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A method in which spin-lattice interaction is described in terms of the spectral density of a 
heat reservoir is applied to paramagnetic relaxation processes in a solid. General formulas 
are obtained for calculating the spin-lattice relaxation time T1 for the direct and Raman 
processes. The formulas relate T1 to the coefficients of the spin-phonon Hamiltonian and 
parameters of the solid. As an example, spin-lattice relaxation of radicals in a solid is con
sidered. 

The shape of EPR lines in a solid due to spin-lattice interaction is considered. It is shown 
that in the harmonic approximation the effect of narrowing of the EPR lines as a result of the 
vibrational motion of the nuclei does not occur. The absorption line is Gaussian in its wings, 
and the phenomenological Bloch equations are not applicable (the transverse relaxation time 
T2 has no meaning). If anharmonicity (or the finite mean free path of the phonon) is taken 
into account, the line is of the Lorentz type. 

IN the theory of paramagnetic relaxation in liquids 
and gases, the motion of the particles of a thermal 
wave in contact with a paramagnetic system is de
scribed by some random process. The probability 
characteristics of this process determine the 
shape of the absorption signal in magnetic reso
nance g ( w ) and the rate of attainment of equili
brium between the bath and the paramagnetic sys
tem (the spin-lattice relaxation time T1 ). In this 
paper we show that this approach to relaxation 
phenomena can be extended to the case of solids, 
when the relaxation takes place by the Kronig- Van 
Vleck mechanism.C1•2J Using the same (and some
times more general) assumptions as in [2J, we 
shall obtain a general formula for T1 involving 
the coefficients of the spin-phonon Hamiltonian 
and certain parameters of the solid, and we shall 
determine the form of g ( w) in the solid (if there 
are no interactions affecting the line width other 
than spin-lattice relaxation). Neither of these re
sults can be obtained if the usual method of calcu
lating the Kronig- Van Vleck mechanism is fol
lowed. [2] 

1. STATISTICAL DYNAMICS OF THE LATTICE 

We shall consider the solid as a collection of 
harmonic oscillators with coordinates qk (k is 
the wave vector, qk the corresponding normal 
coordinate). If the normal velocities are symbol-

ized by Yk• then, according to the Gibbs distribu
tion for the oscillators, ~ and Vk are distributed 
according to the normal law 

W(qk, VJt} 

= ( 2nwkak2) -I exp ( -qk2 I 2ak2 - V~t2 I 2w~t2G~t2 ), (1) 

where Wk is the frequency of the normal vibra
tion k, and a~ is, from [3J, 

2 fi ( fiwk \ 
Gk = ---cth --I 

2Mwk \2kT;' (2) * 

where M is the mass of the crystal and T is the 
temperature. 

We symbolize the coordinate of the nucleus of 
the n-th atom in the direction a by Xna and con
sider Xna as a random function of time. Clearly, 
because of the linearity of the transformation 
from qk to Xna the distribution law for Xna is 
also normal.[4] More detailed calculations show 
that if we let p represent the aggregate of indexes 
n and a, and the instant of time is t, then the 
multi-dimensional vector with components Xp is 
a random vector with a normal distribution law, 
and its correlation function in the case of an iso
tropic solid is 

(x) 
App'(t) =<Xna(t)xm~(O)) 

= lla~ ~ Gk 2 COS kRnm COS Witt, 
It 

*cth = coth. 

(3) 

580 
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where Rn.m is the distance between the nuclei n 
and m. 

If it is necessary to consider the anharmonicity 
of the lattice vibrations, then we must write in
stead of Eq. (3) 

A.~~~nh (t) = 6a~ ~ crk2cos kRnmCOS wktexp(- rk It!), (4) 
k 

where the quantity rk represents the damping of 
a harmonic vibration due to anharmonicity and has 
the significance of the inverse time of the free 
path of a phonon with wave vector k. 

Since a more detailed presentation of our re
sults will be published later, we shall omit most 
of the intermediate steps in the derivation of 
Eqs. (3), (4), and the rest, and present only the 
most important equations. 

As calculation shows, the quantum mechanical 
correlation function, [fi] equal to 

A.~~~. m(J (t) = < {xna ( t) Xm~} ), {AB} = 1/2(AB + BA), 

A(t) = exp (i/Jft)A exp (-i.'Jtt), (5) 

where JC is the phonon Hamiltonian in frequency 
units, coincides with Eqs. (3) and (4). By using 
the Debye model for the solid, the summation over 
k in these expressions can be replaced by an in
tegration over Wk, which gives 

(x) f zE) sin rnmZ dz 
Ana,mB(t)=6aBiiwn2 J cth 2T----coszwDt-4 2 3 , (6) 

o rnm :n: pu 

where rum = wnRn.mlu; wn, e are respectively 
the Debye frequency and temperature, p is the 
density of the sample, and u is the velocity of 
sound. 

Anharmonicity is approximately taken into ac
count (as follows from Eqs. (3) and (4 )) by the 
correlation function 

(x)anh . I I j;l:) Ana, m~ (t) = exp (- r t ) A:na, m~ (t}, (7) 

where r- 1 is the effective mean time of the free 
path of the phonon, which depends on temperature. 

A formula similar to Eq. (6) can also be ob
tained for the correlation functions of the veloci
ties of the nuclei Vna of atoms n and m: 

(v) { } d2 (x) 
Ana,m~(t}=( Vna(t}vm~ )=- dt2 Ana,m~(t}. (8) 

The function A.~vd~JA~( t ), which approximately ac

counts for the anharmonicity, is obtained by mul
tiplying Eq. (8) by exp (- rl ti}. 

Finally, we give the result of the quantum 
mechanical calculation of the correlation functions: 

A.~xJmv, p~lTJ(t} =( {xnll(t)Xmv(t)xp~XlTJ} ), 

A.~~mv, p\;lTJ (t) =<{ Vnll(t) Vmv (t} Vp~VlTJ}), 

which we shall need for calculations of the quan
tity Tt: 

A~Jmv, p~lr. (t) = A~xJ. p; (0) A~~. zr. (0) + A~~. p~ (t) A~~. zr. (t) 

+A~~. zr. (t) A~~.P~ (t)- t'l"";<\r.8~J (t) 8~) (t) 

- t'li'-Yt'lr,~8~) (t) 8~~ (t), 

1 . d 
(x) \' sm rnmZ . Z 

8nm (t) = 1iwD) sm WDtz ~ , 
0 rnm :rt pu 

and similarly for A.~~inv,p.;l7J (t ), if instead of 

A.~~l,p~ we substitute A.~~l,p~ ( t ), and instead of 

e~~ ( t) 
8(V) ( ) d2 8(x) ( ) nm t = - (jj2 nm t . 

For the "mixed" correlation function we ob
tain 

(9) 

' (xv) d2 ' (x) (t) "'nl'-mv, p;lr. (t) = - dt2 "'nl'-mv, p~lr. • (10) 

2. PROBABILITY OF RELAXATION TRANSITIONS 

It will be assumed that the state of the para
magnetic particle (ion or radical) in the absence 
of a magnetic field is degenerate only with respect 
to the spin variables and non-degenerate with re
spect to the orbital quantum numbers of the elec
trons, and that the spacing between the orbital 
levels is considerably greater than the vibrational 
quanta of the nuclei and the Zeeman energy of the 
electronic spins (in the case of a paramagnetic 
ion, this means that the Stark splitting in the 
crystalline field is greater than the Debye fre
quency, although it can be significantly less than 
the spacing between the ground electronic terms). 
Then averaging of the Hamiltonian over the or
bital motion of the electrons with regard for the 
necessary approximation of perturbation theory of 
spin-orbit interaction gives an operator that de
pends on the coordinates and momenta (velocities) 
of the nuclei and the spin coordinates, which we 
will call the spin-phonon Hamiltonian. Expanding 
the spin-phonon Hamiltonian in a series, we ob
tain for the operator of the interaction of the spin 
system with the phonon reservoir (in units of fre
quency): 

(11) 
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In what follows we shall limit ourselves to a con
sideration of terms containing the first degree of 
the spin Sa (for S = % all the remaining terms 
vanish; for S > % higher degrees of S play an 
important role, if because of symmetry considera
tions the coefficients of the lower terms vanish; 
the treatment of these terms is completely ana
logous to the analysis of the first terms of the 
series with the exception of the complication of 
the tensor symbols) and the first or second de
gree of the coordinates or velocities of the nuclei. 
We remark that the terms containing Xn~ and 
x~xmv respectively cause adiabatic direct and 
two-quantum transitions (these terms exist in the 
adiabatic approximation to the motion of the elec
trons and nuclei). Terms containing v~ and 
vn11Vmv are responsible for purely non-adiabatic 
transitions.m Cross terms of the form Xn~Vmv 
bring about "mixed" transitions. The coefficients 
in (11) are to be determined by the usual proce
dure for finding the spin Hamiltonian. [G] 

We note that since the interaction of the spin 
with the nuclear vibrations depends only on the 
relative coordinates of the nuclei, the coefficients 
in (1) can be chosen so that 

" n m nmJJ.v 

and similarly for the coefficients C, D, E, and F, 
if the interaction depends only on the relative 
velocities of the nuclei. 

Now it is not difficult to obtain the following 
equation for the probability of a relaxation transi
tion under the influence of the first term in (11) 
between the states a and a' of the spin subsys
tem: 

wo = Waa' is the frequency corresponding to the 
transition a- a'. Equation (13) is the general 
quantum mechanical formula of perturbation 
theoryC 5J. At the same time Eq. (13) can be 
written also on the basis of a representation in 
which Xna ( t) is a random process, the correla
tion function of which is determined by Eq. (6). 

Substituting (6) into (13) and noting that 
Rnmwolu « 1 ( Rnm is the equilibrium distance 
between the nuclei with which the unpaired elec
tron interacts; it is assumed that the electron is 
localized near· a small number of nuclei), for 
tiw0/kT « 1 we find for the direct adiabatic proc
esses in the harmonic approximation: 

Waa' = roo2kTAa. .. nAf'>"mRnm2 (Sa.)aa'(Sf'>)a'a/ (12npu5). (14) 

For the nonadiabatic transitions (the interaction 
depends only on the relative velocities), we obtain 
an analogous expression (replacing A~ll by C~ll 
and w~ by w~ ). 

From Eqs. (13) and (6) it is easy to see that the 
quantity 

00 

61'vj~"'r!,(ro) = ~ /,~~, mv(t)exp(irot)dt, 
-oo 

which represents the matrix of the spectral den
sity of the random vector Xp, in the harmonic ap
proximation, tends toward zero as w- 0. Ac
counting for anharmonicity according to Eq. (7), 
jnm ( 0) ~ r and does not go to zero. Hence for 
the direct transitions at a frequency w0 « WD the 
anharmonicity should play a significant role. 
Direct calculation gives 

W~~~= hrov2fA~..Aif .. (Sa.)aa'(Sf'>)a'aR!m/n2pu5, (15) 

which differs from (14) by a factor of the order 

(rov/ro0) 21il'/kT ~ (rov/ro0) 2hufl0kT, (16) 

where Z0 is the mean free path of the phonon. At 
helium temperatures Z0 does not exceed 0.1 em; 
hence the factor (16) is of the order 10 when 
w0 ~ 1010 cps and WD ~ 1013 cps. From Eq. (15) 
it is also seen that T1 can depend on the dimen
sions of the sample, if these limit the free path of 
the phonon. 

For non-adiabatic transitions the anharmonicity 
increases the probability of the transition 
( wDiw0 )4 ti r /kT times; it is obvious that at low 
temperatures only the effect of non-adiabaticity 
need be taken into account. 

In calculations of the probabilities of two
phonon transitions the spectral density of the 
process XnaXmf3• the matrix of which corre
sponds to the correlation matrix (9), does not go 
to zero when w - 0. Hence the anharmonicity in 
this case can be neglected. Direct calculation 
gives for the adiabatic transitions 

1 

J,. = ~ x" exp(x8/T) ( 1 - exp(.xE>/T)) - 2 dx. (17) 
0 

In the derivation of (17) we took it into account 
that ( w01wD) « 1, and, as in (2), we assumed 
RnmwDiu « 1; actually RnmwDiu ~ 1; however, 
it can be shown that this circumstance only slightly 
alters the value of T1 calculated according to (17). 

For purely nonadiabatic and "mixed" transi
tions, we obtain respectively 
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wg~nad wv11h2110C!;:::_cf~vH~pR~~ (Sa) •w (Sp) a'a/ 144:n;3p2u10, 

W a~~x Wv9h2lsE!;'(:!E/..tR!vR~(Sa) aa' (Sp) a'a/144:n;3p2uto, 
(18) 

Equations (14), (17), and (18) contain as special 
cases the results of Van Vleck [2]; for specific 
calculations of T1 it suffices to know the coeffi
cients of the spin Hamiltonian determined for 
each special case; the interaction of the spin with 
the lattice vibrations is then already completely 
taken into account. 

We remark further that the above analysis of 
the role of anharmonicity gives us an understanding 
of why the Van Vleck theory agrees poorly with 
experiment at helium temperatures, [T] and (at 
least semi-quantitatively) removes the existing 
discrepancies (a complete quantitative analysis 
requires the calculation of the functional depend
ence r (k) in Eq. (4) and the following formulas 
for the correlation functions that account for the 
anharmonici ty). 

Examples of the application of Eqs. (14), (15), 
(17), and (18) to the calculation of T1 of radicals 
in a solid are given below; specific calculations of 
the coefficients of the spin Hamiltonian are pre
sented in papers by the author and Kessenikh.[B] 

3. SHAPE OF THE EPR LINE IN A MAGNET
ICALLY-DILUTE SAMPLE 

In this section we go through an analysis of the 
shape of the EPR line, starting from the assump
tion that the motions of the atoms in the lattice 
can be described classically. It can be shown that 
the quantum mechanical calculation (at least for 
the harmonic model of the structure of the solid) 
leads to the same results. This is because the 
shape of the line is determined principally by the 
linear terms of (11), and t}le classical and quan
tum descriptions for the correlation functions of 
these terms lead to the very same result. For 
simplicity, we shall henceforth assume that 
s = 1/2. 

We consider first the case when the spin 
Hamiltonian contains only adiabatic terms: 

3f = woSz + Aa11nxn11Sa, 

where Xnt.t is a random function of time. The 
quantity w1, determined by the relation 

Wt2 = ( (A,pnXnf1)2), 

(19) 

(20) 

represents the mean square of the interaction of 
the spin with the nuclear vibrations. For a radical 
with a highly anisotropic g factor, w1 ~ ~gwo~R/R 
( ~R is the mean square displacement of the nu-

clei, R is the equilibrium internuclear separation). 
for a paramagnetic ion, w1 -1'iA.2~RO/~E2R (A. is 
the spin-orbit interaction constant, 6, ~E are the 
splittings of the levels in a crystalline field of low 
and high symmetry, respectively). Now, the secu
lar part of (19) can be written in the form 

(21} 

where 

(22) 

is a random function with a normal distribution 
(because of the linearity of the transformation 
(22)). 

Following the arguments of Abragam [9] (Chap. 
X), it is easy to show that precisely the secular 
part of the Hamiltonian (19), i.e., the operator 
(21), determines the shape of the absorption line, 
if the nucleus is immobile. In liquids, as is 
known, [10] random molecular motion causes the 
contribution of the secular terms to the line width 
to be lessened when the characteristic frequency 
of the molecular motion, equal to the reciprocal 
of the correlation time r c, becomes comparable 
to the magnitude of w1. When w1rc « 1, we en
counter the case of strong narrowing: the contri
butions of the secular and non-secular terms are 
of the same order of magnitude, and the absorp
tion line has a Lorentz shape. However, a corre
lation time for a random process r c can be in-

troduced only when J.oo t I A. ( t) I dt (A. ( t) is the 
0 

correlation function ) converges. But if the solid 
is considered as a collection of harmonic oscilla
tors, then, in accordance with Eqs. (3) and (22), 

fooo t I ( y ( t) y) I dt- 00 ; thus the arguments of 

Kubo and Tomita[10] leading to a narrowing and a 
Lorentzian line shape are inapplicable. 

We therefore conclude that if the analysis of 
the line width ~w caused by the secular Hamil
tonian (21) leads to values ~w » T1 1 ( 1/T 1 
represents in order of magnitude the contribution 
of the non-secular terms for any kind of motion 
of the particles [1o] ), then it is reasonable to con~ 
sider the secular Hamiltonian (21) instead of the 
complete Hamiltonian (19). 

So, we shall consider the operator (21). Then 
for S = 1/2 calculation ol the line shape amounts 
to solving a modulation problem, i.e., to calcu
lating the expression [9] ~ 

t2 

G(t1-t2)= <exp(ict)tSY<t)dt)>. (23) 
t, 

The distribution function W ( Y1 ... Yp ... ), 
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Yp = y ( ~) is not difficult to write down in inte
gral form, since y is a linear combination of the 
normal coordinates and velocities qk and Vk• the 
distribution function of which (1) is known. [4] 

Exact calculation of g ( w) by the formula 
... 

g(ro) = ~ G('t'}exp(i(ro + roo)'t')d't' (24) 
-<X> 

with a value of G corresponding to (23) would 
lead to a collection of a huge number of 6-func
tions at frequencies c.;r, which are combinations 
of the frequency w0 and the frequencies of the 
normal vibrations Wk (the motion of the nuclei is 
periodic in the absence of anharmonicity): 

g(ro) = ~ a,c'l(ro- ro,). 
r 

In order to obtain a smooth function g ( w ), it is 
necessary to average G ( T) over an interval of 
time ot small compared to T but large com
pared to wi{ t. If we carry out this averaging 
(symbolized by a bar) of the distribution function 
W ( Yt ... Yp ... ), it can be shown that 

(8/Btp}W=O. (25) 

We now introduce the auxiliary quantity [tt] 

tz 

A (Yt. t1, t2) = (exp(irot ~ y (t) dt) )y, (26) 
t, 

where (-.. -. )yt means that the averaging is car

ried out by means of the distribution function W 
for a fixed value of Yt· Then, differentiating (26) 
with respect to tt we have, on the basis of (25): 

aA 1 at1 + iro1yA = o, 

and A ( Yt• tt, tt) = 1. 
The solution of Eq. (27) is 

A = exp [ -irotYt (t1·- t2)]. 

Since 
... 

G (t1 - t2) = ) W (Yt)A (Yt. t1, t2) dyt, 
-00 

(27) 

and y has a normal distribution with a single dis
persion (according to Eqs. (20) and (22)), then 

G(t"} = exp (-_-rob2}, 

g(ro} = (2:rtrot)-1 exp [-(roo- ro} 2 / 2ro12]. (28) 

We now note that the terms containing squares 
of the nuclear coordinates in the expansion (11), 
which we did not take into account in deriving (28), 
can be neglected in determining the line shape in 
the harmonic approximation. In this case the role 

nm 
of WtY is played by the quantity w2 Z = Af.J- 11 XntJ.Xmv· 

It can be shown that the dispersion of this quan
tity is proportional to the factor ( ( v2 ) /u2 )2, 

whereas w~ ~ ( v2 ) /u2, where ( v2 ) is the mean 
square velocity of the nuclei; since up to the 
melting point ( v2 ) /u2 « 1, then this means that 
the quadratic terms give a smaller contribution 
to the line width (in the harmonic approximation) 
than the linear ones. 

It can be shown that this averaging operation on 
the distribution function leads to the correct form 
of g ( w) for very high frequencies w. For small 
w, values of G ( T) for large T are important in 
Eq. (24), which can be correctly found only with 
regard for anharmonicity or other "non-ideal
ities" of the lattice that lead to a finite lifetime 
of an individual normal vibration. 

Calculation of the anharmonicity by means of 
Eqs. (3) or (7) removes the reason for the inap
plicability of the general theory of narrowing, [to] 
and instead of Tc in the formulas of [tO] it is 
necessary to substitute the quantity 1/r, and not 
1/wn, as would appear at first sight. 

Therefore, the following cases are possible in 
a solid. 

1. For small anharmonicity ( wt/r » 1) the 
line is Gaussian in the wings; the phenomenolog
ical equations are inapplicable; the ratio between 
Wt and the spin-lattice relaxation time on the 
basis of the formulas in Sec. 2 has the form (for 
T/® < 1) 

Tct '""'.rot~ [-!._ (roo )n + 4f + j_h+n]' 
ron E) ron ron 3 

(29) 

where n = 2 for the adiabatic and n = 4 for the 
non..,.adiabatic ("mixed") mechanism of relaxation. 

2. Weak narrowing ( w~/r » Tit, wt/r < 1 ); 
the line is Lorentzian; The Bloch equations are 
applicable; the ratio between Tt and T2 has the 
form (see Eq. (15)): 

(30) 

3. Strong narrowing (wt/f « 1, c.;~/r 
« Tit); in the Bloch equations Tt = T2• The first 
two terms in square brackets in Eq. (29) play the 
dominant role at helium temperatures (direct re
laxation process); near the Debye te]llperature the 
last term is dominant (Raman processes). We 
emphasize further that the quantity r' which is 
connected with the mean free path of the phonon 
Z0 by the relation r ~ u/Z0, essentially depends 
on temperature; indeed, at low temperatures it 
can happen that Z0 is determined by the linear 
dimensions of the sample. 
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4. SPIN-LATTICE RELAXATION OF RADICALS 
IN A SOLID PHASE 

A comparison of the formulas obtained above 
for the probabilities of relaxation transitions with 
the work of Van Vleck [2] shows that all the re
sults of[2] can be obtained from Eqs. (14), (17), 
and (18). It then turns out that the adiabatic proc
esses are the most important ones for cr3+ 

whereas the spin-lattice relaxation of Ti3+ fs due 
to non-adiabatic (at helium temperatures) and 
mixed (at higher temperatures) spin-phonon in
teractions. At low temperatures agreement with 
the experimental data is attained if one takes into 
account the anharmonicity parameter r, as was 
indicated in Sec. 2. 

As a further example of the application of the 
apparatus presented above, we give certain re
sults pertaining to spin-lattice relaxation of radi
cals in a solid sample. 

As is known, in liquids the spin-lattice relaxa
tion is associated with the rotation of the radical 
as a whole. [t2J The spectrum of rotational motions 
in a solid, generally speaking, is essentially dif
ferent from the Debye spectrum. However, in an 
isotropic body, for which there exists only one 
acoustic branch of vibrations and the radical can 
be considered as an impurity that does not dis
turb the elastic properties of the body, small 
angular rotations of the radical can be related to 
the elastic vibrations of a medium described by 
the Debye model. In this connection one should 
realize that Eqs. (31)-(34) below may not be 
suitable, for example, in cases when the inter
molecular interaction in a molecular crystal de
pends on the mutual orientation of the molecules. 

Let the anisotropy of the g factor ~g be the 
cause of the relaxation, as in liquids [12]; with the 
aid of the formulas of Sec. 2, we find for T1 in 
the harmonic approximation at low temperatures 
(direct processes) 

1 ( ().g ) 2 w0"kT -2T = ---- --- ( 1 - 3 sin2 'l't cos2 'l't + cos" 'l't) (31) 
ld g 24:rtpu5 ' 

where J is the angle between the magnetic field 
and the principal axis of the axially-symmetric 
g tensor. 

Taking anharmonicity into account, we have 

1 ( ().g ) 2 Wo2wnli 
2Tanh= -g-- 24 "l (1-3sin2'1'tcos2tt+cos''l't). 

ld ' :rtpu o 
(32) 

At higher temperatures (Raman processes) 

1 ( ().g )21i.2roo2wn7 
2T lR = g 36:rt3p2u1o Ia ( 1 + 3 sin2 'l't cos2 'l't). (33) 

If anisotropy of hyperfine structure is the cause 

of relaxation, eta] then a dependence on the num
ber of the hyperfine component appears in the 
expressions for T1 (i.e., a dependence on the 
nuclear spin projection M 1): 

1I2T ld = M 2kTwo2l(l + 1) [a+ bM12] I 2:rt2pus, 

1I2T ~~h= ().A 21iwn2l(l + 1) [a+ bM12] I 2:rt2pu'lo, 

1/2T1R = M 2wn7h2lal (I+ 1) [a'+ b'M12] f 36:rt3p2u10; (34) 

the coefficients a, a', and b, b' are of the order 
of unity and depend on the equilibrium orientation 
of the radical relative to the external magnetic 
field; the quantity ~A is expressed in frequency 
units. 

In the simultaneous calculation of the aniso
tropy ~A and ~g. there appear terms in Eq. (34) 
proportional to ~A~g and linear in M1. 

Using the ideas in Sec. 3 one can consider for 
a solid the problem of modulation of the intra
molecular vibrations of the radical by the lattice 
vibrations, which leads to spin-lattice relaxation 
as a consequence of the modulation of the iso
tropic part of the hyperfine interaction (in liquids 
this mechanism has been considered by Valiev [14]). 

The result of a calculation in the harmonic ap
proximation [BJ shows that in a solid the indicated 
mechanism is not effective, because it turns out 
that 1/T1 is proportional to the small quantity 
exp [ -Q 2/2~Q2 ], where~ is the frequency of the 
intramolecular vibrations, and ~ is the line 
width of Raman scattering or infrared absorption 
due to interaction with the remaining molecules 
of the sample in which the given radical is an 
impurity. 

As calculation has shown, the non-adiabatic 
mechanism of relaxation associated with pro
gressive vibrations of a many-electron radical is 
also weakly effective (the term of the form p v 
'th 1 . 0!0! m e e ectromc Hamiltonian, where Pa is the 
momentum of the electron). Numerical estimates 
show that processes associated with the hyperfine 
interaction can play a dominant role in the para
magnetic relaxation of radicals. 

The author thanks T. N. Khazanovich for dis
cussions. 
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