG. 1. Dependence of steady-state field amplitudes on the 
difference of parameter modes. Solid lines - stable states; 
dashed lines - unstable states. 

Figure 1 shows the dependence of steady-state 
oscillation amplitudes on the parameter 

x= (a.1/a.z-i)T1ITz(a.-1) 

(the "bifurcation diagram") for symmetric modes. 
We note that for x = ± 1, before equilibrium state 
IV disappears it coincides with either II or III. 

We again consider the steady-state frequencies. 
The quantity 2ai\.T2n/TA. in (11) is usually small 
( ..... 10-1-10-3 ) even for n = 1, i.e., in state I. The 
value becomes even smaller in states II and III, 
when 

n ~ 1 I a~, 2a.~Tzn I 't~ ~ Tz I 't~ ~ 10-3 - w-~. 

For state IV we must also take into account the 
terms containing mA_. However, these are of the 
order 102-104 sec-1, and are thus small compared 
with 6. Therefore (in any event, when investigat­
ing steady-state oscillations and their stability) we 
can usually neglect frequency variations, assuming 
~A. , ~A.o (see, also, footnote 8) 

We shall now investigate the stability of the de­
rived steady states. Linearizing (10) about an equi­
librium state and assuming that the perturbations 
are proportional to ef3t, we in each case obtain 
three values of the characteristic root {3. For the 
"zero" state I we have 

~i(I) = 2-r~-1 [a.i(1 + Tz2~12 )-1 - 1], 

~z(l) = 2-rz-1[a.z(1 + Tz2~z2)-1 -1], ~3(I) = -T1- 1. (14) 

The conditions for the self-excitation of each mode 
follow herefrom: 

For the single-frequency state II linearization 
gives the values 

~1,z(II) = ---'--UI I 2TI + [a.12 I 4T12 - 2(a.1-i) I T1-rt]~!., 

~3(II) = __!_:__{ (a.1- 1) ( 1- 2~2 ). 
T1-rz 6 

(15) 
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¥' ,, 

It follows herefrom that the roots f3t, 2 character­
ize the stability of a given mode with respect to 
field perturbations of the same mode (under ordi­
nary conditions {3 1 2 are complex, i.e., damped os­
cillations occur in' the plane m 2 = 0); {3 3 character­
izes the stability of the first mode with respect to 
perturbations of the second mode (this process is 
aperiodic). If at and a 2 are not very close, then 

~3 ~ 2-rz-1 ( az- a1) I az, 

and the stability condition is at > a 2• If at I a 2 -1 
is small, then the expression in curly brackets 
agrees with IV in (12) for 4m2 (to the degree of 
accuracy with which the expression has been writ­
ten). Therefore if a two-frequency state exists, a 
single -frequency state is unstable. 

Symmetric expressions are obtained for state 
III, which is stable only if mt < 0 in (12) for state 
IV, i.e., in the absence of a two-frequency state. It 
is easily seen that fit and m 2 cannot be negative 
at the same time; therefore at least one of the 
states II and III is unstable. 

Finally, for state IV we obtain 

~1z(IV)= -~+ [~-~( m1+ mz)J'i2' 
2T1 4T12 T1 -r1 -rz 

~'~s(IV) = _ 4aTzm1mz 
1-' T1(m1't2 + mz-ri) ' (16) 

where rnA. is given by the formulas of (12.IV); 
therefore a two-frequency state, if it exists, is 
always stable. For T1 ~ T2 the expressions for 
f3t, 2 in (15) and (16) are identical, i.e., perturba­
tions of a certain type in the vicinity of the point 
for IV also undergo oscillatory damping (Fig. 2b). 

Thus, depending on the parameters of the ac­
tive material and the cavity, there are two possible 
steady states for a laser. First, when the param­
eters of the modes are very close both modes ex­
ist in the equilibrium state, and the combined am­
plitude of the two different frequencies oscillates 

FIG. 2. Character of trajectories in a 
phase space for a two-mode laser, in the 
absence (a) and presence (b) of a two­
frequency steady state. 

with the frequency o; single-mode equilibrium 
states are then unstable.8> Second, if the param­
eters of the modes differ widely, the laser emits 
monochromatic light at the frequency of the mode 
for which mA. of IV in (12) is negative. 

It should be noted that when the mode param­
eters are not very close, if 

la1/az-11 ~ (a._-1)Tz/T1, 

the small terms in (10) arising from fluctuations 
of the population difference can be dropped. Then, 
eliminating n from the first two equations of (10) 
and integrating, we obtain 

m1 { 2t [ a1(1 + TN:122) ]} ---,-- = const · exp - - 1 . (17) 
mza1<2/a2'< T1 nz ( 1 + Tz21'l.12) 

(This expression is valid even when the terms 
T2~~ are not small.) It thus becomes clear that 
in a time of the order 

[ Ut(1 + Tz21'l.z2) J-t 
'ttr= 'tt az ( 1 + Tz21'l.12f- 1 

practically a single-mode state is established in 
the system. The existence of a steady two-fre­
quency state in our model results from fluctuations 
of the population difference; this is easily seen 
from the derivation of IV in (12). 

A more detailed quantitative analysis of laser 

8 >When there is a significant explicit dependence of the 
frequencies in (11) on m,\, the situation can differ. Indeed, the 
previously identical conditions for the existence of state IV 
and the instability of II and III are then different because they 
contain different frequencies. Then in some interval of the 
parameters stable steady states may be altogether absent; for 
bounded oscillations this indicates the existence of periodic 
(or at least quasi-periodic) undamped fluctuations of the mode 
amplitudes. In the present case this interval is very narrow, 
but for close frequencies of the modes this "phase" instability 
is interesting as one of the possible causes of self-modulated 
laser emission. 
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oscillations requires integration of the system (10). 
A sufficiently complete qualitative picture of the 
processes for any initial conditions can, however, 
be obtained by plotting a family of trajectories in 
the phase space of the system (10), i.e., in the 
space of the variables m1o m 2, and n. Figure 2 
shows the structure of this phase space in the two 
basic cases, the existence and absence of a two­
frequency steady state. We note that for mt = 0 
or m2 = 0, the equations of (10) describe the pre­
viously studied single-mode state, i.e., the pattern 
of trajectories in the respective planes is known. 9> 

In the phase space the trajectories approach 
either a single-mode equilibrium state (Fig. 2a) 
or a two-mode state (Fig. 2b), spiraling down in 
the case of close modes to a straight line mt + m2 

= a -1. (In the limit when at= a 2, Tt = r 2, and 
the o terms are unimportant, this entire straight 
line would be the geometric locus of equilibrium 
positions.) The period of the oscillations Tosc 
(the duration of a "spike") and their damping time 
r d are estimated from the values of f3t, 2 in (15) 
and (16): Tosc ..... 10-6-10-7 sec and Td ..... 10-4 sec. 
The time required for the system to reach an 
equilibrium state corresponds either to r 2 or to 
the time TT during which the representative point 
moves along the straight line mt + m 2 = a -1. The 
latter time is determined by the value of {33, or 
from (17) for modes that are not too close. Usually 
TT ..... 10-3-10-6 sec, while for "symmetric" modes 
its value is ..... 10-2 sec. Since most frequently rT 
> r d• the representative point, while remaining in 
the plane mt/m2 = const, first spirals into the 
aforementioned straight line and then moves along 
the latter to the equilibrium state. The trajectory 
pattern in this plane qualitatively resembles that 
for single-mode processes in the planes mt = 0 
and m 2 = 0. Consequently, each "spike" contains 
the fields of both modes, even if a single-mode 
state is subsequently established. to> The opposite 
case TT < Td is also possible, of course; prac­
tically a single mode then remains even before the 
transient process is terminated. 

The foregoing analysis shows the essential in­
fluence of fluctuating processes on the relationship 
of the mode amplitudes and therefore on the fre­
quency spectrum of the generated oscillations. 11 > 
Since at the start of a transient oscillatory process 
(Fig. 2) the phase trajectories pass close to the 

9)By virtue of T 1 > T), [see Eq. (3)] these trajectories can 
be divided into "fast" and "slow" regions.[4 ] 

10)The corresponding field amplitude fluctuations with 
a period o within a spike have been observed experi­
mentally.[10• "] 

11 )Fluctuations in a single-mode model have been con­
sidered by Bespalov and Gaponov.[4 ] 

zero-equilibrium point I,['] small fluctuations of 
the field can throw the representative point from 
one trajectory to another with an entirely different 
relation between mt and m 2• On the other hand, 
unavoidable small variations of the system param­
eters aA_ and TA_, such as can result from varia­
tions of temperature or pumping power, can before 
termination of the transient process qualitatively 
alter the structure of the phase space (by the ap­
appearance or disappearance of a two-frequency 
state ) , or produce instability of a steady mode ac­
companied by the growth of the other mode etc. As 
a result the power and frequency spectrum of laser 
emission can vary randomly. These are probably 
among the causes of irregularity in the emission 
from most solid state lasers. 

If more than two modes participate in the inter­
action the laser problem becomes correspondingly 
more complicated. However, as already mentioned, 
the foregoing results would still be applicable qual­
itatively. Specifically, for modes of not very close 
frequencies (when the population fluctuations at all 
difference frequencies can be neglected), Eq. (17) 
is valid for any pair of modes. It follows directly 
that for an arbitrary number of modes in the pres­
ent model monochromatic oscillation is established 
at the frequency of the mode corresponding to the 
largest value of aA,/(1 + T~~~). 

The author wishes to thank A. V. Gaponov and 
G. I. Freidman for discussions of the results. 
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