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The Green's function method is used to analyze the problem of the influence of anharmonicity 
on the phonon spectrum near a point of degeneracy. In contrast to the usual case, the influ
ence on one another of phonon branches which are independent in the harmonic approximation 
requires the solution of a system of Dyson equations. Cases of essential and accidental de
generacy are treated. It is shown that in the case of accidental degeneracy the excitations 
that occur may have markedly different lifetimes and very different magnitudes and temper
ature dependence of their frequency renormalizations. In particular, the cross section for 
one-phonon coherent scattering of neutrons near a point of degeneracy is investigated. 

1. Recently various papers [ t-a] have investigated 
the effect of anharmonicity on the phonon spectrum 
and on the cross section for coherent scattering of 
slow neutrons. These papers tacitly assumed that 
all the phonon branches are strictly separated from 
one another. Consequently the anharmonicity re
sulted in an independent renormalization of fre
quency and appearance of damping for each indi
vidual phonon. On the other hand, the width of the 
peak for coherent scattering corresponding to a 
fixed momentum transfer K and energy transfer 
D.E was uniquely determined by the damping (the 
imaginary part of the corresponding polarization 
operator) of the phonon of the individual branch 
with quasimomentum f = K and frequency Wf,a 
R: D. E. 

But the problem is essentially changed if the 
branches of the phonon spectrum intersect or 
merely approach close to one another. In this 
case the anharmonicity results in the mixing of 
branches that are independent in the harmonic 
approximation, and the resulting laws of disper
sion and damping of the phonons, as well as scat
tering of neutrons, must be obtained by treating all 
the phonon branches simultaneously. Formally 
this corresponds to having a system of equations 
in place of a single Dyson equation. The solution 
of this problem is treated in the present paper. 

2. To find the phonon spectrum we look for the 
retarded (advanced) Green's function GA.A.' ( w), 
the poles of whose analytic continuation determine 
the laws of dispersion and damping. By definition 
GA..\' ( w) is the Fourier component of the function: 

G,..,,;(t- t') = -i8(t-:- t')([A,..(t), A_,_,(t'))>. (1) 

Here A.\ = a.\ + a~.\' while the symbol A denotes 

the set of indices f, a (- .\ = - f, a), where f is 
the quasimomentum and a labels the branch. The 
indices .\ and .\1 in (1) have the same value of f 
and differ only in their branch numbers. 

For the Green's function (1) one can write the 
Dyson equations in the following form: 

The polarization operator P is defined by the 

where all the notation is standard. 
Even for the most general form of anharmonic 

interaction, the polarization operator is diagonal 
in the index f. Thus in the general case Eq. (2) is 
a system of 3q algebraic equations where q is the 
number of atoms in a unit cell. Usually this equa
tion is analyzed for.\= A.' (and.\"=.\). But, in 
treating the problem near a point of intersection of 
branches of the phonon spectrum, we must con
sider the system of equations (2). 

For simplicity we shall restrict ourselves to a 
monatomic lattice ( the extension to the more 
general case is trivial). Then the solution of the 
system (2) can be written in the form 

(3) 
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Gn(o)-l (w)- Pu (w) - P12 (w) - P13 (w) 

li (w) = - P21 (w) G22(o)-l (w)- P22 (w) - P2a (w) 

-Pat (w) - P32 (w) G33(o)-l- Pas (w) 

(where Mac/ is the corresponding minor, and the 
index f has been dropped for simplicity). We note 
that in the range of w where the function Gaa' is 
defined, the determinant of the system (2) does not 
vanish. Thus the system of homogeneous equations 
has only the trivial solution. 

Now we find the poles of the analytic continua
tion of the function (3), as given by the solution of 
the equation 

li(m) = 0. 
(5) 

Suppose that two phonon branches intersect for 
some value of f, so that Wf, 1 = Wf, 2 = w0, and sup
pose that I Wf, 3 - w0 I » P a 3• Then, introducing 
the notation 

ITa.a.' (m) = 2 (wa.Wa.') 't.Pa.a.' (m), 

we write the approximate solution of (5) near the 
point of degeneracy as 

Z = 112(IIu(mo) + IT22(mo) + 1'1) + [114(IIu(mo) 

+ IT22(mo) + 1'1) 2- (IIu(mo)II22(mo) 

- lltdmo) IT21 (mo) - IIu (mo) 1'1) J'''· 
(6) 

From the analysis of this expression it follows 
immediately that in general the renormalization 
and damping of both the excitations depend on the 
imaginary and real parts of the polarization oper
ators for both branches and a fixed value of f. 

Let us first look at the situation right at the 
point of degeneracy, i.e., when 6 = 0. If the de
generacy is essential (i.e., caused by symmetry), 
IT 11 = IT 22, and in addition II 12 = 0. The last result 
is a direct consequence of the presence of an ele
ment of the symmetry group which transforms the 
polarization vector of one phonon into the polari
zation vector of the other. The degeneracy is not 
lifted, even though the anharmonicity results in 
both a shift and damping: 

w'2 = m"2 = mo + IIu. (7) 

Much more interesting is the case of accidental 
degeneracy. (We note that this case occurs very 
frequently. Cf., for example, the recent work on 
analysis of the niobium spectrum [ 4].) Then IT 12 

"' 0 and generally is of the same order as IT 11, 

IT 22 . As a result the anharmonic interaction lifts 
the degeneracy. Assuming that IT 12 is close in 

value to IT 11, IT 22, we have, approximately, 

w'2 = w02 + llu + IT22- (IIuiT22- llt2IT2t) I (ITu + IT22), 

w"2 = mo2 + (ITuiT22- llt2II2t) I (ITu + n22). (8) 

If we assume that IT 11 = IT 22, we find from (6) 

Thus, when the degeneracy is lifted, the two 
excitations behave completely differently. It may 
happen that one of the excitations has a weak re
normalization with temperature and weak damping, 
while the other excitation has a large renormaliza
tion and strong damping. 

It is interesting to analyze the effect of a third 
phonon branch on the above result. Treating for 
simplicity the special case corresponding to (8'), 
we find from Eq. (5): 

m'2 = mo2 + llu + II12 + (IIts + II2s) 2 I (ms2- mo2), 

m"2 = mo2 + llu - IT12 + (IIts - IT22) 2 I ( ms2 - mo2). 

We see that for the anomalous second root, the 
effect is very much weakened, in general. 

Near the point of degeneracy ( 6 "' 0 )· the de
tailed analysis of (5) or (6) becomes very involved, 
but the qualitative behavior is dictated completely 
by the behavior at the point of degeneracy. 

Now let us consid'er the case where, though 
they do not intersect, the branches come rela
tively close to one another. From (5) and (6) we 
then have 

m"2 = W22 + n22 - llt2IT21 I b. 

From. these expressions it follows that the ap
proach of a branch can significantly change the 
renormalization and damping of the phonon be
longing to the other branch, and, most importantly, 
may change its temperature dependence. In fact, 
if the value is comparable to 6 (though smaller), 
in the classical temperature range the shift and 
damping will, contain a sizable quadratic term in 
addition to the term linear in T. 

3. Let us determine the cross section for 
coherent scattering of slow neutrons for a mo
mentum transfer K close to the quasimomentum 
at the point of degeneracy. In the usual approxi
mation 



648 Yu. KAGAN and A. P. ZHERNOV 

d2a(M, x) 
dedQ 

X ~ (xv(x, a)) (xv(x, a')) 1 
.L.i, [ro(x, a).ro(x, a')]''• e----=p-:-I'>.E ___ 1 Im Ga.a.•(M), 
a., a. 

Ga.a.' (LlE) = Ga.·a. {6.E). (9) 

All the notation is standard. (The Green's func
tion Gaa' contains the index K, which we again 
drop for simplicity.) 

In accordance with (3), when the two branches 
intersect and the third branch is located sufficiently 
far away, we have 

At a point of essential degeneracy G12 = 0, and the 
cross section for coherent scattering, if we con
sider (10) and (7), will have exactly the same peak 
as in the case of an isolated phonon branch. 

Near a point of accidental degeneracy the cross 
section will have an anomalous form. In fact, now 
in summing (9) over a and a' one must also take 
into account the nondiagonal elements G12 = G21, 

which in general are of the same order as the di
agonal elements. If the imaginary part of the ele
ments of the polarization matrix llaa' is small 
compared to the real part, the cross section will 
have two close peaks with different intensities and 

different widths. If Im llaa' "' Re llaa'• we get 
one unresolved peak which is markedly asym
metric, and this asymmetry changes drastically 
with temperature. (Note that if the anharmonic 
constant is small, all other causes of asymmetry 
are weak; cf. [ 1•3]. ) 

These results are especially easily understood 
for the case where n11 = IT 22 . Using (8'), one 
easily finds the corresponding expressions for the 
function ( 10) at the point of degeneracy. 

Gu(LlE) 
roo + roo 

(6.E) 2- roo2- Lrlu- TI12 (6.E) 2- roG2- Hu + H12' 

GI2(6.E) 

roo roo 
-------~--( 6.E) 2 - roo2 - illu - TI12 

Substituting these expressions in (9), we imme
diately get the picture described above. 

1 V. N. Kashcheev and M. A. Krivoglaz, FTT 3, 
1528 (1961), Soviet Phys. Solid State 3, 1107 (1961). 

2 A. A. Maradudin and A. E. Fein, Phys. Rev. 
128, 2589 ( 1962). 

3 B. V. Thomson, Phys. Rev. 131, 1420 (1963). 
4 Y. Nakagawa and A. D. B. Woods, Phys. Rev. 

Letters 11, 271 (1963). 

Translated by M. Hamermesh 
137 


