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The frequencies of nonuniform resonance in a plate are calculated for antiferromagnets of 
various types (uniaxial with positive and negative anisotropy constants; structures permit
ting weak ferromagnetism). It is shown that dipole -dipole interactions are important in the 
extreme long-wave part of the spectrum ( magnetostatic modes of oscillation), for those 
values of the field H at which reversal of the magnetic moments of the sublattices of the 
antiferromagnet occurs. 

THE study of ferro- and antiferromagnetic reso
nance is connected with the excitation of high
frequency magnetic oscillations in dielectric 
specimens whose dimensions are appreciably 
smaller than the wavelength. As is well known, 
these oscillations can be divided into uniform and 
nonuniform. The nonuniform oscillations 
( Walker modes) depend significantly on the shape 
of the specimen. A qualitative idea of the struc
ture of the spectrum of the Walker oscillations 
can be obtained by studying magnetic oscillations 
in a plate. [ t] 

The present note gives the results of a calcula
tion of WalkerC 2J oscillations in an antiferromag
netic plate in the magnetostatic case. For the 
solution of this problem, it is necessary to make 
use of an expression for the magnetic suscepti·
bility. The high-frequency magnetic susceptibility 
tensor of an antiferromagnet, at various constant 
magnetic fields, was calculated by Kaganov and 
Tsukernik; [3] these authors, however, did not take 
account of dipole-dipole interaction. Allowance 
for dipole-dipole interaction leads to a dependence 
of the frequency spectrum on the direction of the 
wave vector k. But for small wave vectors, 
sin ek ( ek is the angle between the vector k and 
and the z axis) becomes indeterminate, and for 
resolution of this indeterminacy it is necessary to 
solve Maxwell's equations with the appropriate 
boundary conditions. 

We will consider a uniaxial antiferromagnet, 
composed of two mirror sublattices, and an anti
ferromagnet with weak ferromagnetism. In the 
first case, the crystal symmetry axis n, the con
stant external field H0, and the coordinate axis z 
are perpendicular to the plane of the plate 
( Fig. 1) . In the absence of an external magnetic 
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FIG. 1. 

field, the magnetic-moment vectors M1 and M2 

of the sublattices are parallel to the chosen axis; 
in a magnetic field, the orientation of the magnetic
moment vectors is determined by the size of the 
field. 

If we introduce the scalar potential of the mag
netic field by means of the relation h = -Vq;, and 
if we suppose that in the plane of the plate it has 
the form q; ( x, y, z) = 1/J ( z) eiK·p ( p is the radius 
vector in the plane of the plate, K is the wave 
vector), then 1/J ( z) is determined by the equations 

d2¢ I dz2 + x;Z¢ = 0 for lzl < d, 
(1) 

x;2 = -x2 [ 1 + 4n (Xxx eos2 cp + l(;yy sin2 cp)] I ( 1 + 4nxzz), 

where 2d is the thickness of the plate, Xik are the 
components of the magnetic susceptibility tensor, 
and q; is the angle between the x axis and the 
vector 1<. 

In the treatment of specific cases, the magnetic 
susceptibility tensor will be written without 
allowance f.or spatial dispersion; this is justified 
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FIG. 2. 

for sufficiently long waves, when the condition 
c/w » av'®c/..\(1-'M) is satisfied. Here ®cis 
the Curie-Neel temperature, a is the lattice con
stant, and ..\ is the anisotropy constant. Further
more, it is supposed that the dimensions of the 
plate are much smaller than the wavelength of 
the magnetostatic oscillations. 

1. If 0 < H0 < v' 2HAHE, then the components of 
the tensor have the form [3] 

Xxx = Xuu =HAM 

Xxu = - Xux; Y..zz = 0, 
(2) 

where HE= aM; HA = (..\ + 7]) M; a is the constant 
of exchange interaction of the sublattices; ..\ and 
1-' are the anisotropy constants; v = w/y; and y is 
the gyromagnetic ratio. In this case, the frequen
cies of nonuniform resonance are determined by 
the expression 

uz 
vn2 = H02 + 2HAHE + 4nHAM-2 --2 u +v 

± [4Hod\ 2HAHE + 4nHAM ~) u2+ v2 

( u2 )2]''' + 16n2HA2M2 --- • 
u2+ v2 

Here u and v are connected by the relation 
cot v = v/u for a symmetrical solution of the 
system (1), and by the relation tan v = -v/u for 
an antisymmetric solution ( u = Kd). 

(3) 

For the limiting case v » u, we have two limit 
points: 

Vn~ ~ (Ho + f2HAHE)2; 'llR~ ~ (Ho -J2HAHE)2. (4) 

If, on the other hand, v « u, then the limit points 
of the resonance frequencies lie at the frequencies 

'llR~ ~Ho2+2HAHE+4nHAM 

+[4Ho2 (2HAHE+4nHAM) + 16n2HA2M2] 'I•, 
'llR~~Ho2+2HAHE+4nHAM 

-[4Ho2 (2HAHE+4nHAM) +16n2HA2M2]'1•, 
(5) 

All the resonance frequencies are contained in the 
intervals 

( cf. Fig. 2). 

2. If .Y"2=H=-A-=H,_E-< Ho < 2HE, then a symmetric 
arrangement of the magnetic moments of the sub
lattices with respect to the antiferromagnetic axis 
n is energetically more advantageous. If we de
note the angle between the magnetic moments M1 

and M2 by 20 ( e ~ 11' /2), the components of the 
magnetic susceptibility tensor take the form [3] 

Xxx = 4HEM cos2 0/ ( 4H PI- C0!!2 e- 2HAHE sin2 e- v2)' 

X x11= -x"x' Xu= 0, cos 9 =HoI M(2a-). + TJ). (B) 

The x axis lies in the plane of the magnetic mo
ments, the y axis perpendicular to it. 

The resonance frequencies in this case have 
the form 

vR2 = (4HE2 cos2 0- 2HA.H,.sin2 9) 

( M u2 ) X 1 +4n-sinZ cp ---
Hs u2 + v2 

2 

+ 16nH EM cos2 e 'COS2 q> 2 +u 2 . 
u v 

If q; = 11' /2, then 

VR2 = (4HE2 cos29- 2HAHssin29) 

x( 1+4n;E uz~vZ). 
If q; = 0, then 

(7) 

(8) 

uz 
VR2 = 4HE!-cos2 0- 2HAHEsin2 e + 1'6nHEM cos2 0 u2 + vZ' 

(9) 
When v/u » 1, 

VR,2 = 4HE!- cos2 e- 2HAHE sin29. (10) 

When v/u « 1, 

VR,2 ~ (HE+ 4nM sin2 cp) (4HE cos2 9-"2HA sin2 9) (11) 

+ 16nHEM cos2 9 cos2 cp. 

All the resonance frequencies are contained in the 
interval vk < vk < "R2 ( Fig. 3 ) . 
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FIG. 3. 

3. If the external field H0 exceeds 2HE, then 
the antiferromagnet goes over to a ferromagnetic 
state. The components of the tensor Xik have the 
form[ 3] 

2M(Ho+H,.) 
X.Xx = XIIII = (Ho + H,.)Z ""- vz; X.XII =- x,.,; Xu= 0. 

where Ha = ( 11. - 11) M. The resonance frequen
cies are 

u1 (12) 
VRz = (Ho + H,.)z + 8nM (Ho + H,.) uz+ v2. 

When v/u » 1, 

when v/u « 1, 

The resonance frequencies lie in the interval 
vk1 < vk < vk2 (Fig. 4). 

(13) 

(14) 

From the formulas presented for the frequen
cies of nonuniform resonance, (7) to (9) and (12), 
it is clear that dipole-dipole interaction is impor
tant in the extreme long-wave part of the spectrum 
(the magnetostatic type of oscillation) at those 
values of the magnetic field H at which a reversal 
of the magnetic moments of the sublattices occurs 
in the antiferromagnetic crystal. 

FIG. 4. 
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FIG. 5. 

4. We consider a uniaxial antiferromagnet with 
weak ferromagnetism, for which, in the absence 
of an external field, the antiferromagnetism 
vector L = M1 - M2 is perpendicular to the axis 
of symmetry n of the crystal. The plane of the 
plate is parallel to the axis n, and the external 
field is applied perpendicular to the plane of the 
plate. We choose a system of coordinates such 
that the x axis is directed along the external field 
H0 and the z axis along the axis of symmetry of 
the crystal ( Fig. 5). The field H0 « HE. In this 
caseC 4J 

vz2 
Xxx=Xo 2 2 ; 

vz -v 
(15) 

X11• = -X•u• 

where Xo = Xl is the transverse static suscepti
bility; 

Vt = (HoHv + Ho2) 'I•, Vz = (2HAHE + Hv2 + HoHv) 'I• (16) 

for structures of type n~2d ( cf. [ 4] ), and 

Vt = (4Ho2 + 5HoHo + Ho2) 'I•; 

vz = (2HAHE + Ho2 + HoBo)''• 
(16a) 

for structures of type 4~2d; Hn = d 1/2M, where 
d 1 is a parameter that is responsible for the non
collinearity of the mechanical moments of the sub
lattices; g enters in the expression y = gej2mc. 

The frequencies of nonuniform resonance are 
determined by the expression 

1 { v2 
VR2 = · - [v,2 + vz2 ( 1 + 4nXo)] + v,2 + vz2 

2(1 + v2/u2) u2 

+LZ(cp)±( {~2 [v,2 +vz2 (1 +4nxo)]+v,2 +vz2 

+ [2 ( cp) r _ 4 ( 1 +. ~ ) 

(17) 
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FIG. 6. 

where v and u are found from the equation 

cot v = ( 1 + 4nx.,.,) vJu 

for the "symmetric" solution and 

tan v = -(1 + 4nx.,.,)v I u 

for the "antisymmetric" solution of the system 
(1); 

where cp is the angle between the z axis and the 
vector K. 

When v/u « 1, 

when v /u » 1, 

'VR~ ~ 'V12; 'VR~ ~ 'V22 (1 + 4nXo). 

The resonance frequencies are contained in the 
intervals 

( cf. Fig. 6). 

(18) 

If in formulas (15) to (17) we set d 1 = 0, we go 
over to the case of a uniaxial antiferromagnet with 
a negative anisotropy constant. 

In closing, the authors thank V. G. Bar'yakhtar 
and M. I. Kaganov for setting the problem and for 
valuable discussions. 
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