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The first term and an estimate of the following term in the Green's function expansion for a 
charged particle in the infrared region are obtained in a local field theory in which quantum 
electrodynamics in all orders of e is included. A similar expansion is obtained for the 
Compton scattering amplitude with a fixed value of the transferred momentum. The method 
is based on application of the dispersion relations and expansions of the current matrix 
elements in terms of the soft-photon momenta. 

1. INTRODUCTION 

THE infrared asymptotic behavior of the Green's 
function of a charged particle has been the subject 
of many investigations. It was shown by various 
methods-the method of renormalization group [t], 
approximate solution of functional equations [2], 

solution of integral equations in the ladder ap­
proximation [3], or functional integration [4]-that 
the first term of the expansion of the Green's 
function in the infrared region is of the form 
(1- r 2m- 2 fY- 1, where 'Y is generally speaking a 
series in e2, in which the first term is obtained. 
It was shown with the aid of a renormalization 
group that there is no term of order e 4 in yC5J. 

This raises the question of finding an exact 
expression for the exponent '}' and of finding the 
next terms of the Green's-function expansion in 
the infrared region r 2 - m 2• This question was 
dealt with by Milekhin [s], who used the method of 
functional integration [TJ, but estimated the next 
higher terms of the expansion by perturbation 
theory. Analogous results were obtained recently 
by Barbashov [8] with the aid of a new improved 
method of functional integration. 

In this paper, without using perturbation theory, 
we obtain the first term and estimate the second 
term of the Green's-function expansion in the in­
frared region. An analogous expansion was ob­
tained for the amplitude of Compton scattering at 
fixed momentum transfer. We start from the gen­
eral premises of the local field theory [9], includ­
fl:ig quan.tum electrodynamics in all orders in e, 
i.e., we assume in addition to the general axi-
oms [9J, that the continuous energy spectrum can 
start with zero and that the theory should be 
gauge-invariant, and use an indefinite metric for 

the time-dependent photons. In order to avoid 
divergences in the spectrality condition, connected 
with the zero energy of the photons, we introduce 
during intermediate stages of the calculations an 
effective photon mass A., which we then let ap­
proach zero ahead of all the physical.variables. 

The method employed consists in using dis­
persion relations and expanding the matrix ele­
ments of the currents in the momenta of soft 
photons. These expansions are a generalization 
of the results obtained in lower order in e by 
Low [1o] and of Bilen'kil and Ryndin [l1]. To obtain 
these expansions, we use the general equations of 
local theory [9], which were investigated by 
Medvedev and Polivanov [12] in connection with an 
axiomatic construction of the theory of strong in­
teractions, and we consider them with allowance 
for the electromagnetic interaction. We shall 
show that a natural mathematical apparatus for 
the theory of dispersion relations with allowance 
of electromagnetic interaction is the apparatus of 
generalized power functions, developed in the book 
of Gel 'fand and Shilov [13]. 

In addition to an analysis of the Green's func­
tion and the amplitude of the Compton scattering, 
we consider also the application of the obtained 
expansions of the matrix elements of the current 
to inelastic processes and find the first terms of 
the expansion of the cross section of bremsstrah­
lung in the radiation energy. In the last section of 
the paper we consider the question of factoriza­
tion of the infrared divergences. We show that 
this factorization is a simple consequence of the 
spectrality and of the physically justified require­
ment that there be no infrared singularities if the 
momenta of the charged particles remain un­
changed. 
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To simplify the exposition we consider only 
processes in which only one spinless charged 
particle (meson) exists besides an arbitrary num­
ber of neutral particles. Generalization to the case 
of a charged particle with spin 1/2, and also to the 
case of an arbitrary number of charged particles, 
does not entail any difficulties iri principle. 

The system of units and metric employed are 
such that l'i = c = 1 and ab = a0b0 = a·b. The am­
plitude of the state of the particle with momentum 
k is normalized by the condition ( k' l k) 
= (27r)32k0o (k'- k), and accordingly we introduce 
the notation 

(1.1) 

If some quantity F ( ki ) depends on the photon 
momentum ki (and on its polarization vector), 
then for the product of such quantities correspond­
ing to n photons we used the symbol 

n 

(F(k))n = liF(ki)· (1.2) 
i=l 

2. MATRIX ELEMENTS OF NEUTRAL CURRENTS 

We consider the matrix element 

<kt, ... kn, p [l[r) = (n, p [J[ r), (2.1) 

where . J = J ( 0 ) , J ( x ) = i ( o S/o x ( x ) ) S + is the 
neutral-current operator and x ( x) is an arbi­
trary local electrically-neutral field. If x is an 
electromagnetic field, then we shall also write j 
in place of J; p and r are the momenta of the 
charged meson with mass m, and ki are the mo­
menta of soft photons with real polarization vec­
tors Ei. We put t = ( p - r )2• 

Let us investigate the dependence of (2 .1) on 
k1, ..• , kn. To this end we use a system of equa­
tions which follows from the principal axioms of 
the local field theory [9•12] when account is taken 
of the electromagnetic interaction ( n = 1, 2, ... ) : 

(n, pI J I r) =-(2n) 3 

X ~ [ 6 (rN- P- K,.) <n- 1, pI enj IN) (N _8~ 
N rN° - P0 - Kn ° - iO 

+ 6(rN- r + kn) (n -1, pIll N) (N I enj I r>.J. 
rN°- r0 + kn°- i0 ' (2 .2) 

Kn = kt + ... + kn. (2 .3) 

In local theory, Eq. (2 .2) is defined accurate to 
a polynomial in kn. However, we seek only those 
terms of the matrix element (2 .1) which are 
singular when any of the photon momenta tends to 
zero. Therefore any arbitrariness in (2.2), other 

than that connected with the introduction of terms 
that are singular as kn- 0, is of no importance 
to us. Equally unimportant are the possible di­
vergences arising in the integration over large 
momenta of intermediate particles. In order to 
avoid divergences in the integration over small 
momenta of intermediate photons, we assign to 
them a small maf?s A.. We must assume here that 
A. is much smaller than all the momenta lki I. In 
those expressions which are finite when ki ""' 0, 
we shall put A. = 0. 

In Eq. (2 .2) the terms singular as kn - 0 come 
only from those intermediate states which cause 
non-integrable vanishing of the denominators when 
we set in them A.= 0 and kn = 0. In the first term 
of the right side of (2 .2), such states should con­
tain a meson with momentum r 1 close to p, n - 1 
photons with momenta qi close to ki ( i = 1, ... , 
n - 1 ), and an arbitrary number of photons with 
momenta close to zero. A nonintegrable contribu­
tion is made only by those terms in 
(n- 1, pI Enj IN), which contain ( 0 (k- q nn-t• 
that is, which correspond to non-connective dia­
grams. In the second term, a contribution of in­
terest to us is made only by those states which 
contain a meson with momentum r 1 close to r, 
and an arbitrary number of photons with momenta 
close to zero. 

We write out the system of equations which 
give a singular dependence on kn as kn- 0 not 
for the matrix elements (2.1) themselves, but for 
the amplitudes J (a, p; r, b), defined by1 ) 

(a,plllr, b)= (mj')..)f>J(a,p; r, b), (2.4) 

where a and b are the quantum number of the 
electrically neutral particles, 

1 

~ = f3(t) = ~-( 1-pr ~ dxpx-2 ). 

Px = px + r(1- x) (2 .5) 

and a is the fine-structure constant. The physical 
meaning of the function {3 consists in the fact that 
it represents a relativistic generalization of the 
Coulomb Hegge trajectory [15-t 9J. We obtain 
(n=1,2, ... ) 

J(n,p; r) = -(2n)3 ~ ~ ( ~T] ~ aq) [~ ari( m_ r 
l=O g l g, /, 

X 
6(r1 + Q1- p- kn)e~(p; r1, l)l(l, n-1, r1; r) 

riO+ QzO- pO- knO- i0 

l)These amplitudes are finite when ,\ = 0 (see Sec. 6 
and [t•]). 
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b (r1 + Qz- r + kn)l(n- 1, p; r1, Z) enj(l, r1; r) J 
X r1o + Q10- rO + kn°- io 

(2 .6) 

Here 

The argument l defining J and j denotes depend­
ence on the photon momenta q1, ... , qz, the sum 
of which is equal to Qz; 2:: denotes summation 
over the polarizations of these photons; T) = -1 
for temporal polarization and T) = +1 for spatial 
polarization 2 ); the regions of integration are de­
fined by the equations I q I < h (region g), II ri I 
- I P II< ht (region gl), and llrtl- I r II < h2 
(region g2), where h, h1, and h2 are arbitrarily 
small, with lkn I « h. 

The system (2 .6) has the following solution: 

l(n,p; r) = (F(k))nl(p; r) + O(k;(k-1)n), (2.8) 

where 

( pe re ) [ ( m2 m2 ) F(k)=e --- 1+2 pkln--rkln-
pk rk rk pk 

X~'( (p- r} 2} J (2.9) 

and 0 (x) denotes a quantity of order x; W ( t) is 
the derivative of the function (2.5). Thus, the co­
efficient in-the logarithmic dependence on k is 
determined by the slope of the Coulomb Regge 
trajectory. 

Besides the amplitudes (2.8), the right side of 
(2.6) contains also amplitudes with photons in the 
initial and final states. However, they are con­
nected with (2 .8) by a symmetry condition. In 
fact, the matrix element ( k I J I q) ( k and q are 
the photon momenta ) is obtained when k >" q from 
( k, q I J) by substituting -q for q. Choosing 
h < lki I (i = 1, ... , n- 1 ), we find that if (2.8) is 
satisfied, then J(n -1, p; r 1, Z), as a function of 
all the photon momenta, satisfies an analogous 
relation. 

In the case of an electromagnetic current, it 
follows from the gauge invariance that the prod­
uct of (2.1) by k = Kn + p- r should vanish. Ex-

2)J:t is convenient to use a Feynman gauge in which the 
vacuum does not contain temporal or longitudinal photons. 
The complete system of state amplitudes should include in 
this case states with these photons, and the summation over 
the polarizations of the intermediate photons is carried out 
by the formula "1.7J Em En = - gmn (g = metric tensor). Equation 
(2.6) does not depend on the gauge. 

pression (2 .8) satisfies this condition, if we can 
neglect the term Kn in k, that is, if p ,.. r. How­
ever, (2. 6) contains the amplitudes j ( n, p; r) for 
arbitrarily small values of p - r. Expression 
(2 .8) is not gauge-invariant for these amplitudes, 
but can be made gauge-invariant by adding a 
term of order of a constant for each of the ki; 

n 

j(n, p; r) = (F(k))n [ j(p; r) +.~ B(k;)/( (p- r)2) J, 
t=l 

(2 .1 0) 
where 

j(p; r) = (p+r)f((p-r)2), /(0} = e, (2 .11) 

We now substitute expression (2 .8) and its 
corollary (2.10) in the right side of (2.6). Using 
the equation 

b (a) i r . ___ = __ J dtxe-•ax, 
aO- iO (2:rt} 3x">o 

(2.13) 

we can sum over l and go over to the limit as 
A - 0. We then obtain an expression which does 
not contain an explicit dependence on A and has 
a small parameter r 1 - p or r 1 - r. Expanding 
in this parameter and estimating each term of the 
expansion, we obtain expression (2.8). This ex­
pression is symmetrical in all the ki, and there­
fore the limitation lkn I« lki I (i = 1, ... , n- 1 ), 
which was used during the course of the calcula­
tions, is immaterial. 

The uniqueness of (2 .8) follows from the f~ct 
that the principal (pole) term in kn gives a pho­
tonless intermediate state in (2. 6), and also from 
the uniqueness of (2.10). 

Expression (2.8) gives the first two terms of 
the expansion of the matrix element (2.1) and (2.5) 
in the photon momenta, which can be written in 
the form 

l(n,p;r) =(e(!!!_- r; )) [1+~2(p-r)kdn·7:. 
pk r n i=i , 

X f3'((p·-r} 2)] l(p;r) +O(k;(k-1)n). (2 .14) 

This expansion is valid also for a matrix element 
of more general form: 

<k,, ... , kn, a, pIll r, b, q,, ... qm>, 

and also for 

(k,, ... , kn, alllp, r, b, q~, .. . , qm>, 

where a and b are quantum numbers or neutral 
rigid particles, p is the momentum of the anti­
meson, and qi are the momenta of the soft pho­
tons. The momenta p and qi will enter in the 



486 L. D. SOLOV'EV 

expansion (2.14) with a minus sign. The next term 
in the expansion (2.14) is discussed in [2oJ. 

The expansions obtained for one photon contain 
terms of order k-1, e2 ln k, and k0. In [10,t1] the 
terms of order k- 1 and k0 were obtained in the 
lower order in e. We see that as k - 0 the 
term of order e 2 ln k, due to the electromagnetic 
interaction, is theoretically more important than 
the term of order k0• However, the coefficient 
e2 greatly reduces its value when k ~ 0. 

Let us apply the obtained expansion to brems­
strahlung. If the photons are fixed, then we can 
use the expansion (2 .14) directly. Let us consider 
the process of interaction of a charged meson with 
a neutral rigid particle, in which an arbitrary 
number of soft photons is emitted. Let the total 
energy w of these photons be fixed. Let also the 
square of the momentum transferred to the meson, 
t = ( p - r )2, be fixed. Then the cross section of 
this process, summed over all the soft photons, 
is equal to 

da(w) =( 2w )d(~+!ln~)exp (-Cd+D) da' 
m w d w r(d) 

+o((:r). (2.15) 

Here d = -2{3 (t), 

g = e~~, (t) I dn ( p r )2 2 (r P) . 
J (2n) 3 pn - rn - n, 

n ={i,n}, In I= 1. (2 .16) 

C-Euler's constant, r-gamma function, 

D=r:p(p,p) -2r:p(p,r) +r:p(r,r), 

a ~1 dx 1 1 + a I Px I r:p(p,r) =-pr ·--ln---, a=--, (2.17) 
n 0 Px2 2a 1 - a Px0 

and da' is the cross section of the nonradiative 
process, determined by the amplitude J (2.4). 

If w is not fixed and can vary from 0 to b.E 
( b.E-energy resolution), then 

( 2/lE )d( g m ' da(!:J.E) = - 1 +--!:J.Eln-J 
m 1+d !lE 

exp (-Cd+D) , (( !lE )i+d) 
X r( 1 + d) da + 0 m . (2.18). 

This formula gives the first two terms of the 
asymptotic expansion of the cross section in b.E. 
The first term of this expansion is well known[14J, 
and the second is a consequence of the expansion 
(2.14). 

3. MATRIX ELEMENTS OF CHARGED 
CURRENTS AND FIELDS 

We now consider the operator of the charged­
meson current 

I (x) = i(6S I 6r:p+(x) )S+. (3.1) 

It is convenient to consider the matrix element 
not of the operator I itself, but of the field oper­
ator 

~(x)=r:p(x)+~Da(x-y)l(y)dy, · (3.2) 

where Da is the advanced Green's function of the 
Klein-Gordon equation. We consider the matrix 
element 

<OI<DJr, k1, ... kn> = (OJ<Dir, n), (3.3) 

where <I>= <I> ( 0 ). It is not defined by (3.2) when 
n = 0. From (3.2) we have 

(OJ<DJr, n) = -i)) dxdye-ihnxDa(-y) 

X <Oi[Tu(j(x)I(y) )+ A(x, y)]lr, n -1) En, (3.4) 

where A is a quasilocal operator. It is easy to 
verify that as ki - 0 it gives a singular depend­
ence on each ki only in the case when n = 1. 

Assume first that n ~ 2. Then the equation 
defining the singular dependence of the matrix 
element (3.3) on kn as kn- 0 is of the form 

<OI~Ir,n> 

= -(2n)3 ~[ 6(rN- kn) <Oj_enjJ_N)<NI$Jr, n -1) 

-;: rN° + k 11° + i0 

(rN-r-Kn_i)2- m2 
X---· 

(r+Kn)2- m2 

rN2- m2 J 
X(r+Kn)2-m2 

(3.5) 

As in the preceding section, we can verify that, 
with the accuracy of interest to us, this equation 
can be rewritten in the form (n = 2, 3, ... ) 

X <'I (rl -1- Qz-r- kn) (0 I <D I rio n -1, l) (l, r11 enj J r) 
rio+ Qzo- ro- kno + iO • 

(3.6) 

This system is closed. Using for the matrix ele­
ments of the electromagnetic current the expan­
sion (2.10) generalized to the case when qE ~ 0 
(that is, for temporal and longitudinal photons), 
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we find its solution for fixed k1 ·(in the Feynman 
gauge) 

<OI(f)lr, kit ... kn> = ir L(k;)<OI$Ir, k,> + o( kj II kc1 )' 

i=2 i=2 

where j = 2, ... nand 
re 

L(k)=erk' 

(3.7) 

(3.8) 

Since expression (3. 7) should be symmetrical 
in all ki, i = 1, ... n, we conclude that 

<OI<Dir,k,, ... kn> = (L(k))nZ+O(ki(k-')n), (3.9) 

where Z does not depend on ki and is conse­
quently a constant. It can be called the matrix 
element (3.3) for n = 0: 

<OI<D ir> = z. (3.10) 

The expression for the matrix element of the 
current I is obtained from (3.9) with the aid of 
the equation 

(Ojljr,n) = [(r + Kn)2- m2](0j<Djr, n>. (3.11) 

The constant Z is then equal to 

Z = lim(2ere)-1 <OII!r, k). (3.12) 
k-+0 

From the point of view of perturbations, the con­
stant Z is determined by the corrections to the 
external meson line and contains infrared 
divergences. 

4. GREEN'S FUNCTION 

With the aid of expression (3.9) we can investi­
gate the behavior of the Green's function of a 
charged meson in the infrared region. We write 
the spectral representation of this function in the 
following form: 

m'+h 

G(r2) = ~ 
m' 

g(q2)dq2 
q2-r2-i0 +R(r2), (4.1) 

where the function R ( r 2 ) is regular in the infra­
red region r 2 - m 2• The spectral function in this 
expression can be written in the form 

g(r2) = (2n) 3 ~ b(r- rN)<OI<DIN> <N!<D+!O>, (4.2) 
N 

where the state N consists of a meson with mo­
mentum r 1 close to r and of an arbitrary number 
of soft photons when h is sufficiently close to 
zero. We use (3.9) and replace the a-function by 
its Fourier integral. This allows us to sum over 
all the intermediate photons. Further, in the co­
ordinate system where r = 0, we can expand the 
integrand in (4.2) in terms of ri and estimate 
each term of the expansion. 

As a result we obtain, in a Feynman gauge, the 
following expression: 

xY-1 
g(r2)=Z12e-cvr(y) (1+0(x)), (4.3) 

where 

x = r2m-2 -1, y =-a In, Z12 = Z2m-2(m/"Ae)i'. (4.4) 

We see that, since y < 0, the spectral function 
(4.3) is not integrable in the usual sense near 
x = 0. It is natural to generalize the concept of 
the integral in (4.1) or, what is the same, to re­
gard the spectral function near x = 0 as a 
generalized power function 

j(x, a)= r(t~ 1) x+a = g~· =~~, (4.5) 

defined by Gel'fand and Shilov [ta]. The integral 
00 

~ f(x,a){p(x)dx, 
-oo 

where q; ( x) is regular at zero, is determined 
when Re a < -1 with the aid of a suitably chosen 
regularization, which is equivalent to analytic 
continuation as a0 - a of the integral 

00 

~ j(x,ao)cp(x)dx, Reao>-1. 
-oo 

The function (4.5) is an analytic function of a (for 
regular q; it defines a functional analytic in a). 
When a= -n (n-positive integer) we· have 

f(x, -n) = 6(nJ(x). (4.6) 

Its expansion in a Taylor series near a = -1 is of 
the form 

e-vcj(x, y- 1) 

(4.7) 

where x:1 is another generalized function, defined 
by the condition 

x+ _, = x-1 for x > 0, x+ _, = 0 for x ~ 0; 
00 00 

~ x+-1cp(x)dx= ~ x-1 [cp(x)-8(1-x)cp(O)]dx. (4.8) 
-<X> 

Substituting (4.3) in (4.1) we have 

G(r2) = Z22(-x)Y-1(1 + O(x)) +canst, (4.9) 

where 
Zz2 = Zt2 n exp (- Cy) 

f(y)sinny · 
(4.10) 

Formula (4.9) gives the first term of the expan­
sion of the Green's function in the infrared region 
and an estimate of the next term. 

Let us compare formulas (4.3), (4.7), and (4.9) 
with the results of perturbation theory. Expanding 
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the spectral function (4.3) in a series in y with 
the aid of (4. 7), we obtain 

g(r-2) = m-2 [6(x) + y(x-1 + 0 + ... ) 

+ y2 ( x-lln x + 0 ln x + ... ) + ... ] . (4.11) 

Comparing with the result in second order per­
turbation theory 

[ 2+x J g(r2)=m-2 6(x)+v . , 
2x(1 + x) 

(4.12) 

we find that in the lowest order of perturbation 
theory the coefficient 0 is equal to 

O(x) =Ox, 0 = - 1/z. 

We see that the coefficient of y2 ln x in fourth 
order perturbation theory should be - 1/ 2. 

The perturbation theory series for the Green's 
function itself is more complicated. From (4.9) 
we have ( x < 0 ) 

G(r2) = -m2{x-1 + 0 + y[x-1 ln2 (-x) 

+ 0 ln (-x) + ... ] + y2 [ 1/ 2r 1 ln2 (-x) 

+ 1/ 20ln2 (-x) + .. ,.] + ... } +const. (4.13) 

We emphasize that for the term of order const 
in (4.9) and (4.13), a subtraction procedure is es­
sential, that is, the region of large r 2 . 

5. COMPTON SCATTERING 

Let us consider the amplitude of elastic scat­
tering of a photon by a meson, ascribing to the 
photons in the intermediate states a small mass 
A.. The amplitude is equal to the matrix elements 

As in Sec. 4, the absorptive part T 1 T in (5.3) is 
expressed by a sum over intermediate states con­
taining a meson and an arbitrary number of low­
energy photons. It is equal to 

exp ( Cbo +Do) 
T (s t) (sm-2- 1) -bo-1 Mab (-r) 

11 ' =- m2f(-bo) 

+O((sm-2-1)-b•), (5.4) 

where 

bo = 2~('t)- ~(t), 

lVJab('t) = (2p + k2)a(2r + kt)bf(r:), /(0) = e 

and V0 is a known function of t and T. 

For b0 > -1, the absorptive part of (5.4) be­
comes infinite when s = m 2• However, b0 < 0 
under condition (5.2), and therefore the absorptive 
part of (5.4) is integrable, in accord with the 
general theory. However, when T = 0 we have 
b0 = -{3( t) > 0 (for t < 0 ), and the absorptive 
part is not integrable in the usual sense. We must 
therefore substitute (5.4) in (5.3) for T < t/2, 
that is, carry out the integration for b0 < 0, and 
only then can we put T = 0. This is equivalent to 
defining the absorptive part of (5.4) at T = 0 

T (s t) =- exp(- C~ + .S) (sm-2 -1)+~-tMab(O) 
1 ' m~f(~) 

+O((sm-2 -1)+~) 

as a generalization of the power function (5.4). 
The function 6 is equal to 

t 

6 = 6(t)= -~( 1 +pr~ Px-2 lnl2x-1ldx). 
:rt 0 

(5.5) 

(5. 1) In the vicinity of s = m 2 the amplitude T is equal to 

where k1 = k2 + p - r and E1 are the momentum 
and polarization vector of the initial photon. We 
have separated, as in Sec. 2, the A. -dependent 
factor. 

Let us investigate the dependence of T on 
s = ( r + k1 ) 2 near the threshold s = m 2 for fixed 
t < 0 and A.= 0. 

Assume first that A. "'- 0. We put in T [9] 

(5 .2) 

We then obtain a function T T, satisfying the dis­
persion relations 3 ): 

m'+h 

T(s t) = _ :rt exp(-C~+6) 
' m2f(~)sin:rt~ 

x(1 + sm-2) H Mab (0) + 0 ( (1-sm-2) ~) + const. (5 .6) 

For t < 0 we have {3( t) < 0, and the amplitude 
has a singularity stronger than a pole. 

Expression (5.6) is a generalization of the re­
sult obtained in [21 ' 19]. 

6. ON THE FACTORIZATION OF THE INFRARED 
DIVERGENCES 

We have considered above the matrix elements 
T ( t)= I T1,(s',t) +R 

' s, J s'- s- iO ' 
m' 

where R is finite at s = m 2• 

(5.3) (2.4), which describe processes with a fixed num­
ber of particles, by introducing a fictitious pho­
ton mass A. and then separating the A.-dependence 

3 )This equation stands for several relations for invariant 
amplitudes. 

in the form of a factor. In those cases when the 
amplitudes remaining after this separation were 
·calculated to the end in some region, as in Sec. 5, 
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they turned out to be finite for A = 0. We shall 
show that this is not an accident, and that the 
amplitude J in (2 .4) is finite when A = 0 [l 4J. 

In fact, it is practically obvious that the infra­
red singularities should be nonexistent if the mo­
menta of the charged particles remain unchanged. 
In this case thert:3 is no radiation, and the elastic 
process is observable. Therefore the matrix 
element (a, p I JJ I p, a) (where J is the neutral 
current, p the charged-particle momentum, and 
a are quantum numbers of the neutral particles) 
should be finite when A = 0. Let us expand the 
product of the currents in this expression in a 
complete system of amplitudes. From the inde­
pendence of the individual expansion terms cor­
responding to physically different intermediate 
states it follows that each such term should be 
finite when A = 0. 

We consider the term 

~ +(~ll~acl).<a, plllr, b, n)(n, b, rlllp, a), (6.1) 
n=o n. g n 

where r is the momentum of the charged meson, 
b are quantum numbers of neutral rigid particles 
with energies larger than h, and n is the number 
of soft photons with momenta qi, q~ < h, where h 
is arbitrarily small. 

Substituting here expression (2 .4) and confining 
ourselves to the first term of expansion in qi, we 
find that, accurate to terms that are negligibly 
small for small h, this expression is equal to 

exp {2~( (p- r)2) ln (m / 2h) + D} 

><J(a,p;r,b)J(b,r~p,a), (6.2) 

where Dis given by formulas (2.16) and (2.17). 
From the fact that (6.1), and consequently also 
(6.2), is finite when A= 0, it follows that the am­
plitude J(a, p; r, b) is finite when A= 0. 
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