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The frequencies of nonuniform resonance in a plate are calculated for antiferromagnets of 
various types (uniaxial with positive and negative anisotropy constants; structures permit­
ting weak ferromagnetism). It is shown that dipole -dipole interactions are important in the 
extreme long-wave part of the spectrum ( magnetostatic modes of oscillation), for those 
values of the field H at which reversal of the magnetic moments of the sublattices of the 
antiferromagnet occurs. 

THE study of ferro- and antiferromagnetic reso­
nance is connected with the excitation of high­
frequency magnetic oscillations in dielectric 
specimens whose dimensions are appreciably 
smaller than the wavelength. As is well known, 
these oscillations can be divided into uniform and 
nonuniform. The nonuniform oscillations 
( Walker modes) depend significantly on the shape 
of the specimen. A qualitative idea of the struc­
ture of the spectrum of the Walker oscillations 
can be obtained by studying magnetic oscillations 
in a plate. [ t] 

The present note gives the results of a calcula­
tion of WalkerC 2J oscillations in an antiferromag­
netic plate in the magnetostatic case. For the 
solution of this problem, it is necessary to make 
use of an expression for the magnetic suscepti·­
bility. The high-frequency magnetic susceptibility 
tensor of an antiferromagnet, at various constant 
magnetic fields, was calculated by Kaganov and 
Tsukernik; [3] these authors, however, did not take 
account of dipole-dipole interaction. Allowance 
for dipole-dipole interaction leads to a dependence 
of the frequency spectrum on the direction of the 
wave vector k. But for small wave vectors, 
sin ek ( ek is the angle between the vector k and 
and the z axis) becomes indeterminate, and for 
resolution of this indeterminacy it is necessary to 
solve Maxwell's equations with the appropriate 
boundary conditions. 

We will consider a uniaxial antiferromagnet, 
composed of two mirror sublattices, and an anti­
ferromagnet with weak ferromagnetism. In the 
first case, the crystal symmetry axis n, the con­
stant external field H0, and the coordinate axis z 
are perpendicular to the plane of the plate 
( Fig. 1) . In the absence of an external magnetic 
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FIG. 1. 

field, the magnetic-moment vectors M1 and M2 

of the sublattices are parallel to the chosen axis; 
in a magnetic field, the orientation of the magnetic­
moment vectors is determined by the size of the 
field. 

If we introduce the scalar potential of the mag­
netic field by means of the relation h = -Vq;, and 
if we suppose that in the plane of the plate it has 
the form q; ( x, y, z) = 1/J ( z) eiK·p ( p is the radius 
vector in the plane of the plate, K is the wave 
vector), then 1/J ( z) is determined by the equations 

d2¢ I dz2 + x;Z¢ = 0 for lzl < d, 
(1) 

x;2 = -x2 [ 1 + 4n (Xxx eos2 cp + l(;yy sin2 cp)] I ( 1 + 4nxzz), 

where 2d is the thickness of the plate, Xik are the 
components of the magnetic susceptibility tensor, 
and q; is the angle between the x axis and the 
vector 1<. 

In the treatment of specific cases, the magnetic 
susceptibility tensor will be written without 
allowance f.or spatial dispersion; this is justified 
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FIG. 2. 

for sufficiently long waves, when the condition 
c/w » av'®c/..\(1-'M) is satisfied. Here ®cis 
the Curie-Neel temperature, a is the lattice con­
stant, and ..\ is the anisotropy constant. Further­
more, it is supposed that the dimensions of the 
plate are much smaller than the wavelength of 
the magnetostatic oscillations. 

1. If 0 < H0 < v' 2HAHE, then the components of 
the tensor have the form [3] 

Xxx = Xuu =HAM 

Xxu = - Xux; Y..zz = 0, 
(2) 

where HE= aM; HA = (..\ + 7]) M; a is the constant 
of exchange interaction of the sublattices; ..\ and 
1-' are the anisotropy constants; v = w/y; and y is 
the gyromagnetic ratio. In this case, the frequen­
cies of nonuniform resonance are determined by 
the expression 

uz 
vn2 = H02 + 2HAHE + 4nHAM-2 --2 u +v 

± [4Hod\ 2HAHE + 4nHAM ~) u2+ v2 

( u2 )2]''' + 16n2HA2M2 --- • 
u2+ v2 

Here u and v are connected by the relation 
cot v = v/u for a symmetrical solution of the 
system (1), and by the relation tan v = -v/u for 
an antisymmetric solution ( u = Kd). 

(3) 

For the limiting case v » u, we have two limit 
points: 

Vn~ ~ (Ho + f2HAHE)2; 'llR~ ~ (Ho -J2HAHE)2. (4) 

If, on the other hand, v « u, then the limit points 
of the resonance frequencies lie at the frequencies 

'llR~ ~Ho2+2HAHE+4nHAM 

+[4Ho2 (2HAHE+4nHAM) + 16n2HA2M2] 'I•, 
'llR~~Ho2+2HAHE+4nHAM 

-[4Ho2 (2HAHE+4nHAM) +16n2HA2M2]'1•, 
(5) 

All the resonance frequencies are contained in the 
intervals 

( cf. Fig. 2). 

2. If .Y"2=H=-A-=H,_E-< Ho < 2HE, then a symmetric 
arrangement of the magnetic moments of the sub­
lattices with respect to the antiferromagnetic axis 
n is energetically more advantageous. If we de­
note the angle between the magnetic moments M1 

and M2 by 20 ( e ~ 11' /2), the components of the 
magnetic susceptibility tensor take the form [3] 

Xxx = 4HEM cos2 0/ ( 4H PI- C0!!2 e- 2HAHE sin2 e- v2)' 

X x11= -x"x' Xu= 0, cos 9 =HoI M(2a-). + TJ). (B) 

The x axis lies in the plane of the magnetic mo­
ments, the y axis perpendicular to it. 

The resonance frequencies in this case have 
the form 

vR2 = (4HE2 cos2 0- 2HA.H,.sin2 9) 

( M u2 ) X 1 +4n-sinZ cp ---
Hs u2 + v2 

2 

+ 16nH EM cos2 e 'COS2 q> 2 +u 2 . 
u v 

If q; = 11' /2, then 

VR2 = (4HE2 cos29- 2HAHssin29) 

x( 1+4n;E uz~vZ). 
If q; = 0, then 

(7) 

(8) 

uz 
VR2 = 4HE!-cos2 0- 2HAHEsin2 e + 1'6nHEM cos2 0 u2 + vZ' 

(9) 
When v/u » 1, 

VR,2 = 4HE!- cos2 e- 2HAHE sin29. (10) 

When v/u « 1, 

VR,2 ~ (HE+ 4nM sin2 cp) (4HE cos2 9-"2HA sin2 9) (11) 

+ 16nHEM cos2 9 cos2 cp. 

All the resonance frequencies are contained in the 
interval vk < vk < "R2 ( Fig. 3 ) . 
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FIG. 3. 

3. If the external field H0 exceeds 2HE, then 
the antiferromagnet goes over to a ferromagnetic 
state. The components of the tensor Xik have the 
form[ 3] 

2M(Ho+H,.) 
X.Xx = XIIII = (Ho + H,.)Z ""- vz; X.XII =- x,.,; Xu= 0. 

where Ha = ( 11. - 11) M. The resonance frequen­
cies are 

u1 (12) 
VRz = (Ho + H,.)z + 8nM (Ho + H,.) uz+ v2. 

When v/u » 1, 

when v/u « 1, 

The resonance frequencies lie in the interval 
vk1 < vk < vk2 (Fig. 4). 

(13) 

(14) 

From the formulas presented for the frequen­
cies of nonuniform resonance, (7) to (9) and (12), 
it is clear that dipole-dipole interaction is impor­
tant in the extreme long-wave part of the spectrum 
(the magnetostatic type of oscillation) at those 
values of the magnetic field H at which a reversal 
of the magnetic moments of the sublattices occurs 
in the antiferromagnetic crystal. 

FIG. 4. 
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FIG. 5. 

4. We consider a uniaxial antiferromagnet with 
weak ferromagnetism, for which, in the absence 
of an external field, the antiferromagnetism 
vector L = M1 - M2 is perpendicular to the axis 
of symmetry n of the crystal. The plane of the 
plate is parallel to the axis n, and the external 
field is applied perpendicular to the plane of the 
plate. We choose a system of coordinates such 
that the x axis is directed along the external field 
H0 and the z axis along the axis of symmetry of 
the crystal ( Fig. 5). The field H0 « HE. In this 
caseC 4J 

vz2 
Xxx=Xo 2 2 ; 

vz -v 
(15) 

X11• = -X•u• 

where Xo = Xl is the transverse static suscepti­
bility; 

Vt = (HoHv + Ho2) 'I•, Vz = (2HAHE + Hv2 + HoHv) 'I• (16) 

for structures of type n~2d ( cf. [ 4] ), and 

Vt = (4Ho2 + 5HoHo + Ho2) 'I•; 

vz = (2HAHE + Ho2 + HoBo)''• 
(16a) 

for structures of type 4~2d; Hn = d 1/2M, where 
d 1 is a parameter that is responsible for the non­
collinearity of the mechanical moments of the sub­
lattices; g enters in the expression y = gej2mc. 

The frequencies of nonuniform resonance are 
determined by the expression 

1 { v2 
VR2 = · - [v,2 + vz2 ( 1 + 4nXo)] + v,2 + vz2 

2(1 + v2/u2) u2 

+LZ(cp)±( {~2 [v,2 +vz2 (1 +4nxo)]+v,2 +vz2 

+ [2 ( cp) r _ 4 ( 1 +. ~ ) 

(17) 
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FIG. 6. 

where v and u are found from the equation 

cot v = ( 1 + 4nx.,.,) vJu 

for the "symmetric" solution and 

tan v = -(1 + 4nx.,.,)v I u 

for the "antisymmetric" solution of the system 
(1); 

where cp is the angle between the z axis and the 
vector K. 

When v/u « 1, 

when v /u » 1, 

'VR~ ~ 'V12; 'VR~ ~ 'V22 (1 + 4nXo). 

The resonance frequencies are contained in the 
intervals 

( cf. Fig. 6). 

(18) 

If in formulas (15) to (17) we set d 1 = 0, we go 
over to the case of a uniaxial antiferromagnet with 
a negative anisotropy constant. 

In closing, the authors thank V. G. Bar'yakhtar 
and M. I. Kaganov for setting the problem and for 
valuable discussions. 
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