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The frequencies of nonuniform resonance in a plate are calculated for antiferromagnets of
various types (uniaxial with positive and negative anisotropy constants; structures permit-
ting weak ferromagnetism). It is shown that dipole-dipole interactions are important in the
extreme long-wave part of the spectrum (magnetostatic modes of oscillation), for those
values of the field H at which reversal of the magnetic moments of the sublattices of the

antiferromagnet occurs.

THE study of ferro- and antiferromagnetic reso-
nance is connected with the excitation of high-
frequency magnetic oscillations in dielectric
specimens whose dimensions are appreciably
smaller than the wavelength. As is well known,
these oscillations can be divided into uniform and
nonuniform. The nonuniform oscillations

(Walker modes) depend significantly on the shape
of the specimen. A qualitative idea of the struc-
ture of the spectrum of the Walker oscillations
can be obtained by studying magnetic oscillations
in a plate. [

The present note gives the results of a calcula-
tion of Walker[?] oscillations in an antiferromag-
netic plate in the magnetostatic case. For the
solution of this problem, it is necessary to make
use of an expression for the magnetic suscepti-
bility. The high-frequency magnetic susceptibility
tensor of an antiferromagnet, at various constant
magnetic fields, was calculated by Kaganov and
Tsukernik;[aj these authors, however, did not take
account of dipole~dipole interaction. Allowance
for dipole-dipole interaction leads to a dependence
of the frequency spectrum on the direction of the
wave vector k. But for small wave vectors,
sin i (0K is the angle between the vector k and
and the z axis) becomes indeterminate, and for
resolution of this indeterminacy it is necessary to
solve Maxwell’s equations with the appropriate
boundary conditions.

We will consider a uniaxial antiferromagnet,
composed of two mirror sublattices, and an anti-
ferromagnet with weak ferromagnetism. In the
first case, the crystal symmetry axis n, the con-
stant external field Hj, and the coordinate axis z
are perpendicular to the plane of the plate
( Fig. 1). In the absence of an external magnetic
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FIG. 1.

field, the magnetic-moment vectors M; and M,

of the sublattices are parallel to the chosen axis;

in a magnetic field, the orientation of the magnetic-
moment vectors is determined by the size of the
field.

If we introduce the scalar potential of the mag-
netic field by means of the relation h = —V¢, and
if we suppose that in the plane of the plate it has
the form ¢ (x, y, z) = ¢ (z) e®'P (p is the radius
vector in the plane of the plate, k is the wave
vector), then y (z) is determined by the equations

d=p [ dz22 + #2p = 0 for [z] << d,

(1)

@y/d2—wp =0 for |z|>d,

% = —12[1 + 45 (Yxx cOS* @ + Xyy Sin? @) ] / (1 + 4ovxz2),

where 2d is the thickness of the plate, xjk are the
components of the magnetic susceptibility tensor,
and ¢ is the angle between the x axis and the
vector K.

In the treatment of specific cases, the magnetic
susceptibility tensor will be written without
allowance for spatial dispersion; this is justified
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for sufficiently long waves, when the condition
c/w > avec/A(uM) is satisfied. Here @ is
the Curie-Néel temperature, a is the lattice con-
stant, and A is the anisotropy constant. Further-
more, it is supposed that the dimensions of the
plate are much smaller than the wavelength of
the magnetostatic oscillations.

1. If 0 < Hy < V2HpAHE, then the components of
the tensor have the form[®]

Yax = Xyy = HaM

1 1
X{ SHally—(Ho—v)? ZHAHE—(H0+V)2}’

2

Yoy = — Yyx;  Hez =0,

where HE = aM; Hyp = (A +7n)M; a is the constant
of exchange interaction of the sublattices; A and
p are the anisotropy constants; v = w/y; and v is
the gyromagnetic ratio. In this case, the frequen-
cies of nonuniform resonance are determined by
the expression

2

i
’V32=H02+2HAHE+4JTHAMm

uZ
+ [41102( OH Hy + 4nHAMu2+—D2>

+ 16n2HA2M2( uT’_‘_:? )2]% _ (3)

Here u and v are connected by the relation
cot v = v/u for a symmetrical solution of the
system (1), and by the relation tan v = —v/u for
an antisymmetric solution (u = kd).

For the limiting case v > u, we have two limit

points:
'VR? ~ (Ho + V2HAHE)2; 'VRE ~ (Ho —VZHAHE) 2, (4)

If, on the other hand, v <« u, then the limit points
of the resonance frequencies lie at the frequencies

577
Vnza NH02+2HAHE+4TEHAM

+[4H R (2H yHp+4nH oA M) + 1602H 42M2] ',
Vit Hy 2H g Hy+4nH 4 M

—[4HP (2H A H p4H 1 M) +1672H 42M2], )

All the resonance frequencies are contained in the
intervals

vi: << ve? <<vVg%; VE? <<vVr®<<va?

(cf. Fig. 2).

2. If v 2HpAHE < Hy < 2HE, then a symmetric
arrangement of the magnetic moments of the sub-
lattices with respect to the antiferromagnetic axis
n is energetically more advantageous. If we de-
note the angle between the magnetic moments M,
and M, by 20 (0 =~ r/2), the components of the
magnetic susceptibility tensor take the form (3]

Yaz == 4HpM cos? 0/ (4H g2 cos? 0 — 2H 4 Hg sin? 6 — v?),

_ M 4Hg?c¢0s20 — 2H sHp sin?0 .
X0 = . A2 cost 0 — SHAHgsin? 0 — v2

Xxy= —Xyvy Y2=0, cos® = Ho/M(2a — A+ 7). ©)

The x axis lies in the plane of the magnetic mo-
ments, the y axis perpendicular to it.

The resonance frequencies in this case have
the form

vi? = (4Hg? cos? 8 — 2H sH sin? 0)

M u?
—sin2 @ ————
X(HI*“HES‘“ "’u=+v2) (7)

2

u
+16nHzM cos?0cos? g o

If ¢ =7/2, then

vr? = (4Hg? c0s? 0 — 2H 4 Hy sin? 0) (8)

M u?
x( 1 +hng "““"uz+vz) .
If ¢ =0, then
u?
vie? = 4Hg?cos?0 — 2H 4H5 sin?0 4+ 16aHgM cos? 0 ——.
u?+ v?

(9)

When v/u > 1,

Vg2 = 4Hg? c0s? 0 — 2H oHpg sin? 0. (10)

When v/u « 1,
vg? = (Hg + 4nM sin? @) (4Hg cos? 0 — 2H 4 sin20) (11)
+ 16nHEgM cos? 6 cos? @.

All the resonance frequencies are contained in the

interval u%l < V%{ < u%z ( Fig. 3).
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FIG. 3.

3. If the external field H; exceeds 2HE, then
the antiferromagnet goes over to a ferromagnetic
state. The components of the tensor xji have the
form[?]

2M (Ho+ H,)

Xxx=Xw=m; Y2z = 0.

Xxy = — Ay=s

where Hg = (A — ) M. The resonance frequen-
cies are

it = o+ Ho)+ M (o + B 17
When v/u > 1,
vt & (Hy + H,)?, (13)
when v/u <1,
va2 & (Ho+ Ha)? + 8aM (Ho + Hy). (14)

The resonance frequencies lie in the interval
2 .
VR, < V% < Vﬁz ( Fig. 4).

From the formulas presented for the frequen-
cies of nonuniform resonance, (7) to (9) and (12),
it is clear that dipole-dipole interaction is impor-
tant in the extreme long-wave part of the spectrum
(the magnetostatic type of oscillation) at those
values of the magnetic field H at which a reversal
of the magnetic moments of the sublattices occurs
in the antiferromagnetic crystal.
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FIG. 4.
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4. We consider a uniaxial antiferromagnet with
weak ferromagnetism, for which, in the absence
of an external field, the antiferromagnetism
vector L = My — M, is perpendicular to the axis
of symmetry n of the crystal. The plane of the
plate is parallel to the axis n, and the external
field is applied perpendicular to the plane of the
plate. We choose a system of coordinates such
that the x axis is directed along the external field
H;, and the z axis along the axis of symmetry of
the crystal (Fig. 5). The field Hy < Hg. In this

casel?]
V2 __ (Ho+ Hp)?
x""‘_‘x"vzz_——v?’ Xyy = %o TVE— )
(15)
V‘Z
Xez = Xom; Xyz = — Xa»

where xo = x| is the transverse static suscepti-
bility;
vi = (HoHp + H¢?)'", vo = (2HaHg + Hp? + HoHp)" (16)

for structures of type njy2y (cf. [41), and
vi = (4Hp? + SHolp + He?)'%;

ve = (2HaHz + Ho? + HoHp)'s

for structures of type 4;27; Hp = d;/2M, where

d; is a parameter that is responsible for the non-

collinearity of the mechanical moments of the sub-

lattices; g enters in the expression y = ge/2mc.
The frequencies of nonuniform resonance are

determined by the expression

[v2 4 v2(1 + rgo) ] + vi2 + v2?

(16a)

. 1 {v2
e YT Py )
v2?
+2(9) 2 ({ S5 v+ w2 (1 + devxa) ]+ wit o+ va2
Vo L
+r@ ) —4(1+2)

X [i:; viv2(1 + brgp) + v (ve2 + B2(o) )])/} (17)
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where v and u are found from the equation

cot v = (1 + 4ny=)v./u

for the ‘“symmetric’’ solution and

tanv = — (1 4 4nyxex)v /1

for the ‘““antisymmetric’’ solution of the system

(1);

P() = 4nyo(Ho + Hp-)? cos? ¢ + vi?sin? g,

where ¢ is the angle between the z axis and the

vector K.
When v/u «< 1,

VRZ & vi?,

when v/u > 1,

val & vi¢ + B(9);

VR R Vi3 VR = Vo2 (1 4 dmy).

The resonance frequencies are contained in the
intervals

ver2 < vr? < vr} ver2 < vg? < wvg? (18)

(cf. Fig. 6).

If in formulas (15) to (17) we set d; = 0, we go
over to the case of a uniaxial antiferromagnet with
a negative anisotropy constant.

In closing, the authors thank V. G. Bar’yakhtar
and M. I. Kaganov for setting the problem and for
valuable discussions.

'V. G. Bar’yakhtar and M. I. Kaganov, in the
collection Ferromagnitnyl rezonans (Ferromag-
netic Resonance), edited by S. V. Vonsovskii,
Fizmatgiz, 1961, p. 266.

2 L. R. Walker, Phys. Rev. 105, 390 (1957).

3 M. I. Kaganov and V. M. Tsukernik, JETP 41,
267 (1961), Soviet Phys. JETP 14, 192 (1962).

‘E. A. Turov, Fizicheskie svoistva magnitou-
prugikh kristallov (Physical Properties of Mag-
netoelastic Crystals), AN SSSR, 1963, p. 162.

Translated by W. F. Brown, Jr.
124



