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It is shown that statistical equilibrium cannot be established in a gas of quasi-particles 
(waves) if there are positive-energy and negative-energy quasi-particles. Under these con
ditions the fact that the quasi-particle entropy must increase means that the number of 
quasi-particles grows without limit. We consider a concrete example (the interaction of 
waves in a plasma penetrated by a low-density ion beam) which verifies the conclusion 
stated above; the rate of growth of the number of quasi-particles is estimated. 

1. INTRODUCTION 

A weakly turbulent plasma can be regarded as a 
mixture consisting of a particle gas (background) 
and a wave gas (quasi-particl!;Js). This approach to 
the investigation of turbulent plasma is fruitful if 
the interactions between the quasi-particles and 
the background and between the quasi-particles 
themselves are weak, as will be the case if the 
wave amplitudes are small. Under these condi
tions the dependence of quasi-particle energy w 
on momentum k (the dependence of the frequency 
on the wave vector 1 ') is determined by a dispersion 
relation obtained from the equations that describe 
small oscillations of the plasma in the linear ap
proximation. In the next approximation, assuming 
that the random phase approximation holds for 
different k, one obtains a quasi-linear equation, 
which describes the interaction of the quasi-parti
cles with the background, and a kinetic equation 
which governs the distribution of quasi-particles 
over momentum Nk· [ 1- 3] 

In the present work we consider certain fea
tures of the interaction between quasi-particles 
corresponding to longitudinal oscillations of a 
uniform plasma in the absence of a magnetic field 
under the assumption that the interaction between 
the quasi-particles and the particles can be neglec
ted. 

Under these conditions the equation for Nka 
is written in the form 2l 

l)We take i'i = 1. 

2 )The relation in (1) is valid in the classical limit Nka » 1. 
We assume below that the condition Nka » 1 is satisfied 
everywhere. 

(1) 

In this equation we retain only the principal non
linear terms, which are quadratic in Nk· Terms 
proportional to Nk and higher are neglected; these 
appear if one takes account of the higher perturba
tion-theoretic corrections to the amplitude. 

Let us now explain the notation in (1): a, {3, and 
y enumerate the solutions of the dispersion equa
tion wka = w a (k) 

e(w, k) = 0, (2) 

E(w, k) is the longitudinal dielectric constant of the 
plasma. The quantity V~~" can be written in the 
form 

V a~y !Wally 12/ I I I 
kk'k" = kk.'k." Bco 8(1) Bm 

~ ll v ' 

I a I eoo .. =-a-e(w,k) ' 
(J) 6>=6> .. (It) 

and satisfies the symmetry relation 

ally ally 
vkk'k" =- V-kk'k"· 

An explicit expression for V~~" for one par

ticular case is given in Sec. 3. 
Quasi-particles whose energy w is related to 

the momentum k by (2) will be called plasmons. 
The plasmon energy in a state characterized by 
k, a is expressed in terms of the Fourier com
ponent of the potential 'Pka: 

(3) 

(4) 

(5) 

(6) 

(Vis the normalized volume, which we take to be 
equal to unity). The energy IE ka is related to the 
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quantity Nka, which is frequently called the plas
mon number, by 

(7) 

The number of plasmons is usually taken to be 
I ~kalwka I· This definition, however, would com
plicate the calculations below. We emphasize at 
this point that wka and Nka are odd functions of 
k: 

( 8) 

2. ESTABLISHMENT OF STATISTICAL EQUILI
BRIUM IN A QUASI-PARTICLE GAS 

Let us investigate (1). Exploiting the properties 
of the quantities vk}f,~/1~ Wka' and Nka [as speci-

fied in (5) and (8)] we can write the more symmetric 
relation 

dNu 
---= 

dt 
~ (Nk'~Nk"v + Nka.Nk'il + Nka.Nk"v) V~~~k" 

~vk'k" 

(9) 

Dividing (9) by Nka and carrying out the summation 
over the subscripts k and a we have: 

~ 1 dNka. d ~ a.~v 
4.l---=-4.llniNka.l= -~ Vkk'k" 
ka. Nka. dt dt ka. a.~vkk'k" 

X Nka.Nk'~Nk"v(-1-+ 1 + 1 ) 
!Nka.2 Nka.Nk'~ Nka.Nk"~ 

X 6-k, k'+k"b(wka. + Wk·~ + wk"v). 

Now, taking account of (7) we symmetrize the right 
side of this equation over subscript pairs ak, ,Bk', 
yk": 

d~ 1 ~ a.~y 
- .L.iin INka I=- . .L.i vkk'k"Nka.Nk'flNk"V 
dt ka 3 aflykk'k" 

x(-1 __ +-1-+~1-)2 
\ Nku. Nk'fl Nk"V 

X 6-k', k'+k" 6 ( Wka. + (i)k'fl + Wk"V). 

Then, from (3)-(5) 

u.~y 

Vik'k"Nka.Nk'flNk"v 

=-. 1 w:~~k" 12 k2k'2k"2 I Qlku.l 2 I Qlk·~ 12 I Qlk"v 12 >- 0 
8n 8n 8n :;;o-- ' 

so that (10) yields 

d 
-d ~lniNka.I;;::::O. 

t ka. 

(10) 

(11) 

This inequality, which has been established for 
the particular case of a three-plasmon interaction, 
is a consequence of the general law that the entropy 
must increase. When Nka » 1 the entropy of the 

, quasi-particle gas is written in the form (cf. for 
example C4J): 

In accordance with the general principles of thermo
dynamics the entropy must be a non-decreasing 
function of time 

dS I dt;;:::: 0, (12) 

where the equality sign holds only when the quasi
particle gas is in statistical equilibrium. A condi
tion for statistical equilibrium is the equipartition 
of energy over the degrees of freedom 

~ka. = e = const, (13) 

or 

(14) 

(the Rayleigh-Jeans law). The constant e is the 
quasi-particle temperature. 

In certain systems statistical equilibrium can 
not be established in a quasi-particle gas. To 
prove this statement we consider the case in which 
the dielectric constant E(w, k), treated as a func
tion of w for fixed k, has the form shown in the 
figure (this is the case, for example, when a cur
rent flows through a plasma [ 5] or when an ion 
beam moves through a plasma, as in the example 
considered below). 

The proof is by induction. Let us assume that 
the interaction between quasi-particles leads to 
the establishment of an equilibrium distribution 
(13). We then have from (4) 

I Qlka.J 2 = 8n8/wka.k2e.,,.'. (15) 

The figure shows that wka E~a > 0 when a = 1.3 
and Wka E~a < 0 when a = 2. According to (15) 
these inequalities must lead to a contradiction: if 
e > o then the quantity I<Pkzl 2 is negative; how
ever, if we assume that e < 0 then the quantity 
I <Pkt, 3l2 is negative. 

Let us now examine the meaning of this result. 
The sign of the energy of the quasi-particles of 
type a is the same as the sign of the expression 

I 

wka Ewa. In the case considered above the energy 
of the different quasi-particles is different in sign 
and this is incompatible with the sign of the dis
tribution (13). 

From the foregoing considerations it is clear 
that the following general statement is valid: if a 
system contains quasi-particles with positive 
energy and quasi-particles with negative energy it 
is impossible to establish statistical equilibrium in 
the quasi-particle gas. 
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~({JJj 

0 

If statistical equilibrium cannot be established, 
the entropy must be an increasing function of time: 

dS I dt > 0. 

This increasing function will always have a limit, 
which may be finite or infinite. Evidently the first 
possibility corresponds to the establishment of 
equilibrium in the quasi-particle gas and does not 
apply in the case being considered. Consequently 

~ lnjNkal-++ oo, 
ka 

that is to say, the number of quasi-particles, at 
least those of one kind, grows without limit. 3l How
ever, from energy conservation we have 

~ = ~-~ka =canst 
ka 

from which it follows that the increase in the num
ber of quasi-particles with energy of one sign 
means a simultaneous increase in the number of 
quasi-particles with energy of the other sign. 

3. NONLINEAR WAVE INTERACTION IN A 
PLASMA CONTAINING AN ION BEAM 

As an example we consider the interaction of 
waves in a quasi-neutral plasma through which an 
ion beam moves; the beam moves in the direction 
of the magnetic field. Assume that the tempera
tures of the plasma ions and the beam ions are 
small compared with the electron temperature T e 
and that the ion density in the beam n 1 is much 
smaller than the plasma density n. We assume 
that the magnetic field H is large: H2 /87r » Mnc 2/2. 
Under these conditions the dielectric constant of 
the plasma (neglecting Coulomb collisions between 
particles) for the low-frequency irrotational os-

3 ) Actually, the growth of the number of quasi-particles of 
a given kind continues as long as the quasi-particle energy 
is less than the particle energy; when this point is reached 
it is no longer meaningful to make a distinction between the 
particles and the quasi-particles. 

cillations of interest here (w ~ Wpi): [ 5] 

e(oo, k) = 1- kz2 ~ OOpJ.L2 ~ 8/~t(v, u)/Bv. dv, 
k n"' oo- k.v. 

"' 
where J.L = e, i, i 1 is a subscript denoting the 
plasma component (electrons, plasma ions or 

(16) 

beam ions), wPJ.L = 47rnJ.Le 2/mw fJ.L is the dis
tribution function, u is the mean velocity of the 
beam ions, kz and Vz are the components of these 
vectors along the magnetic field. 

The spectrum WkG = wQ(k) for waves whose 
phase velocities satisfy the condition .J T elm 
» w/kz » v'Ti/M, is given by 

k = _oop;2k2[_1_ nl/n J ~= 
e(oo, ) - 1 k2 z w2 + (w- k,u)2 + k2c.2 0, 

Cs= V ~ • (1 7) 

This equation has four solutions. The solutions are 
easily found from the condition 
u2 = c~[1 + 3(n1 /n) 113) (at the stability limit): 

. -( lJ )'J, jkjk.u2 

001,2 = k.u(1-TJ) + ~f Wpi 

wa=k.u(i+TJ/2), 004=-kzu, TJ=(n1 /n)'t..<18) 

In obtaining these solutions we have assumed that 
k « wpi171/ 2/u. 

Suppose that at the initial time the distribution 
function for the plasmons differs from zero for the 
branches a = 1, 2, 3 for kx = ky = 0, lkzl ~ ko 
« wpi1Jth;u. Let us now trace the behavior. of the 
plasmon distribution function taking account of the 
nonlinear interactions described by (9). It follows 
from (9) that if plasmons characterized by kx, ky 
,.. 0 are not present initially then they will not 
appear. We therefore omit the subscript z on kz 
hereinafter. 

I 

We now obtain the value of Ewa for the spec-
trum in (18): 

I __ 6Wpi ('j )-'/2 . k 
~"'1,2- -t- (ku)2 '-'lJ sign ' 

ew; = (19) 

The quantity vhlf,~, for one-dimensional plasmons 

is given, for example, in [ 5]: 

vha:,~, = 8n:2 [ ~ 4n:e"'a 
8 '8 I I .LJ 2 
"'a "'~ 8w'l' J.l mJ.I 

r 8f~tlav ] 2 

x J dv k kl k" . (wha- v)(ooh·~- v)(ooh"v- v) 
(20) 

Analysis of the conservation relations 
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Wka. = Wk'~ + Wk"y, k =~k' + k" (21) 

for the initial conditions on Nka chosen above 
shows that only those interactions are possible in 
which plasmons from three different branches of 
the dispersion curve participate wka = wa(k): Nk1, 

Nk2, and Nk3; each triplet of interacting plasmons 
is independent of other triplets. The conservation 
laws do not forbid interaction with plasmons of the 
fourth branch but estimates of the quantity v~~, 
show that these are much weaker than the 1-2-3 
interactions. Hence the infinite set of equations (1) 
splits up into independent equation triplets. We 
write such a triplet for the case k > 0: 

. 2 123 
Nk1 = -- Vkh'k"(Nk1Nk"a- Nk1Nk'2- Nk'2NI<"3) 

3~ , 

(in finding the solutions of (21) we have used the 
fact that ku/wpi « 11 112 is small). For a Max
wellian electron distribution function 

21o ( e )2 k" Vk~\, = 8n4 - M-- --. 37 UT13 
(23) 

We note that (9) and (18) can be obtained from 
the hydrodynamic equations for a three-component 
plasma under the assumption that the electron dis
tribution is n = n0 exp ( ecp /T e> in the electric field 
of the oscillations; however, in tbis case the quan
tity V~'k" is much smaller 

v~'k",...., 100 ( _!__ ) 2
( ~ ) 4 k". 

M Wpi l'Tl UTl 

The equations (22) have two integrals: 

N1- N1<0l = 6 (Na- Na<0l), 

N2- N2<0> = -6(Na- Ni0l); 

6 = 2k" I k <,. 1 

(in order to conserve space we have omitted the 
subscripts k, k', k" on Nk1, Nk' 2, and Nk"3). Sub
stituting these integrals in the equation for N3 we 
have 

· 4 123 [ Nt<0l- N2<0l- 26Na<0l 
Na = -- Vkk'k" Na2 + Na----::c=-----

3u'YI 26 

_ (N1<0l- 6Na<0l) (N2<0l + 6Ni0l) ] 
. 26 . 

' From the definition of Nka and (19) for Ewa we 

assume that when k > 0, N1, N3 > 0, N2 < 0; these 
relations are used to find the solution of the equa-
tion: 

N3 = Na<0>(A -1) expBt ; 
1- expBt 

The solution in (24) holds for any initial condition 
with the exception of the narrow range of values of 
N1°l, N~0 l, and N~ol that satisfy the inequality 

IN/0l- N2<0l- 26Na<0>1~ <£IN1<0>- 6Na<0>IIN2<0> + 6Na<0ll}'l•. 

Since V:J:'k" > 0, N~Ol > 0, if the dependence on 

the initial conditions is neglected, the solution in 
(24) increases without limit. 

The characteristic time for the development of 
this nonlinear instability T can be estimated from 
the following: 

1 1 ( ku )2 '11''' 
't' ,...., 100 Wpi Wp; 1'11 I A - 1 I ~ a<0> 

nT 

1 ( n' )'" nT 
~ 1oowpi -n ~ a<0> , 

(25) 

where ~~Ol ~ w3N3k" is the plasmon energy per 
unit volume (N3) in the range -k" < k < k". We 
note that the growth time for the nonlinear insta
bility depends on ~ ~Ol as 1/ ~ ~o> and not logar
ithmically, as in the case of the linear instability. 
It is obvious that this derivation giving .the increase 
in the number of waves holds only so long as the 
perturbation theory holds. 

The example given above contains all of the 
characteristic features of the general discussion 
in Sec. 2. The energy ~ka = wkaEc'uak2lcpkal 2/87r 
in the first and third branches is positive while the 
energy in the second branch is negative. Formally 
(22) has stationary solutions N3 = N1N2/(N1 - N2), 

but these solutions have no physical meaning (one 
is easily convinced of this by noting that N1, N3 > 0, 
N2 < 0). Eventually the number of waves grows 
without limit. 

It is easy to estimate the magnitude of the inter
action between the plasmons and the background in 
the present example. The linear damping (growth) 
y ka (for a Maxwellian electron distribution) is 

This quantity is a maximum on branches 1 and 
2: 

(26) 

Plasmons are absorbed in branch 1 and created in 
branch 2. 
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The absorption (emission) of plasmons by parti
cles can also be related to nonlinear effects. An 
expression for the nonlinear damping (growth) 
Yka (N) is given in [ s] : 

Vha(N)=2~ ~ ~ dk'dk"6(k'+k"-k) 
~y 

{ 1 [ ~ 4ne~'3 
XImP k") , , . LJ --2 -

e(roha- O>k'lh e.,,.e.,~ ~' m~'. 

r d afl'jf)v ]2 
X J _v (O>ka- kv) (O>k'~- k'v) (O>k~- O>k'll- k"v) 

x Nk'll} (27) 

(the symbol ImP means that we are to take the 
imaginary part in the expressions in the curly 
brackets and that the integral over k" is to be 
understood in the sense of the principal value). 
Since the ions are assumed to be cold we need only 
consider the plasmon interaction with the electrons. 
The largest contribution in the expression for Ykt 
is given by plasmons Nk' 2 of momentum k', close 
to k, so that 

whence 

I O>kt- 0>k'21 ,_ 1/ Te 
k-k'. V m 

I kk" 1--1 k-kk' I k ,,-~'l'J·"-~ v _!!!__, 
rop; M 

We use this feature in computing Ykt, 2(N): k' is 
replaced by k and the integral over k" is estimated 
by the mean-value theorem. For a Maxwellian 
function fe(v) we find 

( n' \ '''V m k2rop; (O) Vkt 2( N) .-- - I - ----Nzt. 
'' n / M nMu ' 

(28) 

Since N1 > 0, and N2 < 0, plasmons are absorbed in 
branch 1 and created in branch 2. 

Similar calculations show that I Yk3(N) I 
« 1Ykt,2(N)I. 

The linear and nonlinear absorption (emission) 
of plasmons will have no effect on the results ob
tained above if IYk(N)TI, IYkTI :S 1. The condition 
I Yk(N)TI < 1 is always satisfied while the inequality 

IYkTI < 1 imposes a limitation on S'~ 0 l: 

nT ,(;;:;( n' )'1• 
S' 3(0) > -1oo v M- n · 

If this condition is satisfied the plasma can be re
garded as transparent as far as the plasmons are 
concerned. This limitation will not be imposed on 
S'~ 0 l if a plateau is formed on the function fe(v) in 
the region of the point v = cs: Bfe/B v = 0. 

The general properties of quasi-particles with 
negative energy are reflected in (26) and (28). Any 
interaction of the quasi-particles with the back
ground which leads to an increase in the background 
energy is accompanied by an increase in the num
ber of quasi-particles with negative energy. This 
statement follows from the conservation of energy 
(cf. alsoC6• 7J). 

In conclusion we note that the effect described 
here can lead to anomalous diffusion even in a 
plasma that is stable in the linear approximation. 
This effect is of interest from the point of view of 
the conversion of the energy of ordered beam 
motion into heat. 
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