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An exact description is obtained for the kinetics of quantum transitions between two levels, 
induced by Lorentz radiation or by a wave whose amplitude is modulated by a normal process. 
The conditions under which the kinetics may be satisfactorily described by a statistical tran­
sition model (perturbation theory) are considered, and the anomalies which occur under 
conditions for which the model is apparently not valid are also studied. 

1. RELAXATION OF AN ATOM UNDER THE 
ACTION OF LORENTZ RADIATION 

IN the Lorentz approximation, radiation emitted 
by a luminous gas (broadened as a result of colli­
sions) can be regarded as a monochromatic wave 
randomly interrupted in phase at the instants of the 
collisions ( Fig. 1). The correlation function of 
such radiation and its spectral composition are 
determined by the formulas 

K('t)=E(t)E(t+'t)=E02 exp[iu:rr- ~:1 J, 
1 +oo . 1 Eo2'T:o 

p(x)=- \ K(T)e•x~d-r=- (1.1) 
2n }oo n 1 + (x- w)2't02' 

where E(t) = E0eiwt+ia(t) [a(t) is the randomly 
changing phase, E0 the amplitude of the wave], and 
To is the mean duration of the interval of mono­
chromaticity. If radiation of such a type, regarded 
as an external perturbation, acts on an atom-a 
two-level system-in such a fashion that only the 
element 

v,2 = -<~E\z = 1/2Wtfieiwt+ia(t), Wt = 2flt2Eo/ li (1.2) 

in the perturbation operator V(t) ( H = H0 + V) 
differs from zero, then, by choice of the phases of 
representation (of the appropriate system of co­
ordinates) one can always arrange it that the ma­
trix element of the dipole moment would be a real, 
positive definite quantity. The time change of this 
perturbation has a random character because of 
the drift of the phase a, which changes jumpwise 
over an interval ~ t, the length of which is given 
by the time distribution of the path length in the 
radiating gas: 

[ !J.t] d(!J.t) 
dW(!J.t)= exp -- --. 

'T:o To 

The change in the density matrix of the atom 

FIG. 1. Lorentz wave. 

under the action of the perturbation just described 
is given by the equations 

i d(a!!- <Jzz) = Wt {atze-i~wt-ia(t)- <Jtz*ei~rot+ia(t)} \1.3a) 
dt , 

dcr12 1 ( . • 1 . (t) i -- = - Wt cru - <Jzz) e'""' +•a 
dt 2 ' 

(1.3b) 

where ~w = w - w0, w0 is the frequency of the 
atom. We shall consider the relaxation taking 
place under these conditions in the populations 
au ( t) and a 22 (t) in.the spirit of the usual prob­
lem on transitions: for t = 0, the atom is in the 
lowest energy state, au= 1, a 22 = a 12 = 0, while 
subsequently the populations of both terms are 
equalized. The simplicity of the acting noise allows 
us to consider the kinetics of this relaxation exactly, 
without application of perturbation theory. 

The basic difficulty of problems of this type 
lies in the correct averaging of the density matrix 
of the atom aik ( t) over all realizations of the 
actual noise [random perturbations E (t) ). Inas­
much as we do not know in what way one must per­
form this operation directly in Eq. (1.3), the neces­
sary preliminary stage is the solution of these 
equations for the purpose of obtaining the functional 
dependence a [ E ( t)) in explicit form, a depend­
ence by means of which one can then carry out the 
averaging over the different realizations of the 
argument. In the general case, it is not possible 
to integrate ( 1.3) in quadratures, but in the given 
problem this situation is actually made easier by 
the fact that in the limits of each interval of mono-
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chromaticity (a = const) such a solution is found 
without difficulty. [1] Moreover, if we had a diag­
onal matrix in the initial interval, then subse­
quently the difference of its diagonal elements 

n(t) = cru(t) - 0"22(t) = n(O)X(t) (1.4) 

depends only on the value of these elements at the 
initial instant of time: n( 0) = cr11 ( O) - a 22 ( 0), but 
does not depend on the phase of the real noise a. 
The universal function X( t) = 1 - 2Pt2, where 
P t2 ( t) is the probability of finding the atom in the 
second state if at t = 0, it was entirely located in 
the first state. This probability necessarily oscil­
lates ( "nutates") in time according to the well 
known dynamic law, [t] so that 

- {1)12 • 2 Qt 
X(t)-1-2Q2 sm 2 , (1.5) 

where 0 = (6w2 + wj) 11 2 is the nutation frequency. 
This information is sufficient to carry out averag­
ing with complete rigor. 

We separate the set of realizations E ( t) in 
which k changes in phase take place in the interval 
( OT) in the successive moments of time tt, t2, ••• , 

tk ( Fig. 2). In the interval (Ott) the change in 
n ( t) in any of these realizations chosen, which 
differ from one another only in the different se­
quence of phases, will be determined by Eq. (1.4) 
with n ( 0) = 1, in correspondence with the initial 
condition of the problem. The different realizations 
aik ( t) at the time tt will therefore differ only by 
the phase of the nondiagonal element at2, remaining 
identical in all other respects. The value of the 
phase factor in at2 is as a whole determined by 
the phase of the perturbation a which was real­
ized in the interval (Ott). The further behavior of 
the system in the interval ( t 1, t 2 ) will now depend 
on this phase, which controls the accumulation of 
a 12 in the interval ( Ot1), and on the new phase of 
the perturbation a' which replaces it. Since at the 

n 

a t, oe' z oe" 
FIG. 2. Population relaxation in the interval (Or) for k = 3. 

In the lower part of the figure the shading indicates the range 
of possible phases; the bold line indicates its sequential 
changes in one realization of perturbation consistent with the 
indicated distribution of the times t, t2 , and t 3 • 

beginning of the new interval O"ik ( t 1) is no longer 
diagonal in an arbitrary realization of the process, 
it is impossible to expect such a simple change in 
n(t) as in (1.4). 

However, inasmuch as any a' can be preceded 
by any given value of a (there is no phase corre­
lation whatever between the trains), it is much 
simpler to obtain immediately an idea of the 
average change 1i ( t) by first averaging over all 
a. Because of this averaging, which does not 
affect a 11 and a 22, and consequently does not 
affect n, 0'12 ( t, a) vanishes (since dW (a) 
= da/27r), and it is again necessary to take the 
diagonal matrix as an average initial condition in 
( t 1, t 2). This makes possible the repeated use of 
(1.4), but with n(O) = n(t1). The entire reasoning 
can be repeated: 

n(t2) = n(ti)X(t2- t1), 

n(t3) = n(t2)X(t3- t2), ... , n('t) = n(th)X('t- th). 

Following this logic, one can easily trace the be­
havior of n ( T) for any number of phase shifts: 
n( T) = X(tt) X(t2 - t 1) ••• X( T- tk). Although 
the average sign is omitted everywhere, it is 
necessary to keep it in mind that this value has 
already been averaged over the k + 1 phase of 
the perturbation a, a', a", ... for a given arrange­
ment t 1, t 2 ••• , ti, ... , tk· 

Inasmuch as all the phase shifts (collisions in 
the radiating gas) are statistically independent 
events, we can determine the probability of the 
given arrangement ti in the interval ( OT) as 

( th - 't ) h ( ti-1 - ti ) dti 
dW (t1, t2, • •• , t"; ,;) = exp --- II exp -

'to i=i 'to "to 

h 

= exp ( - ~ ) II ( dti ) . 
'to i=1 'to 

( 1.6) 

Taking it into account that any of these k - 1 
times can change in the interval 0 :::; ti :::; ti+ 1, and 
the last tk from 0 to T, and assuming that in the 
interval ( OT) there can take place 0, 1, 2, ... , k, 
... up to oo phase shifts, we get for the values of 
n ( T) averaged over all of these possibilities 

co 1 "' 
n(,;) = e-~/~o{X(,;) +'~ li" ~ dthX(t'- th) 

h=1 'to o 

1A tk-t 1z 

X ~ dtHX(t"- th-1) ~ ... ~ dt1X(t1) }· (1. 7) 
0 0 0 

Multiplying both sides by X(T- T)eT/TodT/T0, and 
integrating over T from 0 to T, we get the inte­
gral kinetic equation 
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f T 
n(T) eT/To =X (T) +- ~ X (T -- 't) n ('t) eT/To d't. (1.8) 

'to o 

The simplicity of the kernel makes it possible 
to eliminate (by three successive differentiations) 
the integral part of the equation and reduce it to a 
differential equation: 

n'" + _..:..n" +( ~ + !!..ro2 + ro12 )n' + ro12 n = 0. (1.9) 
'to 'to2 'to 

The initial conditions determined in passing have 
the form 

n (0) = 1, n' (0) = 0, n" (0) = -rot2• ( 1.10) 

The general solution of (1. 9) with account of these 
conditions can be represented in the form 

ZzZa - CiJ12 ZaZt - (J)12 

n(t) = (zz- Zt) (za- Zt) e••t + (za- Zz) (z1- zz) e••t 

+ Z1Z2- CiJ12 e••t (1.11) 
(z1- za) (zz- za) ' 

where z 1, z 2, z3 are the roots of the characteristic 
equation of third degree: 

z(z+ :J2 +ro12(z+ :0 )+!!..ro2z=O. (1.12) 

Thus the exact description of the relaxation under 
the action of a Lorentz wave reduces to the solution 
of an algebraic problem. 

The solution of ( 1.11) does not contain sponta­
neous emission of light, since the electromagnetic 
field has been considered quasiclassically from 
the very beginning. For this reason, the kinetics 
of the process is correctly described by them 
only at times which are small in comparison with 
the time of spontaneous decay, and then only in the 
case in which the damping decrement of (1.11) is 
much shorter than it. This limitation, which is 
unimportant in the microwave region, must have 
a significant effect in the optical range. 

2. CORRESPONDENCE WITH THE MODEL OF 
THE TRANSITIONS 

In the framework of the simplest statistical 
scheme of transitions induced by light, this same 
relaxation process is described by the equation 

dn I dt = -2Wn, (2.1) 

which gives a simple aperiodic solution n = e-2Wt 
as an alternative to (1.11). The value of the tran­
sition probability 

(2.2) 

is obtained by time-dependent perturbation theory 
applied to this problem which, in combination with 
certain statistical assumptions, [ 2] frequently im­
plicit, makes it possible to establish the funda­
mental kinetic equation partially. The presence 
of an exact solution however makes it possible to 
go somewhat further-to make clear by direct 
comparison the degree of imperfection and the 
region of applicability of the results obtained even 
approximately according to an effective perturba­
tion method. 

First let us turn attention to the fact that the 
solution (1.11) generally contains oscillatory com­
ponents-a consequence of the dynamic process 
which completely disappears in the cr:ude statis­
tical scheme (2.11). The oscillating relaxation 
regime does not exist everywhere; in a narrow 
region near resonance the process has an aperiodic 
character, but even in this case, (1.11) differs 
appreciably from ( 2 .1), since it contains three 
exponents with different decay parameters. A 
simple analysis of Eq. (1.12), carried out at the 
suggestion of Ya. M. Buzhdan to the author, shows 
that the equation of the curve separating the 
periodic and aperiodic solutions and representing 
those points on the plane 6..w/w 1, 1/wtTo (Fig. 3) 
at which there exists a double degeneracy of the 
roots of the characteristic equation, has the form 

1 I CiJ1'to = [(3 + P.) 3 18(1 + P.) ]'/', 

"- = [ 1 - 8 (!!..ro I ro1) 2]'1•. (2.3) 

The upper sign in this formula refers to the 
rising branches of the curve, and the lower to its 
horizontal branch. It is significant that the regime 
of damped oscillations is realized not only under 
conditions of relatively strong perturbation w1 To 
» 1, but also for the very weak case; the only ex­
ception is resonance relaxation ( 6..w = 0), which 
preserves its aperiodic character even as w1 - 0. 

Although one can speak only of an approximate 

FIG. 3. Regions of periodic and 
aperiodic solutions (the aperiodic 
region is shaded). 

4 -:ff.z a 2 zff4 
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correspondence of (1. 9) and (2.1) in the arbitrary 
case, it is natural to expect that, at small w 1, the 
solutions of these equations must differ only 
trivially from one another. The roots of the 
characteristic equation corresponding to this 
limiting situation are equal to 0 and - 1/ To in the 
zeroth approximation, whereas, in the next approx­
imation, 

Zj = -2W, 1 Zt ( Z1 3 )'/, 
z2,a = --- - t1:: ~ ~l~ +-+-z12 

To 2 To 4 

~- _1:_ + W ± i(~(t)2-W2)'h, (2.4) 
To 

where W is determined in the same fashion as in 
(2.2). This approximation can be completely satis­
fied if I z 1 1 « 1/ T0, that is, if the inequality 

(2.5) 

is satisfied, which coincides with the ordinary 
condition of applicability of perturbation theory. 

However, this result can also be improved. 
Thus, in the second approximation for z 1, which 
is necessary for the estimate of z 2, 3 in (2 .4), we 
have 

z = -2W[1 + 2W f- ~ffi2ro2 ] (2.6) 
I To 1 + ~ffi2To2 • 

It is not without interest to note that the correc­
tion of this approximation appearing in (2.6) can­
not be obtained in successive orders of perturba­
tion theory, leading to (2.2). This is connected 
with the fact that both the approximate solution of 
the dynamic problem and the rough averaging con­
sidered as a statistically independent random per­
turbation of the system and its reaction on itself 
underlie the perturbation method. [ 2] 

Depending on the sign of the integrand in (2 .4), 
we have either three real roots or one real and 
two complex roots. Accordingly, substitution of 
(2.4) in (1.11) gives either· 

n(t) = [1 + 2W-r0) e-2Wt 

(2. 7) 

for the aperiodic region, or 

[ 62-1 J n(t) = 1- 2W-r0--- e-2Wt + 2lliT0 e-t/To 

62 + 1 

[ 62-1 26 J 
X 62 + 1 cos ~ffit + 62 + 1 sin ~ffit (2 .8) 

for the regime of damped oscillations (o = ~wT0 ). 

In either case of departure from ideal kinetics, 
n ( t) = e-2Wt holds only at the beginning of the 
process, in a small interval of the order of T0; 

subsequently, in a scale of time commensurate 
with the relaxation time ( 2W )-1, only the first 
component which represents the asymptote of 
n ( t) is preserved; this is identical with the ideal 
case upon neglect of corrections of the order of 
WT0 and less. 

Solution of (2. 7) and (2.8) satisfactorily de­
scribes the physical situation which corresponds 
to points lying in the upper part of the plane 
(Fig. 3) but becomes inapplicable for a suffi­
ciently close approach to the abscissa ( w1 - oo). 
In order to obtain a representation of the charac­
ter of the deviations from ideal kinetics which 
take place here, let us consider another approxi­
mate solution, valid for 

(2. 9) 

The roots of (1.12) corresponding to this limit­
ing situation are equal to 

(2.10) 

while the relaxation process is described by the 
oscillating function 

~(1)2 ( ffi!2t ) ffit2 [ t ( ~(1)2 )] n(t)=-exp -- +-exp -- 1+-Q2 Q2ro Q2 2-ro Q2 

{ Q2 + 3~(1)2 } 
X cos Qt + 2Q3-r

0 
sin Qt . , (2.11) 

inasmuch as the aperiodic regime under these con­
ditions is not realized everywhere, as is evident 
from (2.9) and Fig. 3. The solution (2.11) propa­
gates in two essentially different regions. For 
~w » w 1, the conditions (2.5) and (2.9) are com­
patible and therefore it is natural that, setting 
n ~ ~w in (2 .11), and taking it into account in 
(2.8) that ~wT0 » w 1T0 » 1, one can reduce these 
formulas to identical correspondence. 

An entirely different situation arises for 

(2.12) 

The condition (2.5) is violated in this case and we 
get 

~(1)2 ( ~(1)2 ) [ 1 J n ( t) = -- e-t/To + 1 - -- e-t/2To cos Qt + --sin Qt 
ffit2 ffit2 2ffitTo 

~ e-t/2To COS Qt, (2 .13) 

that is, the regime of damped oscillations which 
can in no way be put in correspondence with the 
model of the transitions. On the other hand, it 
recalls very much the purely dynamic process 
( 1. 5) induced by monochromatic radiation. In 
view of (2.9) and (2.12), i1T0 » 1 and, consequently, 
the atom can undergo many times the transition 
from one state to the other before the range of 
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monochromaticity is completed. Under these 
conditions, the shift in the phase of the perturbation 
bringing about the reduction (which gives the 
meaning of population to the diagonal elements of 
the density matrix) forces the atom into one of 
the possible states with a probability Y2· As a re­
sult, the damping decrement in (2.13) is twice as 
large as r 0• 

Thus the sufficient condition for the reducibility 
of (1.9) to (2.1) 

(2.14) 

which follows from (2.5) is at the same time the 
necessary condition. The upper limit of the light 
intensity for which the relaxation process can 
still be regarded within the framework of the 
transitions model is established by these condi­
tions. As is seen from Fig. 4, the region in which 
this condition is satisfied is by no means universal. 
Beyond its limits are physical situations which are 
of undoubted interest in spectroscopy, which uses 
powerful radiation sources with a narrow spectrum. 

3. EXACT RESONANCE 

As is seen from (2.13) and Fig. 4, under the 
conditions of resonance perturbation, with which 
one most frequently deals in a real experiment, 
the deviations from ideal kinetics brought about 
by the increase in power set in earlier than in any 
other case, and are most clearly expressed. The 
resonance relaxation is described by the approxi­
mate formulas (2.7) and (2.13) only in limiting 
situations: w1r0 « 1, and w1r0 » 1, respectively, 
whereas in the intermediate region, bow = 0, 
neither the one nor the other is propagated. 
Fortunately, at bow = 0, one can obtain an entirely 
rigorous solution, since (1.2) can be solved 
exactly: 

1 
Zi=--, 

'to 

I 

i 
I 

FIG. 4. Limit of applicability of perturbation theory 
(bold line). Solutions (2.7) and (2.8) are real in the region 
of vertical shading, (2.11)- in the region of horizontal 
shading. 

Upon substitution of (3 .1) in the general solution 
(1.11), the coefficient for the first component 
vanishes, and the two remaining yield 

n(t)= 1-- 2v+(1- 4y)~· exp[- t (1-(1-4y)'h)J 
1- 4y + (1- 4y) f, 2-ro 

1 - 2y - ( 1 - 4y) '1• [ t 4 ) 1/ ) J + exp - - ( 1 + ( 1 - 'Y ' , 
1 - 4y - ( 1 - 4y) '/, 2'l'o 

(3.2) 
where y = w~ra. It is easy to establish the fact 
that for y « 1, this expression reduces to (2.7), 
while for y » 1, to (2.13). 

Inasmuch as the oscillatory relaxation regime 
at w 1 r 0 » 1 is essentially the new result of the 
exact equation (1.9), it is necessary in contrast 
with (2.1), to visualize in what measure this re­
sult is connected with the specific noise chosen­
the Lorentz radiation. For this case we shall 
consider a resonance relaxation under the action 
of a perturbation of very general form E ( t) 
= Eo ( t) exp [ iw0t + id ( t) ]. It is described by the 
system of equations 

i d[au- a22]= 2J.l12E()(t) {a12e-ia(t)- a12*eia.(t>}, (3.3a) 
dt h 

. da12 1112 ] ( b) z- = -.;-Eo(t)[au- a22, 3.3 
dt (£ 

which, in spite of the significant simplification in 
comparison with (1.3), achieved at the price of a 
restriction to the case bow = 0, is generally 
speaking not solved. In this respect the exact . 
solution (3.2) is only a partial success, since it is 
valid only for E0 ( t) = canst, and for such a 
special phase change which is an extreme simplifi­
cation of the natural picture. In reality, the phase 
change of the radiation in the gas is due to the 
random frequency shifts of the atom at the 
moment of collision, generally speaking, these 
are not at all instantaneous, and do not entirely 
remove the phase correlation between neighboring 
trains. Unfortunately, each complication of the 
time dependence a ( t) eliminates the application 
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of the method, developed in the present article and 
is evidently associated with insurmountable diffi­
culties. However, one can point out such a type of 
random perturbation-a wave with unchanging phase, 
but with randomly changing amplitude (in time)­
which in some sense is an alternative to what was 
considered, and at the same time admits an en­
tirely rigorous averaging under conditions of res­
onance. Actually, introducing the variables 
n = u 11 - u22 and m = -2 Im u 12, we get from (3.3) 
(for a = 0): 

dn 2~-tt2 
-cT£ =- ----y;:Eo(t)m =- Wt(t)m, (3 .4a) 

dm 2~-tt2 dt = TE0 (t)n = ffi1 (t)n. (3.4b) 

Reduction of the problem to such equations, which 
have the evident solution 

n = cos [. ~ Wt ( t') dt' J , 
0 

I 

m=sin[~ ffi 1 (t')dt'], (3.5) 
.o 

becomes possible only at conditions of resonance, 
since for any other case the presence of the time 
factor eillwt, as in (1.3), does not allow us to sep­
arate it from the real part of u12 • On the other 
hand, the solution of (3.5), to which is added the 
dynamic part of the problem, and which establishes 
the functional dependence n ( t) on w ( t) in explicit 
form, is real for any form of w 1 ( t). As has al­
ready been pointed out, the existence of such a 
solution makes it possible to proceed to the 
standard method of the theory of random processes, 
while in the given specific case, we are treating 
with fluctuations of the modulation of a harmonic 
oscillation with frequency w1 ( t). 

Although we have a certain freedom of choosing 
the type of random process w 1 ( t), it is physically 
clear that when one is concerned with fluctuations 
of the amplitude of radiation E0 ( t), it is more 
reasonable to consider this process to be normal 
( jumpwise changes would in this case be unnatural). 
If the random process is centered, by separating 
the mean value of the amplitude Eo from it, 

E(t) = [Eo+~Eo(t)]eiwt, 

where ~E 0 (t) = 0, then it is seen that 
I 

n = cos(ro1t + ~~w1 dt'], 
0 

(3.6) 

If the fundamental characteristics of the normal 
random perturbation of frequency ~w ( t) are 
given: 

~ffi = 0, ~ffi2 = d, K (T) = ~ffi 1 (t) ~ffi 1 (t + T) = dr (T), 
00 

To=~ r(T)d"t', 
0 

(3. 7) 

then the solution of the problem in the very gen­
eral case has the form [ 3] 

d I I 

n(t)= exp[- 2 ~~r(s1 -s2)ds1 ds2Jrosw1t. (3.8) 
0 0 

The quantity T0, defined in (3. 7), represents the 
correlation time of the effective noise, generalized 
to the case in which its normal correlation coeffi­
cient is not exponential, as in (1.1). 

If t » T0, then the general expression (3. 8) is 
well approximated by the approximate form 

(3. 9) 

It is not difficult to identify the decay param­
eter which appears in this asymptotic expression 
with the general definition of the transition proba­
bility (2.2) in which, however, it is necessary to 
use the previously centered noise: ~E ( t) = 

~Eo ( t) eiwt (earlier, this requirement was satis­
fied automatically because of the phase disorder). 
In this case, we have 

2W = 4:n:~I22 Pt.E (ffio) = (2~-tl~~Eo rr r (t) dt 
0 

(3.10) 

It is evident that Eq. (3.9) is a satisfactory descrip­
tion in practice on all time axes if the following 
inequality is satisfied 

(3.11) 

This expression is identical in meaning with (2.14) 
but takes into account the specifics of the given 
problem. This specific character lies in the fact 
that we here have three independent parameters: 
T0, d, and w1, whereas in the Lorentz form there 
are two, To and w1 (d = wr). Therefore, in spite 
of the identical character of the decay parameter 
in (3.9) with the quantity considered according to 
perturbation theory (3 .10), we still do not have the 
right to claim that the kinetics of the process are 
close to ideal (non-oscillating). Thi,13 happens 
only if the additional condition w1T 0 « 1, which 
does not follow from (3 .11), is satisfied. 

For small t « T 0, behavior of n ( t) is approx­
imately described by the formula 

which can be used in practice everywhere if 
~w1ro » 1, that is, if the process is actually 

(3 .12) 
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ended at the time when the asymptotic representa­
tion (3.9) goes into effect. It is evident that in this 
case the specifics of the problem appear more 
sharply-the decay of the state takes place accord­
ing to a Gaussian law ( not exponentially), and the 
decay parameter d/2 does not change upon subse­
quent lengthening of r 0, in contrast with that which 
was the case in (2.13). However, in this case, as 
earlier, there is an oscillating relaxation regime 
with period w·t 

From a comparison of the two perturbations of 
different character considered, it is possible to 
draw a conclusion which has evidently a general 
character: in the limits of its applicability, the 
perturbation method gives a universal recipe for 
calculation of the asymptotic decay parameter in 
the first non-vanishing approximation, whereas the 

decrement and the character of the damping beyond 
these limits depend essentially on the specific 
character of the actual noise, and their estimate 
requires a rather rigorous special consideration. 
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