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We investigate the turbulent acoustic-wave distributions that can be established in a plasma 
consisting of cold ions and hot electrons, which move with respect to the ions with super
sonic velocity. In addition to a stationary distribution of turbulent fluctuations it is found 
that there can be another kind of distribution: this is an "oscillatory" distribution, in which 
the amplitude of the random waves is a weak function of time and in which the angular dis
tribution varies periodically. 

IN this work we consider the possible distributions 
of turbulent acoustic waves that can be established 
in a plasma consisting of cold ions and hot elec
trons which move with respect to the ions with a 
velocity u, which exceeds the acoustic velocity s. 
It is usually assumed that the "runaway" of elec
trons in such a plasma leads, after an appropriate 
time interval, to a time-independent distribution of 
turbulent fluctuations. We show in this note that 
another kind of stationary fluctuation distribution 
is possible: this is an oscillatory distribution in 
which the amplitude of the random waves is a weak 
function of time and in which the angular distribu-
tion varies periodically. 

We start with the equation 

aJ 11 nm ( u ) (ks)-1-+ -e 1--cose I at 2M s 
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where I = I ( k, 8; t) is the correlation function 
for the scalar potential cp, I' = I ( k, 8 '; t), 

(<p(k, co) <p(k', co')> = 6 (k + k') 6 (co + co') {/ (k, 8; t) 

x6(co-ks) +I(k,n-8;t)6(co+ks)}, 
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where 0 is the angle between k and u, cos 8 > 
s/u; m, M and T e, i are the electron and ion 
masses and temperatures respectively; E is a 
small parameter that characterizes the slope of 
the plateau on the electron distribution function, [ 3] 

E ~ (e2Ti ~ A/aT~)112, a is the Debye radius, A is 
the Coulomb logarithm (we assume for simplicity 
that 1- s/u « 1). 

The relation in (1) can be obtained quite simply 

using a method developed by Kadomtsev and 
Petviashvili. C 1] Equation (1) takes account of the 
nonlinear interaction between waves as well as the 
feedback effect of the waves on the particle distri
bution function, which leads to the formation of a 
plateau on the electron distribution function. This 
equation applies when k is sufficiently large 
(k » (sTi)-1 ( 1- s/u)-1 ( M/m)11 2, where Ti1 is 
the ion collision frequency, in which case the 
effect of collisions on the growth rate of the 
acoustic waves can be neglected.) 

We note that (1) is invariant under the trans-
formation 

1-+-a-31, k-+ak, t-+a-1t (3) 

(a is an arbitrary parameter) so that it is con
venient to introduce the variables Ik3 and x = 
( 7rm/2M) 11 2Eukt, which are invariant under this 
transformation; this substitution allows a reduc
tion in the number of variables ( cf. [ 4J ) . 

Greatest interest attaches to the self-similar 
solutions of (1) [ in the sense of the transforma
tion in (3)], that is to say, solutions for which 
Ik3 depends only on x (and not explicitly on t); 
it is precisely these solutions which correspond 
to the initial fluctuation distributions that obtain 
in a plasma. When t is not too large, so that the 
linear theory still applies, the correlation function 
depends on time in the form exp{ 2yt}, the growth 
rate y being proportional to k. In other words, 
when x is not too large the function Ik3 depends 
on x and is not an explicit function of t (if the 
possible dependence of the factor that multiplies 
the exponential is neglected). Because (1) is 
symmetric with respect to the transformation (3) 
the function Ik3, which does not depend explicitly 
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on t for small x, will not depend explicitly on t 
for any x; this function is thus a self-similar 
solution of (1). 

It can be shown that the asymptote for the self
similar solutions of (1) is of the form 

I(k, 6; t) = A(ak}-3p(x){(1- cos 6) 

+ (1- s I u)i\.(x)}-1 (x> 1}, 

A = a3Te3ue ( 4:rte) - 2e-2 (Tis) - 1 (nm /2M) ''•, 

where p and A. are given by the equations 

xpdi\./dx = 'l"o(i\.), xdp/dx = 'l"t(A.}, 

'1"0 = D-1{ (1- i\.)ln ( 1 + ~) + 1}, 

'1"1 =D-1{ln(1+ ~)+~..~;;A.)}' 

D=ln2(1+ ~ )-·i\.(1~1..). 
The functions p and A. are periodic functions 

of the variable ( x/x0) with period 

where Po and Xo are parameters determined by 
the initial distribution of fluctuations: 

00 -oo 

(4) 

(5) 

(6) 

c+= ~ 'l"o-1exp{j+(A.)}di\., 
0 

c_ = ~ 'l"o-1 exp {1-(A.)} di\., 
-1 

). 

j± = -~ 'l"1'l"o-1 di\., A.-=-2. 
''± 

From (4) we see that the angular distribution 
of the fluctuations varies periodically in time. 
When ln ( x/x0) = nP ( n = 0, ± 1, ... ) almost all 
of the turbulent waves are propagated along the 
electron stream or along the surface of the 
Cerenkov cone 

l(k,6;t) 

=A (ak)-3 Po { ll (1- cos 6) (ln(x/xo)-+ nP- 0) 
ll(cos6-s/u) (ln(x/x0)-+nP+O). (7) 

If ln( x/x0 ) = P( n + v), where v = c+ ( c+ + c_)- 1, 

all of the turbulent waves (regardless of e) have 
the same amplitude 

l(k, 6; t) =A(ak)-3p0 (1-s/u)-1 (cos6>s/u). (8) 

The correlation function averaged over e in
creases as k is reduced, going as k-3, and is a 
weak function of the time 

l(k;t)= 1h~ I(k,6;t)dcos6= 1/~(ak)-3p0~(x), (9) 

where {3 is an oscillatory factor approximately 
equal to unity. 

The distinguishing feature of the oscillating 
distribution of fluctuations is the fact that the os
cillation period is expressed in terms of the am
plitude of the random acoustic waves 

(10) 

For large t the asymptote for the general 
solutions of (1) is analogous to the asymptote for 
the self-similar solutions. Noting that the asymp
totic equation (1) is invariant under the transfor
mation 

(11) 

(a is an arbitrary function of t which is bounded 
by a polynomial as t -- + oo) it is easy to show 
that the asymptote of the general solutions of 
Eq. (1) is given by the relations (4)-(9) as before, 
where x = a ( t) k. For the self-similar solutions 
a ( t) is a linear function of t; for the stationary 
solutions a ( t) = const. 

We note that (10) also applies in the general 
case; however, the quantity P, which character
izes the period of the oscillations in the distribu
tion of random waves as ln k varies, will not 
generally give the oscillation period as ln t 
varies. 
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