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We investigate the irrotational oscillations of a fully ionized plasma located in a strong high­
frequency electric field. It is shown that the oscillations of the particles with respect to each 
other induced by the external field can lead to spatial dispersion. The presence of the high­
frequency field modifies familiar branches of the dispersion relations and is also responsible 
for the appearance of a new branch. It is also shown that a high-frequency field has a stabi­
lizing effect on the two-stream instability (electrons moving with respect to the ions). 

INTRODUCTION 

IN experiments on radiation acceleration [tJ one 
is concerned with a fully ionized plasma located 
in a strong high-frequency electric field. Under 
these conditions the field-induced velocity of the 
electrons can easily be much greater than the 
electron thermal velocity, and the distance 
traversed by an electron in one period of the high­
frequency field can be appreciably greater than the 
Debye radius. 

The theoretical investigation of a plasma sub­
ject to these conditions was initiated in a paper by 
one of the authors;[2•3J this work was concerned 
with phenomena connected with the effect of a 
high-frequency field on collisions between charged 
plasma particles. However, even in [3] attention 
was directed to the fact that there was no theory 
available to describe oscillations of a plasma 
located in a strong high-frequency field. In the 
present work we have developed a theory which 
describes irrotational oscillations of a fully 
ionized plasma for the case in which the period of 
the external high-frequency electric field is much 
smaller than all of the characteristic times asso­
ciated with the plasma motion. Under these condi­
tions one can use relatively slowly varying collec­
tive variables, which are governed by the modified 
equations for the self-consistent field; in the limit 
of zero external electric field these obviously be­
come the usual equations. 

The characteristic oscillation spectra of an 
unmagnetized plasma are first considered within 
the framework of the two-fluid hydrodynamic ap­
proximation (Sec. 1) and then by means of the 
kinetic equation (Sec. 2). Section 3 treats the 
spectrum of irrotational oscillations of a plasma 

in a fixed magnetic field. It is shown that the 
field-induced oscillation of the plasma particles 
with respect to each other provides a mechanism 
by which the oscillation frequency can depend on 
the wave vector. In other words, a varying ex­
ternal field (like thermal motion) can give rise to 
spatial dispersion. It is obvious that the situation 
is similar to that of a fixed electric field.[4] How­
ever, in contrast with the de field, a high-fre­
quency field does not excite low-frequency oscilla­
tions. Indeed, we show below that an external high­
frequency field can have a stabilizing effect on the 
two-stream instability in a plasma. The external 
electric field modifies familiar branches of the 
usual dispersion relation and also leads to the ap­
pearance of a new branch. In the long wavelength 
region the new branch is very similar to the ion­
acoustic wave, the only difference being that the 
role of the Debye radius is played by the magni­
tude of the electron displacement in an oscillation 
period of the external field. We note that the ion­
acoustic oscillations still appear in a noniso­
thermal plasma, although the characteristic spec­
trum is modified by the high-frequency field. 

1. OSCILLATIONS OF A COLD UNMAGNETIZED 
PLASMA 

We start our analysis with the case of a cold 
plasma in which the thermal motion of the parti­
cles can be neglected, using the two-fluid hydro­
dynamic equations. It will be assumed that the 
particle distribution is uniform in space in the 
equilibrium state. It will be also assumed that the 
electrons and ions move with fixed, but unequal, 
velocities, and that they oscillate under the effect 
of the high-frequency field E ( t) = E0 sin w0t. 
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Thus, in the equilibrium state the electron and ion 
velocities are given by 

ea. 
Ua = ua(O) + --Eo cos wot. 

mawo (1.1) 

The subscript a denotes the electron or ion re­
spectively. 

This directed motion leads to the appearance 
of an electromagnetic field. The effects of this 
field will be neglected below, as is customary in 
the theory of the two-stream instability. The os­
cillations associated with the irrotational electric 
field ( oE = -V'o<I>) can then be described by the 
following linearized two-fluid hydrodynamic equa-
tions: 

86va ea. --+ i(kva)cSva =- i-kcS<D, at ma 

o6na --a;-+ i (kua) cSna = - ina<0lkc5va, 

(1.2) 

(1.3) 

where n~) is the density of particles of type a in 
the equilibrium state and on a and ova are the 
nonequilibrium corrections to the density and 
velocity. 

The nonequilibrium potential of the field is de­
termined from the equation 

(1.4) 

This equation is now employed to eliminate the 
nonequilibrium potential; using (1.2) and (1.3) we 
find that the function 

'Va = eafma exp ( - i ~ dt kua) 

is described by the following two equations: 

ve'' + WLe2(ve + v; exp {ikut + ia sin w0t}) = 0, 

v/' + w2Li(v; + Ve exp {-ikut- ia sin wot}) = 0, (1.5) 

where 

u = u.<o)- u/0), 

4nn;<0le;2 
WL;2=--­

m; 

To obtain the oscillations of interest here, 
which are characterized by frequencies much 
smaller than w0, we now employ the familiar 
method of averaging. [5•6] Using the expansion 

00 

eia sin w,t = ~ ]z (a) eilw,t, 

l=-oo 

(1.6) 

as a first approximation for the quantities aver-

aged over the period 2n I w0 we have 1 l 

(1. 7) 

We then obtain the following dispersion equation 
for the characteristic frequencies of irrotational 
oscillations of a plasma in a high-frequency 
electric field: 

w 2 w .2 w 2w .2 
1 = · Le + ~ _ Le L• [1 - lo2 (a)]. (1.8) 

(w- ku)2 w2 w2(w- ku)2 

This equation yields a number of interesting 
features concerning the oscillations and the stabil­
ity of the cold plasma. However, before consider­
ing these features it will be useful to consider the 
accuracy of the method of averaging which has 
been used here. The most direct way to evaluate 
the accuracy is to examine the corrections to the 
spectrum in (1.8). To find these corrections we 
note that in the approximation used here, in which 
all plasma frequencies are small compared with 
w0, the following equation can be used to find 6 v a 
(the rapidly varying parts of v a ) : 

6v." + WLe2 ~ ]z (a) e-iloo,t+U<ut (v;) = 0, 
l+o 

6vi" + WLi2 ~ ]z (a) eiloo,t+ikut (v.) = 0. (1.9) 
l#O 

Solving (1.9) and using the solutions to obtain a 
second approximation for ( v a ) we have 

(v;)" + (v;) wd { 1 + WLe: ~ N (a) ~~} 
Wo I.PO 

+ (Ve) wd lo (a) e-ikut = 0. (1.10) 

l)If the external rf field is of the form E(t)=2 Eisin (w~t toi), 
the argument of the Bessel function of zero order will be of 
the form 

ECI> = ~E1 cos {! 1, EC2> = ~ E 1 sin {J 1• 

i 

These fonnulas can be useful, for example, in the case of 
random field phases. For circular polarization of the rf field 
the argument of the Bessel function will be of the form 

(e,. I m,.- e~ I m~)roo- 2k.LEo. 
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From the system in (1.10) and the second-approx­
imation dispersion equation we have 

=0 

(1.11) 

which evidently shows that the method of averaging 
can be used when the following inequality is satis­
fied: 

(1.12) 

We assume below that this inequality is satisfied. 2) 

Having verified the use of the method of aver­
aging we now analyze the dispersion equation (1.8). 
We shall first analyze the frequency region in 
which w » k · u. In other words, we shall be con­
sidering a plasma in which there is no directed 
motion or in which the oscillations have phase 
velocities exceeding the velocity of the directed 

motion of the electrons and ions. Then (1.8) yields 
the following two expressions for the character­
istic plasma frequencies: 

ro2 = CilLi + CilL;2lo2(a), 

ro2 = CilLN1- fo2(a)]. 

(1.13) 
(1.14) 

As far as the plasma oscillations at frequencies 
close to the electron Langmuir frequency WLe 
are concerned, we note that the effect of the rf 
field is simply a small correction to the depend­
ence of oscillation frequency on wave vector. In 
contrast with the usual Langmuir oscillations, [1J 

in the present case the frequency is a maximum 
rather than a minimum at k = 0 although 
w = ( WLe2 + wLi2 )1/ 2• As kvE/w0 = a increases it 
is evident from (1.13) that the frequency oscillates, 
assuming a minimum value WLe at points corre­
sponding to the zeros of J~ (a) and asymptotically 
approaching the same value according to the re­
lation 

ro2 = CilLe2 + CilLi2 :rti~Tcos2 ( ~- Ia! ). (1.15) 

At small value of a the oscillation spectrum (1.14) 
assumes the form 

CilLi2 
ro2 = -- (kvE)2 == (kw,)2. 

2roo2 
(1.16) 

2>we note that the method of averaging can also be used 
when the quantity k·VE/Wo is small, or, what is the same 
thing, when the strength of the high-frequency electric field 
is small and the oscillation wavelength is large. 

We may speak of anisotropic sound in the plasma 
under these conditions, understanding the velocity 
of sound to be Ws = wLiVElf2wo. 

According to (1.14), as a increases the oscil­
lation frequency also increases, assuming a max­
imum value equal to the ion Langmuir frequency 
at points at which the function J 0 vanishes. The 
frequency asymptotically approaches the same 
value in accordance with the relation 

ro2 =rod{ 1- :rt~al cos2(: -lal )}. (1.17) 

The relation in (1.16) allows us to proceed by 
analogy with the anisotropic random motion of 
electrons which leads to acoustic oscillations. 
However, this oscillatory motion is considerably 
different from the thermal motion, as is evident 
from (1.15) and (1.17). 

Let us now consider the effect of the high-fre­
quency oscillations on the two-stream instability 
(with respect to the irrotational oscillations). In 
the limit w « I k · u I the dispersion equation (1.8) 
yields 

rod {(ku) 2 - CilLe2 [1- JoZ(a)]} 
ro2= ? • 

(ku) 2 - CilLe-
(1.18) 

According to this expression, growing solutions 
are possible only when 

CilLe2 > (ku)2 > role[1- fo2(a)]. (1.19) 

The left side of this inequality arises in. the usual 
theory of a two-stream instability (without an rf 
field).[7- 9J The right side of the inequality in (1.19) 
vanishes when the field E0 vanishes; we note that 
the right-hand side of the inequality (1.19) has a 
strong limiting effect on the instability region. 
This result can be understood if we keep in mind 
the analogy between the effects of rapid particle 
oscillations in the external rf field and the effects 
of a thermal spread in velocity. 

If a is small, we have from (1.19) 

lkul2 > CilLe2Cilo-2(kvE) 2• 

Thus, for oscillation wavelengths greater than 
distances traversed by the electrons in a period 
of the external rf field the quantity WLewo 1VE is 
analogous to the mean thermal velocity of the 
particles; in the usual way, this thermal velocity 
must be exceeded if a two-stream instability is 
to occur. 

In the region of high a (1.18) becomes 

ro2 Cili.Je2 2 ( :rt I ) -=1+ --oos2 ---Ia . 
CilLi2 (ku) 2 - CilLe2 :rt I a I 4 

(1.20) 

In the absence of the rf field the maximum 
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growth rate arises in the region I k·ul = wLe, in 
which (1.18) does not apply. [a-to] Therefore let 
us consider this region in detail. Let ( k · u )2 

=WLe2 (1 +A), where IAI « 1. From (1.8)we 
now have 

2w3 (ku)- w2WLe2 [ 11-::J- 2w(ku)WLi2 

(1.21) 

If I A I « J~ [i.e., far from the right-hand 
boundary of the instability region (1.19)], (1.21) 
shows that when I w I I I k · u I « Jij the maximum 
growth rate is realized when A = me/mi; this 
growth rate is 

(1.22) 

A comparison with the growth rate for the usual 
two-stream instability shows that the present ex­
pression contains a factor Jij13 which reduces the 
growth rate in this region when an external rf 
field is applied. 

2. KINETIC THEORY FOR OSCILLATIONS OF 
AN UNMAGNETIZED PLASMA 

In the present section we derive a dispersion 
equation and consider certain spectra of the irro­
tational oscillations of a plasma in an rf field; 
however, in contrast with the preceeding section 
here we shall take account of the thermal motion 
of the particles. To describe irrotational oscilla­
tions we use the kinetic equation with the self­
consistent interaction: 

ilia + ilia. ilia . a "" r d d ea.ep i -.- Vu.------LJJ rp Pll II 
at ara. apa. ara. ~ 1 ra. - r 11 1 

ilia 
= --ea.E(t). 

ilpa. 
(2 .1) 

Here, fa is the distribution function for particles 
of type a and E ( t) is the time-varying external 
electric field. 

The equilibrium distribution function for a 
uniform plasma in an external electric field is 

t 

ia.<0>(pa.,t)=iao(Pa.-ea.~ dt'E(r)). (2.2) 
-oo 

Our problem is now reduced to that of analyzing 
the oscillations representing weak perturbations 
of the state described by (2.2). Thus, writing the 
distribution function in the form fa = f~) 
+ OfadPa. t)e-ik ·ra and linearizing (2.1) we ob­
tain the initial equation for the problem 

iJ6fa.+ 'kv "i 'kiJfa.<0l(pa., t) ""4ltea.ej3 \d "f 
-- ~ au e- ~ LJ-.-- J Ppu II 

at apa. ·~ .k2 

= _ 86/rz. ea.E(t). (2.3) 
ilpa, 

It will be convenient to introduce the function 
J t' 

1jla.(t, Pa.) = exp{ i ~"k ~ dt' ~ dt"E(t")} 
-00 -00 

t 

X 6/a.( t, pa +ea. ~ dt'E (t')), 
-oo 

which, as is easily shown, is governed by the 
equation 

(2.4) 

il1jla.(t, Pa.) + 'kv ,., - ikilja.o(Pa.) "" 4:rtea.ep \ dpp¢p(t, Pll) 
~ a."'a. ap LJ k2 J 

ilt a II 

Xexp{i(ea._~)k\ dt'~ dt"E(t")}=o. (2 .5) 
mo. mil' .:"" -oo 

For a monochromatic external field 
E = E0 sin w0t the relation in (2 .5) becomes 

81jla. + 'k .kili.a.o(p.;,) ·"C"l 4nea.ep - ~ Va.'iJa.- l _2j ---
i}t · ilpa fl k2 

00 

)(~ dpp11J!I(t,p 11 ) ~e-ilroot]1 (aa.ll)=0, (2.6) 
l=-oo 

where 

a .. p = kE( ea.-~). 
wo ma. mp 

As in the preceding section we assume that the 
frequency of the external field w0 is much higher 
than the frequency of the characteristic plasma 
oscillations. We also assume that wij » ( k · va )2• 

The relatively slow motions of the plasma can 
then be described by the function (¢a ) which 
represents the result of averaging the function 
1/!a over the period of the high-frequency external 
field. Ih this case we have from (2.6) 

8(¢a.> + 'k (•h > 'k ilfa.o(Pa.) 
--- l Va. '!'a - l 

at apa. 

"" 4nea.ep·~ x LJ-- dpp (1jlp) / 0 (aa.ll) = 0. 
. k2 
II 

(2. 7) 

Equation (2. 7) can be solved by the usual 
method used in the kinetic investigation of char­
acteristic plasma oscillations. [7] The dispersion 
equation for the irrotational oscillations can be 
written in the form 

16a.P+ 4nea.elllo(aa.ll)\ _dPa. k ilfa.l=O. (2.8) 
k2 J w + ~o- kva. ilpa 

The number of rows (and columns) of the deter-
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minant on the left side of (2.8) is equal to the 
number of charged-particle species in the plasma. 
If the plasma consists of electrons and one ion 
species (2 .8) becomes 

x 6e.(co, k)c5e;(l1l, k)= 0, 

where 

cSea(co k) = ~1tea2 (' dpa k!.!_ 
' k2 J co + iO- kva opa • 

(2 .9) 

(2.10) 

We now use (2 .9) for a plasma with a Max­
wellian particle distribution. In other words, it 
is assumed that the momentum distribution func­
tion is Maxwellian in the coordinate system in 
which particles of a given species do not oscillate 
under the effect of the external field. Then (2.9) 
becomes 

wavelengths. 
The other rf spectrum appearing as a generali­

zation of (1.14) and also corresponding to the case 
of phase velocities appreciably greater than the 
particle-thermal velocities is given by 

(2 .14) 

+ -2 1 3 exp [- 2k~2 2 ]} ' 
VTi VTi 

(2 .15) 

where v~ = I e/e I Te/mi. These formulas apply 
when 

(2 .16) 

Thus, (2.14) differs from (1.14) only by small 
corrections. The damping of low-frequency os­
cillations described by (2.15) is specifically a 
kinetic phenomenon, since it stems from the in-
verse Cerenkov effect. 

Another important nonhydrodynamic effect is 
the excitation of ion-acoustic oscillations when the 
electron temperature is appreciably greater than 

(2.11) the ion temperature. By means of (2.9) we can 
delineate the effect of the external rf electric 

where VTe = ( Tehne )112 and VTi = ( Ti/mi )112 

are the electron and ion thermal velocities, while 

"' 
h(x) = xe-""12~ d,;e-r'/2. 

ioo 

If the phase velocity of the wave is large com­
pared with the particle thermal velocities (2 .11) 
yields the following expressions for the real fre­
quency w and the damping of the high-frequency 
oscillations: 

(2 .12) 

(2 .13) 

The expression in (2 .13) is of the same form 
as the damping rate for Langmuir oscillations in 
the absence of an external rf field, the sole dif­
ference being that in the right side of the present 
formula the frequency is determined by (2.12). 
Both of these expressions apply when the wave­
length is large compared with the electron Debye 

radius rne = ( Te/47Te2ne (0))112 • According to (2.12) 
the effect of the external field on the rf plasma 
oscillations can be neglected at wavelengths 
smaller than [ ( 3mi/me) ( Te/4ne~ni (o)) ]1/ 2 • If 
those wavelengths correspond to large values of 
the argument of the Bessel function J 0 the ex­
ternal rf field can be neglected at even higher 

field on ion-acoustic waves whose phase velocity 
is large compared with the ion thermal velocity, 
but much smaller than the electron thermal ve­
locity. From (2.9) we find 

co2 =coL·2{1- 1 lo2 (a)}+3k2vT·2 
' 1+(krve) 2 '' 

(2 .17) 

+ C0Le2COLi2 lo2 (a) } 
co4VTe3 [1 + (krne)-2]2 . (2 .18) 

In the limit of wavelengths larger than the 
electron De bye radius we have from (2 .1 7) 

co2 = COL;2 {1--, lo2 (a)} + k2{vN02 (a) + 3vT;2}. (2.19) 

If the distance traversed by an electron in one 
oscillation period under the effect of the external 
rf field is large compared with the electron Debye 
radius (at angles between k and E0 which are not 
too close to n/2) the most important term in (2.19) 
is the first term. In other words, the spectrum of 
ion-acoustic oscillations is similar to the low­
frequency oscillations in (2.14), which also ob­
viously correspond to the joint oscillations of 
electrons and ions. However, the conditions for 
applicability of these formulas are generally dif­
ferent. 
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3. LOW-FREQUENCY IRROTATIONAL PLASMA 
OSCILLATIONS IN A CONSTANT MAGNETIC 
FIELD 

In a constant magnetic field B the motion of 
the charged particles is characterized by the cy­
clotron frequencies rla = eaB!mac. We consider 
the case in which the frequency of the external 
electric field is much higher than the cyclotron 
frequency, following the approach used in the pre­
ceding section; the dispersion equation for the ir­
rotational oscillations is found to be: 

(3.1) 

The z axis is along the magnetic field while 
V2 =v2 +v2 

1 X y· 
In a plasma consisting of electrons and one ion 

species (3.1) becomes 

1 + lle.(w, k) + lie;(w, k) 

+ [ 1 - fo2 (a)] llee( w, k) lie;( w, k) = 0, 
(3.2) 

where 

X (3.3) 

If fao is taken to be a Maxwellian function, after 
integration over momentum we have from (3.3)[!1] 

Wvx.2 { "' w } 1\e,.(w, k) = -k2 - 2 1- ~ ---,.-Ainl (za)l+Wn") . 
. Vra n=-oo W - no•a 

Here 
a 
~n 

(3.4) 

An(Za)= e-zaJ,(za), f_J-(~n")= ~n"e-<~na)'/2 ~ d-r:et'/2, 
ioo 

kJ...2VTa2 R a-W- nQ,. (3.5) 
Za=~, pn- I I , 

••a kz Vra 

where In ( za) is the Bessel function of imaginary 
argument. 

Let us now investigate plasma oscillations that 
arise under these conditions in the frequency re­
gion I w I « Qi. In this case we only retain the 
n = 0 term in the series in (3.4) and obtain the 
following dispersion equation: 

The expression in (3.6) generalizes the dispersion 
equation we have given earlier (2.11) to the case 
of an external magnetic field. If the waves propa­
gate along the magnetic field (k1 = 0) it is evi­
dent that the earlier result (2 .11) applies . 

For wavelengths somewhat greater than the 
mean Larmor radius of the particles (klvTalrla 
« 1 ) and propagating at angles not too close to 
rr/2, we have from (3.6) 

(3.7) 

This expression differs from (2 .11) only in that 
the quantity k is replaced by I kz I in the argu­
ment of the J + functions. 

Using (3. 7) we can obtain the oscillation spec­
trum and the damping rate in the presence of an 
external magnetic field. Thus, if the phase veloc­
ity is much greater than the particle thermal 
velocities (2 .12) and (2 .13) are replaced by 

(3.8) 

(3.9) 

where 8 is the angle between k and B. 
In the frequency region I kz I VTi « I w I 

« I kz I VTe (when Te » Ti ) we find propaga­
tion is possible for ion-acoustic waves such that 
the frequency 

w2 = cos2 8 { WL;2 [ 1- fo2(a) J + 3k2vr;2 }(3.10) 
1 + (krve) 2 . 

and the damping rate 

(3.11) 

Finally, in the limit of wavelengths larger than the 
electron Debye radius, using (3.10) we obtain an 
expression which differs from that obtained 
earlier in the absence of the magnetic field (2 .19) 
by the factor cos28. 

x [1-A0 (z;)J+(~oi)] = 0. 

If the thermal motion of the plasma particles 
is neglected, i.e., if a hydrodynamic analysis 
similar to that in the first section is used, in 

(3.6) place of (3.1) we find 
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'6"'~- ;L"'( cos2 8+sin2 8ro2 -ro~a2 )lo(a)l =0. (3.12) 

In a plasma consisting of electrons and one ion 
species (3.12) assumes the form 

CilLe2rou2 ( ro8 ) +f1-/02 (a)]--4-- cos2 8 +sin28~2 
Cil Cil -••e 

X ( cos2 8 + sin2 8 'll2 : Qi2 ) = 0. (3.13) 

The magnetic field does not have an effect on 
the oscillation spectrum for strictly longitudinal 
propagation ( (J = 0 ) and we obtain the earlier ex­
pressions (1.13) and (1.14). In propagation of 
waves directly across the magnetic field the os­
cillation frequency is given by 

Qe2 (Qi2 + CilLi2) + (1 -/o2(a)) CilLe2CilLi2 

Qe2+ CilLe2 

(3.14) 

Let us now assume that the magnetic field is 
not large so that the inequality WLe 2/Ue2 » 1 is 
satisfied. From (3.14) and (3.15) we then have 

ro2 ~ CilLe2 + CilLi2/u2(a), (3.16) 

ro2 ~ CilLi2 ( Ue
2 + 1 -/o2 (a) ). 

CilLe2 (3.17) 

It is evident from (3.1 7) that the external rf field 
will have an important effect on the plasma oscil­
lation spectrum when 

Qe2 
1-lo2(a)';>-2 • (3.18) 

CilLe 

Under these conditions the oscillation spectrum 
(3.17) becomes similar to the characteristic spec­
trum (1.14) described in detail in the first section 
of the present work. Finally, we present expres­
sions for the oscillation spectrum for waves 
propagating at arbitrary angles (but not close to 
rr/2 or 0). 

In the frequency region I w I « Q i we obtain 
the electron branch 

(3.19) 

In general, when one takes account of spatial dis­
persion due to the thermal motion of particles the 
small thermal corrections to the frequency com­
pletely determine the velocity of propagation of a 
wave; similarly, here [(and also in (3.20)], we 

keep the small term WLi2J~, which completely de­
termines the spatial dispersion of the cold plasma. 

Evidently (3.19) differs from the spectrum ob­
tained earlier (1.13) only in the presence of the 
factor cos2e. Correspondingly, in the ion branch 
of the oscillations the difference from (1.14) (no 
magnetic field) reduces to the appearance of the 
factor cos2e. 

In the intermediate frequency region where 
Qi « I w I « I Ue I propagation of electron oscil­
lations with·frequency 

(3.20) 

becomes possible almost over the entire angular 
region if Q~ « wLe2 « Q~. In this case the mag­
netic field has no effect on the spectrum of ion 
oscillations and the earlier result (1.14) is re­
covered. 

The authors wish to thank A. A. Rukhadze for 
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this work. 
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