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A study is made of the interaction between light waves in a continuous medium when there is 
a resonance between multiples of the frequencies of the light waves and the frequencies of 
electromagnetic transitions of the medium. The nonlinear effect of generation of a third 
harmonic is treated for the case of passage of monochromatic radiation through a medium 
which has a resonance for the second harmonic. The conditions are stated under which a 
sharp increase of the intensity of the third harmonic is to be expected. It is shown that in a 
strong light field and in the case of spatial matching [ k ( 3w) = 3k ( w), where k is the wave 
vector of the light wave] the nonlinear absorption is extraordinarily small. 

1. INTRODUCTION 

IN linear electrodynamics there is the well known 
phenomenon of anomalous dispersion, which 
occurs in cases in which the frequency of the 
electromagnetic field is close to one of the char
acteristic frequencies of the medium. In this case 
both the real and the imaginary parts of the dielec
tric permeability tensor are much larger than 
their values far from the resonance. The elucida
tion of analogous properties in the nonlinear terms 
of the dielectric permittivity is of considerable 
interest, in particular in connection with the prob
lem of the generation of multiple frequencies of 
light, for which the choice of material to a large 
extent determines the possibility of observing non
linear optical effects. If the medium in question 
has a discrete energy spectrum, then the nonlinear 
terms in the permittivity increase sharply when 
the frequency w of the beam of light, or a multiple 
nw of this frequency, coincides with one of the 
characteristic frequencies of the medium. Not all 
of these resonances are equivalent, however, from 
the point of view of a maximum value of the inten
sity of the harmonic generated. In a previous 
paper by one of the writers [ t] it was shown that a 
resonance with the fundamental or a generated 
harmonic is in no way distinguished as compared 
with a nonresonance situation. 

In fact, as one comes closer to the resonance 
(which can be done either by changing the fre
quency of the incident light or by changing the 
energy levels with external static fields) there is 
on one hand a sharp increase of the corresponding 
nonlinear term in the permittivity, but on the 
other hand there is a sharp increase of the linear 
term in the permittivity which is responsible for 

absorption of the fundamental or the higher optical 
harmonic, which in itself leads to a decrease of 
the intensity of the harmonic generated. The anal
ysis shows [ t] that these two processes compen
sate each other, so that there is practically no 
appreciable change in the intensity. Precisely 
this situation has been observed experimentally.C 2•3] 

If, however, there is a resonance with an inter
mediate frequency (for example, in experiments 
on the production of the third harmonic, a reso
nance in the corresponding nonlinear term of the 
permittivity can occur with the doubled fre-
quencyC4J ), so that it is not a resonance for the 
ordinary linear part of the permittivity in the 
vicinity of the frequency of the incident light or 
near that of the generated light, the situation is 
very different. As we come near a resonance of 
this type the intensity of the generated harmonic 
begins to increase sharply. In this sense sub
stances with energy-level systems that provide 
resonances with an intermediate multiple frequen
cy are markedly distinguished relative to other 
materials from the point of view of efficient trans
formation of one frequency of light into another. 

The present paper is devoted to a study of non
linear optical effects under conditions of resonance 
with an intermediate frequency. In particular, we 
consider the problem of the generation of light 
waves of frequency 3w when light of frequency w 
passes through a medium which has characteristic 
transition frequencies which are in resonance with 
the frequency 2w. In Sec. 2 we examine the prop
erties of the nonlinear terms in the dielectric 
process which are decisive for the generation of 
a third harmonic under resonance conditions. 
Section 3 contains the derivation of the nonlinear 
equations that describe the phenomena in question. 
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Section 4 is devoted to the solution of these equa
tions for weak light waves. In Sec. 5 we study the 
question of the maximum possible transformation 
of the fundamental frequency into the third har
monic for strong light waves, and also analyze the 
mechanisms which limit this process, such as two
photon absorption, and so on. 

2. THE NONLINEAR DIELECTRIC POLARIZA
TION 

To terms of third order in the electric field the 
dielectric polarization vector is of the form 

(1) 

00 

DaP> = ~ dweafl<1>(w)Efl(w)exp {-iwt}, (2) 

00 00 

Da<2> = ~ dw1 ~ dwze~~v(w!, wz)Efl(wi)Ev(wz) 

X exp {-i(w1 + wz)t}, (3) 

00 00 00 

Da<3> = ~ dw1 ~ dwz ~ dw3 e~~v6 ( w1, wz, W3) 

X Efl(Wi)Ev(wz)E6(wa)exp {-i(wi + wz + W3)t}, (4) 

where Ea ( w) is the Fourier component of the 
electric field of the light wave, E<1l is the linear 

01.{3 

dielectric polarizability, and E< 213> and E<313> 0 are 
0/. y 0/. y 

the second-order and third-order dielectric polar
izabilities. 

We shall be interested in the interaction of light 
with media which possess a center of inversion. 
In such media the second-order dielectric polari
zability is determined by quadrupole and magnetic
dipole transitions which are small in comparison 
with the dipole terms, so that we neglect them. 
By using perturbation theory we can get the follow
ing express ions for E (1) and E r2>: 

4n 
Bafl ( W) = 6afl - h 

a fl fl a 
~ ( dnm dmn dnm dmn \ 

X Pn (1} - Wmn + if mn - W + Wmn + i,f mn } ' 
m,n 

X (wz + Wa- Wzn + ifzn) (wa- Wmn +if mn)] 

[ t\ a 1' 6 . 
- dnhdhzdzmdmnl ( W1 + Whn + ~fhn) 
X (wz + Wa- Wzn + ~fzn) (wa- Wmn + tfmn)] 

(5) 

+ (w1 + Wz + Wzn + ifzn) 

X (wi+wz+wa+Wmn+ifmn)]}. (6) 

Here d~n is the matrix element of the operator 
for the ath component of the dipole moment per 
unit volume of the medium; tiwmn = i£ m - i£ n• 
where the fS n are the energy levels of the medium; 
Pn is a diagonal element of the equilibrium density 
matrix; P (a, b, c) is an operator of permutation 
of the quantities a, b, c; and r mn = ( r m + r n>l2, 
where tir n is the energy width of the level fS n· 

The expression (6) is rather complicated. In 
the linear effect we are considering, however-the 
production of the third harmonic-the elements of 
the third-order tensor E ~byo ( w1, w2, w3 ) that are 

involved are those with the following arguments: 

Besides this, we shall be interested in the situation 
in which the energy-level system is such that there 
is resonance with the intermediate frequency 2w; 
that is, there are some levels for which the differ
ence Wmn - 2w is small. Accordingly, in Eq. (6) 
we confine ourselves to the consideration of terms 
that have this small difference in the denominator. 
To simplify the expressions given below, we con
fine ourselves to the treatment of the case in which 
the harmonic generated is polarized in the same 
plane as the incident light, so that all of the formu
las that follow involve elements of the tensor (6) 
which are diagonal in all of the indices. Then the 
five elements of the third-order nonlinear tensor 
that are indicated above take the forms 

e<3>(-w, W, w) = - 813n ~ Pn l!tnml 21 (2w- Wmn +if mn), 

m,n 

m,n 

e(3) ( W, W, W) = -4n ~ PnVnmllmn • I (2w- Wmn + if mn), 
m,n 

m,n 

- Wmn +if mn) + 2~tnmVmn • I (2w 

- ~mn- if mn)], (7) 
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where 
Vnm = 2fi-'lz ~dnkdhm(Wnn- w)/(3w- Wkn) (w + Wkn), 

k 

When there is no resonance, the ratio D(3) /D(t) 
is a quantity of the order of ( E/Ea) 2, where Ea 
is the intraatomic field. It follows from (7) and 
(8) that when there is a resonance at the frequency 
2w this ratio attains the order of magnitude of 
( E/Ea) 2w/r. 

The intensity with which the third harmonic is 
produced can be increased in comparison with the 
nonresonance case by a factor (w/r) 2 (see below). 
We may state that the ratio w/r can be rather 
large; in particular, for a number of rare earths 
dispersed in crystals it can reach values ~ 105• 

Still larger values can be achieved at low temper
atures in gases, for resonances with forbidden 
transitions. [7] 

3. THE SYSTEM OF NONLINEAR EQUATIONS 
WinCH DESCRIBE THE TRANSFORMATION 
OF OPTICAL FREQUENCIES 

Let us consider a plane, linearly polarized, 
electromagnetic wave of frequency w which is 
propagated in a continuous medium. 

As the monochromatic light travels through the 
medium multiple harmonics will appear; in an 
isotropic medium or a medium possessing a 
center of inversion the third harmonic is most 
strongly produced. We confine ourselves to the 
case in which the intensity of the third harmonic 
is small enough so that it does not cause nonlinear 
processes such as the generation of a ninth har
monic. Starting from Maxwell's equations and the 
material equation (1), we find a system of equa
tions connecting the amplitudes Et and E3 of the 
first and third harmonics (see, for example, [B]): 

d2E 1 /dz2 + (wlc)2[e(1>(w)E,+ 314e(3>(-w, w, w)IEd 2E, 

+ 3l2e(3>(-3w, 3w, w) IEai 2E, 

+ 314e(3l(-w, -w, 3w)E3 (E1*) 2] = 0, (9) 

d2E3 Idz2 + (3wlc) 2 [e(1>(3w)E3 + 114e(3>(w, w, w}E13 

+ 3/ze(3>(-w, w, 3w) 1Ed 2E3] = 0. (10) 

We look for the solution of these equations in 
the form 

E1 (z) = A 1 (z)exp{ik(w)z}, 

k ( w) = ( w I c)[ e(ll ( w)] 'I•, 

Ea = Aa(z)exp{ik(3w)z}, 

k (3w) = {3w I c)[ e(l> {3w) ]'!•, 
(11) 

in which we shall assume that At ( z) and A3 ( z) 
are slowly varying functions of the variable z, in 
comparison with the rapidly oscillating exponen
tials. This allows us to derive the following sys
tem of first-order nonlinear differential equations 
for At(z) and A3 (z): 

dAd dz + a1A,I 2A, + ~IAai 2A, 

( 12) 

(13) 

Here we have introduced the notations ~k = 3k ( w) 
- k ( 3w) and 

a= -3iw2e(3>(-w, w, w) I 8c2k(w), 

~ = -3iw2e(3>(-3w, 3w, w) I 4c2k(w), 

v = - 3iw2e(3) ( -w, -w, 3w) I 8c2k (w), 

'j3 = -27iw2e(3>(-w, w, 3w) /4c2k(3w), 

v~ = -9iw2e(3>(w, w, w) l8c2k(3w). (14) 

The second term in Eq. (12) describes two
photon absorption, and the third term in (12) and 
the second in (13) describe the process of absorp
tion of a photon of frequency 3"" and simultaneous 
emission of a photon of frequency w, so that the 
result of such an act of interaction is that the 
energy 2liw is absorbed in the medium. The last 
terms in (12) and (13) do not admit of a simple 
quantum-mechanical description, since they de
scribe processes that depend essentially on the 
relation between the phases of the interacting 
optical harmonics, 

4. THE CASE OF A WEAK LIGHT-WAVE FIELD 

If the electric field E 0 of the incident light wave 
of frequency w is weak, namely if it satisfies the 
condition 

(15) 

then, as will be seen from what follows, the inten
sity with which the third harmonic is produced will 
be much smaller than the intensity of the funda
mental frequency. In this case we can neglect the 
last two terms in (12) and the second term in (13); 
the result of this is that we get a rather simple 
system 

dAa I dz + yA,3eiMz = 0, 

whose solution under the boundary conditions 
At ( 0) = E 0, A3 ( 0) = 0 is of the form 

(16) 



-622 E. A. MANYKIN and A. M. AFANAS'EV 

A1 (z) =Eo(1 + a'E02z)-'"exp[i(a' l2a") 

x In (1 + a'E02z)], 

- a.'E.'z 

A8 (z) = E0 ; ~ d~ (1 + ~)-'/• 
0 

x exp [i;:: ln(1 + ~) + i 11.~~;2 J, 

(17) 

(18) 

where a = a' + ia". When we make an expansion 
in powers of the small parameter (15) in the last 
expression, we get 

A3 (z) = iyE03Ak-t{ 1- exp [ iMz- ~ ( 1- i ::,} 

xln(1 + a'Eb) ]}, (19) 

from which it follows that the maximum intensity 
of the third harmonic is given by the formula 

(20) 

Returning to the formulas (7) and (14), which 
give the coefficient y as a function of the frequency 
w, we can see the resonance character of the effect 
of third-harmonic production: the expression (20) 
has a sharp maximum at the point 2w = wmn (we 
note that for w = Wmn or 3w = Wmn not only y 
but also 6k has a sharp maximum, and since it 
is the ratio of these quantities that occurs in (20), 
the intensity of the third harmonic is essentially 
unchanged as compared with the nonresonance 
case). 

5. THE CASE OF A STRONG LIGHT-WAVE 
FIELD 

Let us consider the case in which the electric 
field in the incident light wave is strong, so that 
we have the condition opposite to (15): 

(21) 

This inequality facilitates the resonance behavior 
of the coefficient y. If the medium is transparent 
to the first and third harmonics and is strongly 
anisotropic (but, as before, possesses a center 
of inversion), then, as is well known, [8-iO] direc
tions can be chosen along which 6k is extraordi
narily small. Let us set 6k = 0 in (12) and (13); 
the corrections to the solution so obtained are of 
the order of 6k/.y'Eij. Even after these simplifica
tions, however, the system of equations (12) and 
(13) is still complicated; it is a system of four 
nonlinear first-order differential equations, be
cause the amplitudes A1 and A3 are complex. If, 
however, we consider the case of exact resonance 
( 2w - Wmn = O), then the situation is much sim-

pler, since the coefficients that appear in (12) and 
(13) satisfy the relations 

Ima= Im~ = 0, 3~ = -11. 
:Y = 3lvle-i.P, IYI 2 = a~l2. (22) 

We can now look for the solution of Eqs. (12) 
and (13) in the form 

At(z) = Rt(z)exp{ic:pt}, 

Aa(z) = Rs(z)exp{-i(3c:pt- ¢- n)}, (23) 

where R 1 and R3 are real and satisfy the following 
system of equations: 

dRtf dz + aRts - pRs2Rt - (a~ I 2) '"RsRt2 = 0, ( 24) 

dRs I dz + 3~Rt2Rs- 3 (a~ I 2) ''•R13 = 0. (25) 

In the phase plane ( R1, R3 ) these equations have a 
straight line of singular points (Fig. 1) 

TJ = (a/2~)'''· (26) 

It is not hard to show that points on this line are 
points of stable equilibrium: small deviations 
from them have the result that the system of 
interacting light waves with the amplitudes R1 

and R3 returns asymptotically to the original 
point along a line perpendicular to the line R3 

= 11R1• There is another line of singular points, 
R1 = 0, but the states of the system of interacting 
waves R1 and R3 on this line are unstable. 

Outside the lines R3 = 11R1 and R1 = 0 the 
equation for the determination of the phase trajec
tories is of the form 

dRs I dRt = -3 [2TJ + (Rs I Rt)] - 1• (27) 

Equation (27) can be integrated without difficulty 
and leads to the following equations for the char
acteristics: 

In Rt + ID (TJ, Rs I Rt) = 0, 

<I> ( T), t) 

r -!In I 
-1 TJ+(TJ2-3)''· I t+TJ-(TJ2-3)''·1 

2(TJ2-3)'1• In TJ-(TJ2-3)'h 

- TJ-(TJ2-3)'''ln I t+TJ+(TJ2-3)'''1 
t 2 ( T]2 - 3) .,, TJ + ( TJ2 - 3) '" ' 

(28) 

T]::::;;3 

TJ > 3. 
(29) 

The phase trajectories for some values of the 
parameter 11 are shown in Fig. 1. A phase trajec
tory meets the line (26) at a right angle, and, as 
the figure shows, the point of intersection deter
mines the maximum value of the amplitude of the 
third harmonic, R3 ( 11) that can be attained for a 
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0.5 

lj=O.I 

0 

FIG. 1. Phase trajectories for three different values of the 
parameter 71; R, and R3 are the amplitudes of the first and third 
harmonics. 

given value of Tl• and the corresponding value of 
the other amplitude, R1 ( TJ). From (26) and (28) 
we easily find 

Ra(TJ) = T] exp{-CD(TJ, TJ)}, 

(30) 

Curves of these amplitudes are plotted in Fig. 
2. It can be seen that R3 ( TJ) is small both for 
TJ « 1 and for TJ » 1, and reaches its maximum 
value R3 ( 1) = 2-1/2e-1/ 4 at TJ = 1. It follows that 
the maximum intensity of the third harmonic 
which can be reached by conversion from the 
first harmonic by means of a medium which has 
a resonance for the second harmonic amounts to 
about 30 percent of the incident first-harmonic 
intensity of the light. 

The impossibility of reaching large values of 
R3 for large TJ is explained by the fact that along 
with the process of interconversion of the har
monics there is a strong two-photon absorption 
of the first harmonic, which is represented by the 

term aR~ in Eq. (24). In the opposite case of 
small Tl• when the two-photon absorption is weak, 
it is also impossible for R3 to become large, 
since processes of reverse transition from the 
third harmonic to the first a:re strong here. It 
must be pointed out that as the amplitude of the 
third harmonic grows the nonlinear absorption (in 
particular, the two-photon absorption) of the first 
harmonic decreases, so as to become equal to zero 

FIG. 2. Dependences on the parameter 71 of the amplitudes 
R, and R3 of the first and third harmonics at the point of stable 
equilibrium. 

when the condition (26) is satisfied. 
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