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RECENTLY, De Gennes and Matricon [t] con­
sidered the collective oscillations of vertices in 
type II superconductors. However, their approach 
gives rise to objections, in view of the fact that 
they started out from an assumption that there 
were no current oscillations, for which, in general, 
there is no basis. 

We consider the case for which K » 1, just as 
in [1]. Under these conditions, the superconducting 
correlation parameter ~ = o/ K is small in com­
parison with the field penetration depth.C2J Be­
cause of this fact, the core of the vortex can be 
regarded as a singularity in the field equations. 
As is well known, the London equation in the pres­
ence of a vortex is changed to 
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where <Po = nnc/e is the magnetic flux quantum 
and o is the field penetration depth. In the case 
o'f an alternating field, it is necessary to add an 
additional equation. We write it down by starting 
from the analogy between the London supercon­
ductors and a superfluid liquid. Of course, this 
derivation is not rigorous. We hope that eventually 
such an equation can be obtained from the com­
plete equations of superconductivity theory. 

Let us consider not too high a temperature and 
not take the normal current into consideration. 
As is well known, the motion of the superfluid 
liquid is described by the equation 
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where Vs is the superfluid velocity and f.J is the 
chemical potential. If it is assumed that the liquid 
is charged, then it is necessary to add to the right 
hand side the contribution from the Lorentz force: 
em- 1 (E + c- 1 vs x H). Furthermore, we add 
another term, which corresponds to the "fric­
tion,'' which we shall find below. Introducing 

j =Nev., Q = rotj+ (c/4:n:62)H, 

we get, after simple transformations: 
oj 1 . Ne2 
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where f is the term associated with the friction. 
Here N must be understood as the "effective 
number of electrons," connected with o by the 
London relation o = ( mc2 I 4nNe2 ) 112 . The term 
(m/e)V'(f.J,+vV2) isincludedin E. Here, as 
before, we can neglect the displacement current, 
and we shall not use the equation div E = 4np, 

assuming that the electron density in the metal is 
unchanged and div j = 0. 

We now consider the force of friction. It fol­
lows from general considerations that it should be 
proportional to the current. In principle, it can 
have components along Q, along j x Q and along 
Q x ( j x Q). The term j x Q cannot participate in 
the friction force, inasmuch as it leads to an in­
correct value of the frequency of oscillations, as 
we shall see below. In view of this, there remain 
only two terms, which we shall write down in the 
form (Q/Ne{ a [ v x (j x v)] + {3v(j · v)}, where 
v = Q/Q. From the law of conservation of energy 
and the law for entropy increase, one can show, 
just as in [2], that {3, a > 0. Thus the equation 
finally takes on the form 

oj 1 Ne 2 Q (4) 
-8£- Ne [jQJ = ---;n-E + Ne {a [v [jv]J + ~v (jv)}. 

We shall assume that the external field is in the 
range Hc 1 « H « Hc2, so that the distance be­
tween the vortices lies in the interval ~ « d 
« o [2]. Assuming that the wavelength of the os­
cillations A. » d, we shall average Eq. (4) over a 
region large in comparison with d. Evidently Eq. 
(4) can be understood in this sense. 

We now consider the collective oscillations. If 
it is assumed that the external field is directed 
along the z axis, then, in zeroth approximation, 
we have j = 0, Qz = cB/4no2, where B is the 
mean field, which is practically identical with the 
external field H for H » Hc 1. If the oscillations 
are propagated along the z axis, then it is easy to 
obtain the dispersion law from (4/ and Maxwell's 
equations: 

(5) 

where n0 = eH/mc. These are circularly polar­
ized waves. The quantities jx, jy. Qx, and Qy are 
different from zero. The density of the vortices, 
i.e., Qz, does not change. Equation (5) differs 
from what was obtained in [1]. For k « 1 I o and 
a « 1, it goes over into w = n0 and corresponds 
to the ordinary Larmor precession of the Cooper 
pairs. Thus the oscillations of the vortices and 
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the Larmor precession correspond to different 
parts of a single branch of the excitation spec­
trum. We note that the presence of a term pro­
portional to j x Q in the friction force would lead 
to the appearance in u) of a coefficient different 
from unity. 

If the waves are propagated perpendicular to 
the vortices, then it is necessary to take into ac­
count the condition div j = 0 and the following ex­
pansion is used for j x Q: 

[joQJ = [ (jox), ~;1 J + {- [ (j~2 ), a;.~~ J + ... 
The expression for j 0 is taken from [2]. If the 

centers of the vortices form a quadratic lattice in 
the perpendicular cross section, we then get 

w1 = - iQo [ C k4d4 sin 4<p + ak262 j ( 1 + k262) ], 

W2 = -iQo[Ck4d4 sin4<p + ~k262/(1 + k262)], (6) 

where C is a constant of the order of unity. For a 
trigonal lattice, in place of the term k 4d4, there 
is a term k 6d 6. The first of these solutions refers 
to a plane polarized wave with fy and Qz, while 
the second, to a plane wave with fz and Qy. Thus, 
in contrast with the conclusion of De Gennes and 
Matricon, [t] the propagation of transverse un­
damped waves is not possible. It also follows 
from (6) that the lattice of the vortices is unstable 
in the absence of dissipation (a, (3 = 0 ). In view 
of the strong dependence of the coefficients a 
and {3 on k for a small number of macroscopic 
defects (see below), this can lead to shortwave 
"jitter" of the lattice. 

In the recently published work of Vinen and co­
workers, [4] the motion of vortices was studied by 
the relaxation of the magnetization of a cylindrical 
specimen upon change in the external field. From 
Eq. (4) for the relaxation time, we get 

(7) 

where R is the radius of the cylinder. Com pari­
son with the results of the given research shows 
that a ~ 1000. At first glance, it then follows that 
the frequency of oscillation (5) is essentially an 
imaginary quantity, i.e., the oscillations do not 
exist. However, it is necessary here to take it 
into consideration that the fundamental mechanism 
of dissipation at low temperature is the interac­
tion with macroscopic inhomogeneities. If the 
number of such inhomogeneities is not large, so 
that the distance between them l » d, then one 
can consider the wavelength A.« l. For such os­
cillations, a will be small. If one is concerned 
with the motion of the filaments as a whole, which 
is the case in the work of Vinen et al., then one 

must naturally expect large values of a. In other 
words, on the basis of the data of Vinen and co­
workers, one must not expect the absence of os­
cillations, but only a strong dependence of a on 
the wave vector. 

*rot = curl. 
t[jQ] =j X Q. 
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IN the present work we have experimentally 
demonstrated the possibility of studying elastic 
scattering of high energy protons in the small­
momentum-transfer region 

by means of semiconductor nuclear particle de­
tectors. The nuclear emulsion method [1] which 
has previously been used for this purpose has the 
disadvantage of a low rate of collecting statistics. 
Semiconductor counters are free from this diffi­
culty, possess good energy resolution (~1%), 
are compact, and are insensitive to magnetic 
fields. The fact that the sensitive layer in the 
semiconductor detector can begin immediately at 
the surface permits counting protons of very low 
energies, down to several tens of ke V. [2] This 
means that it is possible to study scattering in 


